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ABSTRACT

. The Air Force Human Resources Laboratory (AFHRL) has established a program to design, develop,
and validate an expert model of pilof decision-making in Air Combat Maneuver1ng (ACM) to be used
in the training of fighter aircraft pilots. . The intent of this program js to create a computer-
based simulation which can encapsulate the expertise of combat pilots in ACM strategy, tactics,
and offensive and defensive decision-making. The resulting expert sysiem. is to be incorporated
into a flight simylation package to support the training of these ACM skills to student combat
piTots. The development of the ACM Expert System is based on the latest advancements in the
technology of Artificial Neural Systems {ANS).

To effectively train student combat pilots in ACM skills, it is desirable to move beyond the
texthook, allowing the student to interact with a simulated adversary aircraft via computer.
_Unfortunately, it is difficuit to capture ACM expertise in.computer software which will provide
the student with realistic and reasonable adversary behavior. Most existing systems use “"pre-
canned" profiles or simple trajectory generators. The more advanced adversary simulators use rule-
based expert systems to represeni and recall pilot expertise and create & more reactive sysiem.
However, traditional expert systems suffer from major inadequacies which have Timited their
success. By using an ANS approach to this problem, actual human ACM performance data is being used
te "train" an expert system in ACM decision-making skills. This sysiem is capable of simulating

human ACM: performance by Tearning to.associate the recognition of a tactical situatien with the-.

selection of the proper course of- action.

The objective of this paper is to describe current

cefforts to apply ANS technology to the training of ACM decision-making skills.

INTRODUCTION

Program Dhjectives

The objective of the Ajr Combat Maneuvering
Expert System (ACMES) program is te create an
expert model of pilot decision-making in Air
Combat Maneuvering (ACM) using Artificial Neural
Systems (ANS) technology. This expert system
trainer is to be capable of providing ACM
decision training to F-15, F-16, and T-38 pilots
by planning and seliecting a series of optimal
flight -maneuvers under realistic adversary
situations. The expertise of ACM tactics,
offensive and defensive decision-making to
determine the best course of action under
specific tactical «conditions, and certain
training objectives are to be encapsulated in a
computer-based expert system. The expert medel
is then to be integrated with a man-in-the-loop
flight simutation: software package utilizing a
three-dimensional, coler graphics display and
interface system. .This system will allow student
pilots to fly against simulated adversaries whose
maneuver responses are both @ reactive and
realistic. Furthermore, the expert system will
be capablie of guiding the student through optimal
. maneuver sequences for traiping purposes.

The curvent focus: of this program is how
best te apply ANS technigques to -augment and
extend traditional .expert sysiem technology.
Many techniques have been explored over the last
two decades for capturing, vrepresenting, and
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" on the actions of the enemy.

recalling knowledge in a fast and reliable
fashion, but all have suffered from major
inadequacies in. terms of knowledge acquisition
techniques, knowledge base size, speed of recall,
generalization of knowledge, and the ability te
handle incomplete or inaccurate data. - Though
some improvements have been made uysing
traditional Artificial Intelligence (AI} methods,
current systems continue to become bogged down by
size and speed constraints, and many of the

- aforementioned technical hurdies remain. The

field of Artifictal Neural Systems, also known as
Connectionism and Artificial Neural Networks, has
shown much promise in overcoming some of the more

intractable elements of simulating intelligent =

behavior {°], and therefore, is being explored as
a possible approach to accomplishing. the
objectives of the ACM Expert System: program.
jption of ACM De -Makin

The intent of the ACM Expert System is to
simulate the behavior of fighter pilots who have
acquired- a certain proficiency 1in air-te-air
combat. By directiy modeling human experts, the

details and nuances of successful ACM performance .

can be captured and used to trafn others to
achieve that level of performance. In an air-to-
air engagement, once an enemy aircraft has been
detected, the pilot begins a decision process
based both on his own goals and expectations and
The basic goal of
an aircraft pilot during ACM is to destroy the
enemy aircraft while simultaneously avoiding
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destruction of his own aircraft. The pilot
accomplishes this goal by maneuvering his
aircraft through three-dimensional space in an
effort .te obtain a position (relative to the
enemy ajircraft) which allows the enemy aircraft
to be attacked. At the same time, the pilot must
avoid the enemy’s attempts to maneuver into an
attack position against the pilot’s own aircraft.

Though the -above description provides an
adequate top-Tevel outline of the fundamentals of
air combat, -there are a number of other factors
which influence the performance of ACM, such as
the Timitations of the aircraft and weapon

systems, the use of countermeasures, weather

conditions, and the prevailing rules of

engagement. A fielded ACM training system would

require that these variables be taken into
account to provide the proper "success" criteria
profile which would emphasize and build upon all
the relevant elements of effective maneuvering
and weapons employment. However, . the basic
requirement of air combat, and the focus of the
ACHM Expert System, is the generation a successful
sequence of maneuvers based on the relative
geometry of the engaged aircraft. A "successful”
engagement is one in which the elimination of the
threat 1s coupled with the survival of ownship.
This is the framework upon which the ACM Expert
System has been established.

In general terms, a maneuver is- defined
simply as a change in the curvent flight path of
the aircraft, for example, alterations in
position, orientation, or velocity over time.
Maneuvers can, however, be described at different
Tevels. A simple maneuver might consist of a
slight change in the aircraft’s pitch and thrust
to attain a new altitude, or it might be a
complicated sequence of flight path commands
which result in the aircraft fiying an inside
loop with a barrel roil. A coordinated sequence
of smaller flight path changes connected in a
specific way is referred to as a basic fighter
maneuver {BFM). Variations and combinaticns of
these BFMs are coften used during certain ACM
situations as strategies to gain or maintain a
tactical advantage. The question for the pilet
(and for the ACM Expert System) is how to select
the right set of changes to his flight path, or
the proper BFM, which brings him safely into
position to destroy the enemy ajrcraft.

There are three basic fssues at the design
ievel which have -been used to guide the
development of an Expert System to simulate the
decision-making- of pilots during ACM: 1) What
does the pilot need to know when he makes ACM
decisions, 2} How is that informatien combined to
arrive at maneuvering decisjons, and 3) What is
the form of the pilot’s decision outpul that
leads to changes in the aircraft’s flight path?
At the implementation Tevel, these issues form
the basis of how to apply neural network
technology. to bring about new solutions in the
simulation of ACM decision-making. The goal of
this effort is to train an expert system, using
examples of human performance, to take tactical
situation data as input and produce the proper
maneyver response as output.

THE NEURAL NETWORK APPROACH

Int ction Artificial Neural S s
Artificial Heural Systems (ANS) technology
provides a methodology for combining input
knowledge to produce a corresponding, appropriate
output response through a "self-organization" of
the representational system. In other words, a
neural network produces a mapping which relates
the input space to the output space. This
methodology may be applied to any probiem where

“the underlying functien of association between

input and output is complex or unknown. As
appiied to the ACM Expert System preblem, this
mapping capability is utilized to model human
performance by Tearning the association between
input -and output conditions. Rather than
capturing expertise as a set of Togical “if-then"
rules, as is done 1in traditional AI expert
systems, a neural network develops expertise by
adapting its internal arrangement in response to
examples of expert behavior. While some ACM
simulations rely on the diagnostic, pattern
recognition capabilities of Al expert systems
[*],  others use a value-driven, - trajectory
prediction technique to determine a course of
action [']. An ANS-based expert model .can combine
these approaches in that the system can Tearn to
associate the recognition of an input patiern
wi%h the selection of the proper course of
action.

A prototype, neural-network-based ACM Expert
System has been developed, called the Artificial
Neural System for the Representation and
Collection of ACM Decision-Making Expertise, or

ARCADE, The ARCADE neural network creates a
mapping or association from the tactical
situation (input space) to the appropriate

maneuver response {(output space), as is shown in
Figure 1. The source of ACM experiise for the
ARCADE networks is data selected. from tha
Simulator for Air-to-Air Combat (SAAC), which is
a  man-in-the-Toop, multi-dome air combat
simulator Jocated at Luke Air Force Base. The
underlying assumption of this expert system
development process is that, given a sufficient
representation of the dnput and output
parameters, there exists a general relationship
between tactical conditions and maneuver
responses that can be resolved and duplicated
computationally. The internal arrangement and
behavior of a neural network which allows such a
mapping to be accomplished is reminiscent of the
massively - paraliel and highly distributed
processing arrangement found in biological
nervous systems. Specifically, neural networks
are biologically motivated models of information
processing in that they use the interactions of

- many simulated neurons te store, recognize, and
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recall knowledge.
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Neural networks are often constructed as a
hierarchy of layers. Each Tayer contains some
number of simulated neurcns, technically known as
processing elements {PEs), which are
interconnected throughout the network. The
strengths and structure of these interconnections
are what determine the system’s ultimate
operation. The strength of a connection, that
is, the extent to which one PE influences the
state of another, is also known as the weight of
the connection. A pictorial representation of a
typical processing element in a neural network is
shown in Figure 2.
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Figure 2. Schematic Representation of a Typical

Neural Network Processing Element.

In the figure, processing element j receives some
number - of inputs, 1, from other PEs in - the
network. The levels of each of these input
signals, x;, are multiplied by their connection
waights, Wiis and summed together to produce S,
the total signal -into j. In general, this
summation represents the external influence of
other PEs on PE Jj, and is used to calculate an
update value to A,new, the current level of
activation, or state, of PE J. The new
activation level is then applied to a threshold
function to determine 0., the output signal to be
produced by j. The output is then received by
other PEs in the network which each perform a
similar process to the one jJust described. The
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“connection exists between those two PEs.

RESPONSE APPROPRIATE
FEATURE MANEUVER
VECTOR.
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ACM Expert System Using -a Neural Network te Associate Tactical
Situations to Appropriate Maneuver Responses. . o

_activity of an individual PE as described above

can be represented symbolically by the following
eguations; o

- S = %xiwji, (1)
Amnew = f(A;01d,5;), (2) o
0j = g{Ajnew) (3)

where S, is the summation value of PE. j, Anew is
the new activation level of PE J, A,01d is the old
activation level of PE j, f() is some activation
function which produces the new activation based
on the current activation and summed input, O, i

is
‘the cutput of PE 3, and g{) is some thresh01djpg

function for determining the Tevel of output.
Thresholding equations generally have a sigmoidal_
Fform as in equation (4).

%)

Since the weighis and the PE activation Tevels
can have both positive and negative values, the
processing elements can have both excitatory and
inhibitory influences on other PEs in the
network. . Processing element output levels are
usuzlly continuous values scaled between 0 and 1.
or between +1 and -1. Weight values may vary
over a wider range, and a larger absolute weight
value represents more potential influence among
PEs. A weight value of zerec indicates that ne

Many ANS paradigms have been developed to
accomplish the determination of a mapping between
input and output data.
different approach for associating the various
layers of processing elements and updating the
weights between PEs in: response to training. The
specific neural network paradigm used in the
ARCADE system is known as the Multilayer Back-
Propagation (MBPN) algorithm and is the most
common and most successful neural network
algorithm im current usage. ~The form and
function of the MBPN paradigm is particularly
suited to the development of an expert system
which tearns to simulate inteliigent behavior

Each paradigm has a -



through exposure io actual examples of human
performance.

The internal rules and.procedures for how
the neural network arrives at a set of
associations for ACM performance need nol be
specified by the system designer. Rather, ACM
expertise- is represented in the patterns of
activations and the weighted connections of the
network’s processing elements. The neural
network requires only that the problem be
represented in terms of an input vector which
represents the current tactical situation, and a
corresponding output vector which determines the
correct maneuver response. During the network’s
Tearning process, expert performance is used to
generate the values of these input and output

vectors which are then assigned to certain
processing elements of the neural network as
their activation Tevels. Through a series of

associated input and output examples, these
assigned activation levels methodically influence
and adjust the rest of the neiwork until a

general solution to the mapping between input and

output is found.

In the ARCADE network, there are three or
more Tayers of processing elements. The first
layer is the input. layer to which the tactical
situation is presenied, and the last layer is the
output layer which produces the response vector.
The component values. of the finput and output
vectors are represented by the activation-levels
of the PEs 1in those layers. For example, the
value for the current altitude of the blue
aircraft may be represented by the activation
Tevel of a certain PE in the input layer, and a
commanded velocity value might be mapped to a
specific output layer PE. Between the input and
output layers are one or more hidden layers of
PEs which are responsible for buiiding up
explicit and implicit asscciations between the
input and output feature vectors. This multi-
layer arrangement allows associations of a more
abstract nature to be formed than would be
possible with just two connected Tayers. A
general diagram of a typical three-layer back-
‘propagation network structure can be found in
Figure 3. The weights in such a structure would
‘sccur where connections are made from the input
Tayer to the hidden layer and from the hidden
layer to the output layer.
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Figure 3. . Structure of a Typical Three-Layer
Back-Propagation Network.
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“trained.

The back-propagation algorithm works by
employing d concept krown as the generalized
delta learning rule. :This means that the neural
network is trained to associate specific sets of
input and -output data by being taught the
difference, or delta, between the results it
produces and the actual desired result. Neural
network training simply means presenting the
network with repeated examples of associated
input and output data and allowing the system to
adjust itseif when mapping errors occur.
Naturally, the errors will be quite large when
training begins but will gradually decrease as
training continues. When fully trained, the
network will be capable of reproducing the
response performance of the data upon which it
was trained. In many cases, a properly trained
network is capable of providing the correct

-output :response to "noisy" input data or even to

input upon which it has never been specifically
Neural networks are:.capable of arriving
at generalized solutions based on a limited set
of training data.

Advantages of ANS Teghnology -

Artificial Neural Systems provide some very
specific  advantages over other knowledge
engineering technologies. Primarily., -neural

.petworks allow the knowledge engineer to overcome

the knowledge acquisition bottleneck that plagues

‘the current generation of expert systems. Since
the neural network is trained on examples of
existing performance data, there is5 ne

requirement to generate a precise protocol and

translation of the expert’s knowledge structure.

Expertise need not be explained. in detail;
rather, the network achieves its goals by simply
copying the expert behavior and correcting its

own mistakes. Another. advantage of ANS
“architectures is  their fault  tolerance
capabilities. This 1includes the ability to

respond with reasonable output -to noisy or
incomplete data, and the.graceful degradation of
system responses 1in novel siftuations. Most
expert systems will simply fail to function at
all when presented with situations for which they
were ‘not explicitly programmed. Rule-based
expert systems also have a reputation for being
very slow, especially when the set of rules
The
neural network approach provides the possibility
of real-time, stmulated expert response to a wide
range of : input/output conditions. This is
because, unTike the training process, which may
require many iterations of exampie data, a’
response to input requires only a single feed-
forward pass. through the network with a constant
time - requirement. Finally, the inherent .
structure of neural networks ajlows a natu i
mapping to parallel hardware systems that are now

becoming avaiiable.

Hapdware and Sgftware Description

Neural network processing can place an
extreme burden on conventional computer hardware,
particularly during training of the network, so
specialized equipment is now being utilized to
provide greater size and speed. capabilities. The
development and implementation of the ARCADE
system makes use of a customized neural network
processing board called the ANZA-Plus



Neurocomputer from Hecht-Meilsen Neurocomputers
(HNC}. The ANZA-Plus coprocessor is.part of an
20386-based computer system which is optimized

for training and executing -neural . network .
A software deveicpment package for -

software.
building and interfacing te various neural
networks is included with the ANZA-Plus system.
The ANZA-Plus coprocessar has a maximum combined
capacity to represent 2.5 miilion processing
etements (PEs) and imterconnections. The
combined number of PEs and interconneciions for
the initial ARCADE networks are currently in the
range of two to four thousand. The memory
capacity for representation of the network and
storage of the training data on the ANZA-Plus
board is 10 megabytes. . The advertised processing
speed for back-propagation training on the ANZA-
PTus is I.5 mililion interconnect updates per
second. During run meode, the processing speed
Jumps to 6 .milljon sustained interconnect updates
per second.
is a Compag 386/20 Portabie system running under
the DOS 3.31 operating system.

In addition to tihe software routines
supplied by HNC for interfacing with the ANZA-
Plus - Neurocomputer, a wide variety of ANS
software support tools have been created under
this effort for the design, development, and
validation of various networks. One of the
primary tools is a Neural Network Training System
which allows an MBPN network designer to create
a network for training or to continue the
training of an existing netwark. The user is
prompted with wvarious network definition
parameters, and the network is  instantiated
accordingly on the coprocessor. The training
program then loads the specified training data
and begins processing of the network. During

training, the user is provided with a full celor

disptay of the network structure, some of the
training parameters, and a dynamic picture of how
training is progressing. Another tool used during
the development of neural networks is the Weighis
Analysis Utility., - When a 'network has been

trained and saved using the Neural Network '

Training System, the training parameters and the
current weight values are stored in two disk
files. These files.can then be used to produce
a readable profile of the network’s structure,
training conditions, and weights. The Weights

Analysis Utility allows the wuser to quickly .

examine - or compare the details of any saved
network. It provides a complete breakdown of
each weighted connection in each layer of the
network,

NEURAL NETWORK REPRESENTATION OF THE ACM
- ENMVIRONMENT

Representation Factors

A critical element in the design and
development of a neural network is the selection
of specific components of the problem domain to
be represented in the form of input and output
feature vectors. It is . important that the
problem - be represented by input and output
components which are relevant te the real-world
association between those elements and for which
an underlying mapping exists. The 1nitial
representation for the ARCADE system assumes a

The host computer for this program :

minimal set of tactical input data that might be
required by a single combat pilot when making ACM
decisions in a one versus one engagement.
Similarly, the components of the ocutput response
were chosen to. meet a minimal set of aircraft —
flight control commands to direct aircraft
maneuvering. The time dependency of the tactical
situation data is also represented by the input
vecior.

Initial " training data for the ARCADE
networks was taken from a series of engagements
flown in the Simulator for Air-to-Air Combat
{SAAC) during AFHRL’s Performance Measurement
Yalidation Study. All engagements were flown by
active-duty Air Force pilots against the same
adversary in F-16 versus F-16 situations, and the
same weapons Toadout and rules of engagement were
used each time. This provided maximal
consistency of the training data for use with the
netral network.

Before obtaining specific SAAC data for
network training, certain preselection criteria
had to be met. In order to facilitate the
learning of the network, the training data must
be as consistent as possibie, and ACM scenario
conditions present within the data should be
restricted to onily those conditions which are
represented by the input vector. For example,
the network should not be trained to maneuver
with and without weapons if the input
representation provides no indication to the
system as to weapons avaiiability. The SAAC data
format allows quick identification of aircraft
types, weapon loadouts, mission odds, and rules
of engagement to help provide this overall
consistency. It is also useful to select ACM
data at a consistent level of proficiency,
presumabkly from consistently "good" performances,
to the extent that this is possible.

Internal Metwork $tructure

The structure of the neural network’s inpui
vector is based primarily on what the pitot (and
presumably the expert system) needs to know about
the prevailing tactical situation in order to
arrive at a reasonable maneuver response. More
specifically, the 1nput vector  represents the
top-level, dynamic variables which define the
tactical situation between the competing goails of
the pilot and enemy aircraft. The term top-level
refers to situational data that. is directly
perceived by the pilot from the environment which
refates to the present situation. Relative
pesitions, orientations, and altitudes of the two
aircraft are examples of top-level data. An
exampie of data that is not top-level would be
whether the current geometry 1is defensive,
offensive, or neutral for the pilot. This
implicit meta-level knowledge will eventually be
derived by the network as training progresses.
Dynamic data are those parameters which change in
value over the course of the ACM profile. Non-
dynamic data may be excluded from the input
vector because the system will simply learn to
operate within the constant constraints dictated
by these factors where they are present in the
training data. For example, the aerodynamic
Timitations of the aircraft need not be spelled
out specifically to the neural network via the
input vector, yet will become an implicit part of



the simulation’s maneuver responses by virtue of
their existence in the responses found in the
training data. Of course, 1ike the human pilot,
such a neural network would Tikely have to be
retrained to effectively Fiy a different aircraft
with different aerodynamic Timitations.

In current versions of the ARCADE neural
network, the input vector contains parameters

which define the current tactical geometry in

terms of slant range, antenna train angle (ATA},
target aspect angle (TAA), closing velocity (V.),
blue aircraft angle of atitack (A0A), blue
altitude, blue heading, altitude difference, blue
and red airspeed, blue and red pitch orientation,
blue and red rell and turn orientation, and blue
G information. This means that the activation
tevel of each processing element in the input
Tayer will be specific for vrepresenting the
current value of each ~of these components.
Certainly, there are other dynamic parameters
which may be inciuded, but this set forms a
baseiine representation and -seems to capture
enough information about ownship status and the
relative Tocation of the enemy aircraft to
provide a basis. for reasonable and realistic ACM
performance. The above “input parameters
represent what the pilot needs to know about the
current situation in -order to make his next
maneuvering decision. The relationship of some
of these parameters can be seen in Figure 4,
which depicts the geomeiry of a typical  ACM
engagement.
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tigure-4. Geemetry of a Typical Air Combat
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Another aspect of the input feature vector
1s the element of time. A pilot makes his
maneuvering decisions based not only on a
"snapshot" picture of how things look now, bui
also on how the situation has been evalving prior
to this point. 1In the ARCADE model, the imput
feature vector contains multiple copies of the
parameter set described above, each copy
reprasenting a different point in time over the
tast few seconds. The resulting input layer may,

pravided with

for ‘example, consist of one set of input
parameters for the present situation, another for
the situation one second ago, and additional sets
for two, five, and ten seconds in the past.  Such
an arrangement would result in a total of eighty-
five input elements (five sets of sevenieen) as
depicted in Figure 5. The current implementation
of the ARCADE network operates.at two cycles per
second, that is, each half-second, the system is
new tactical . input data and
produces an associaited maneuver response.

On the cther side of the ARCADE network is
the output response. layer which represents how
the simuTated pilot should maneuver his aircraft
under the prevailing conditions. Not only must
the output vector provide a sufficient
representation of the maneuver response, it must
also be capable of being translated into a set of
parameters that can drive the operation of an
aerodynamic model. The ARCADE system produces
output parameters compatible with a flight
command input set similar to-that used by the
Blue Max II aerodynamic model. Since certain
assumptions are made by the flight path model,
such as roll-coupling. in turns, there is no
requirement for the output vector to specify a
command for each of the aircraft’s degrees. of
freedom.. The output processing elements of the

- network therefore represent only three flight

~ changed.
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path commands: a desired pitch angle, a desired
heading, and a commanded veTocity.

UnTlike the input vector, the output PEs need
not - contain multiple representations over time.
Each time the neural network is provided with a
set of tactical parameters for the Tast few
seconds, it will ~provide the aircraft flight
model with the set of flight path commands to
control the current piece of the desired
maneuver. It is necessary, however, to use a
time window on the ACM output data stream to
determine the desired f1ight path commands for
network training relative to the time now.
Figure 6 shows how such a time window is used to
read the input and output data parameters from a
digital tape of actual ACM flight path data.
Where the input values are based, in part, on the
previous conditions, the output values are
determined by Tlooking ahead from the current
maneuver state to the state as it will appear,.
say thres seconds, later. The pitch, heading,
and velocity on the tape at that future time are
used as the.current desired output values for the
natwork.

In addition to the three flight command
values, the size of the output time window is
also sent to the aerodynamic model to define how
quickly the flight condition variables- should be
For exampie, on a given cycle, the
aerodynamic model will receive a set of desired
pitch, heading, and velocity values to be
attained within a three second time slot.
Commands beyond the aerodynamic limits of the
aircraft would therefore be executed at the
Timits until the desired conditions are met or
until the flight commands are .changed. The
overall architecture of the ARCADE system is
shown in Figure 7.
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he Neural Netw Training Process

The abitity of the neural .network fto
successfully Tearn and recall the proper mapping
which associates tactical conditions to maneuver
responses- is based entirely on the structure and
connection weights between the various layers of
the system. The input and output layers provide
the interface to the ouiside world, and through
them, the network is trained to accomplish the
desired mapping. However, it is the internal
structure, the connections to, from, and between
the hidden layers of the ARCADE neural network
where the system Tearns how to properly maneuver
an aircraft in response to certain tactical
situations. .These internal connections and
weights embody the expertise of the simulated
pilot, and do so by Tearning associations between
what is seen on the input Tlayer and what is
desired on the output layer.  While the
representations of the input and output vectors
are made very explicit prior to training the
neiwork, it is difficult +to predict with
certainty what the processing elements and
interconnections of the middle layers will come
to represent. After training :the network,
however, there will be certain emergent
properties of the network’s internal conformation
which will represent the abstract nuances of
successful ACM performance. Meta-level knowledge
structures 1ike maintaining speed, building
energy, and gaining Tateral separation, become
embodied in the activation Tevels and connection
weights of the system without being explicitly
programmed by the system designer.

This is one of the fundamental benefits of
the neural network approach. Determining how a
human pilot combines the .information coming into
his brain into a useful response 1is very
difficult to spell out as a set of rules. The
amount of knowledge and the types of combinations
of that knowledge are vast, and often, the pilot
is not capable of furnishing. a3 detailed
explanation of precisely why a certain action was
taken. But, the neural network, with the proper
representation and training, will self-organize
to arrive at its own understanding of how
manguver responses are formed. The weights and
connections of the hidden layers will eventually
store the maneuver strategies, which are Tearned
automatically through example, as an implicit set
of internal rules.

By examining the states of the PEs 1in the
hidden Tlayers and their associated connection
weights, one might hope to gain some insight into
how ACM expertise is formed. Unfortunately, it
is almost. as difficult to determine the Togical
rute structure by examining the hidden layers of
a necral network as it is to elicit expertise
fram a human expert. In the hidden Tayers, some
tendencies and generalizations may be evident
from the overall activation levels in response to
certain input data,
explicit "if-then" structure to be found. This
poses some prablems in terms of having the system
provide a rationale for each of its decisions.
One possible approach to this problem is tao
create a pattern recognition system which is
capable of classifying the sequences of micro-
maneuvers produced by the ARCADE network and
determining which one of a specific set of basic

but there {is certainly no’

fighter maneuvers is being developed by the
madel. If a BFM pattern can be determined from
the maneuver responses, some c¢lue as to which
tactics or strategies are being employed may be
gained.

.. Supervised neural network training, as is
used in the back-propagation algorithm, consists
of repeatedly providing the system with input
data, observing the response at the output layer,
and correcting that output to the desired
response if it is in error. The results of this
correction step are propagated back through the
layers. of PEs, making the appropriate weight
changes where necessary. Each weight adjustment
moves the overall state of the network -in the
direction of a global solution to the
input/output mapping. Such a procedure obviously
requires a known set of input/output correlation
vectors which can be used to train the network.
For the ARCADE system, selected data of pilot ACM
performance in the SAAC is used as the training
platForm. The 1nitial ARCADE training set
censists of something on the order- of 5000
input/output vector pairs, or associations.

Using this body of
vector  associations, the
presented with a set of

input/eutput feature
neural network is
input values which

.represent the tactical situation over the Jast

few seconds. From this data, the system uses
equations (1), (2), and {3) to arrive at an
output set of specific fiight parameters to
control the evolution of the appropriate
maneuver.  This calculated response  is then
compared to the. correct, or target response from
the SAAC data, and the difference between the
two, the error, is fed back into the network to

. correct the association between input and output
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bv adjusting the ~weights in the appronriate
direction. In effect, this teaches the network
which output to produce when it sees that input
data again. As the process continues in this
fashion, the neural network eventually provides
the correct response for each input situation
upon which it was trained. At this point,
training is considered compliete for this network,
and it may be used jn a run mode where no back-
propagation of errors is required.

Back-propagation training is a multi-step
process, each step providing adjustments to a
single layer of interconnections. Assuming a
three-layer system as shown in Figure 3, the
first back-propagation of errors, or deltas,
produced at the output layer of PEs, adjusts the
weights of the connections between the hidden
layer and the output layer. In the second step
of the three-Tayer back-propagation training
process, weight adjustments are made to the
connections between the hidden Tlayer of PEs and
the elements of the input Tayer. :

- The back-propagation aTgorithm s a
gradient-descent heuristic, which means that the
weight changés will minimize the squares of the
differences {error) between the actual and the
target output values. This error function i3
known as Mean Squared Error (MSE). The back-
propagation process attempts to move across the
multi-dimensional weight space so as to
continually reduce this error function. The
weight space may he visualized as a Tandscape



with various wells, valleys, hills, and ridges.
Somewhere in this landscape is a Towest poini or
global minimum, which represents the optimai
performance of the network. The BPN process
adjusts the weights so that the weight surface is
traversed in the steepest fashion. Howsver, it
does not guarantee that the global minijmum will
be found: the process may get trapped in a valley
which represents only a local minimum. - Finding
the global minimum is the major goal of network
processing, and the techniques for doings so (and
avoiding Tocal minima) are a primary focus of ANS
research. One cycle of the network’s feed-
forward operation, including weight updates if
necessary, is referrad to as a single iteration.
The entire training process may take thousands of
such iterations before the system settles into &
minimum well, and the proper mapping is learned.

Since the gradient descent process attempts
to minimize Mean Squared Error, the mast common
method for measuring the performance of a back-
propagation network is to calculate the Mean
Squared Error over the entire set of training
data. MSE is only one of the measures
effectivenass used to evaluate the performance of
an ARCADE network. Since~ the eventual
performance of ihe network is a generalization of
the training data, the only way to vreally
validate the network 1is to observe iis
performance in a simulation of a dynamic ACM
engagement, and evaluate that
relative to actual human behavior under similar
conditions.

To produce an effective generalization in a
neural network, the training data must be
selected so as to -adequately span the entire
soTution space. Exactiy what the solution space
is can be difficult to specify in complex, multi-
dimensional probiems 1ike the ACM representation,
but, in gensral, the solution space consisis of
all the possible associations of input with
output. At a practical level, only a small
subset of all the possibie associations will ever
occur in the real world, so the solution space is
substantially smaller than it might be, though it
is no less difficult to specify. The important
point regarding the solution space is that the
tratning data be selected such that it represents
a relatively uniform distribution over the entire
space.  Unless the solution space can be
specified in detail, it is easiest to choose data
in a random fashion from real-world examples and
assume that this selection will adequately span
the possible conditions to which the network will
be required to respond. The network’s
performance will be improved, however, if certain
guiding principles are used to produce a more
intelligently constructed database.
training data -is selected appropriately, the
network will form a wapping which allows it to
generalize solutions from the relatively smail
set of training examples. This means that the
neural network will be capable of respending
correctly to novel situations that were not
seemingly reflected in the training data. The
abiTity of the neural network to generalize
successfully from the training data is crucial
because the amount of training data, relative to
the entire solution space, 15 very sparse.

of

performance -

When the .
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-cycles.

In addition to the creation of an optimal
network training file, it is also necessary o
determine the most effective structure for the
hidden Tayer{s) and to fine-tune the Tearning
equations. There are certain useful heuristics
in the development of the neural network’s
internal structure, but discovering and applying
those heuristics is an acquired skill in these
early days of ANS research, 5
used in the hidden Tayer(s) is partially a speed
versus accuracy question in that more PEs means
more connections and therefore, Tonger training
At the same time, a
of PEs must be present to successfully accomplish
the desired mapping. Depending on the specific
association that is being learned, the number of
PEs and connections directly determine the
network’s capacity. The exact capacity of the
network, or number of associations Tearned, is
difficuit to measure $ince the
expected to generalize . over many
associations than it is actually trained on. The
guestion of capacity is more correctly stated as.
the performance of a network on a general set of
test data as measured by the minimization of Mean
Squared Error (MSE). In general, the number of
PEs is gradually increased from ocne until the

optimal minimization of MSE is found. Another
factor, however, must  be  taken _into
consideration, If too many internal PEs are

present, the system may become Tocked in on the
training data -associations, but be completely
unable to generalize o the broader scope of the
problem. When this happens, the network will
exhibit very good performance on the -training
set, but a broader test set will
correlation between input and output.

After the training file and the network

structure have been defined, the next step is to .

find the optimal values for each parameter in the
network initialization and training process. For
example, when the network is created, the weights
must . be assigned some initial value before
training begins.
guide this initialization, the best approach is
to simply assign random values to the weights.
However, both the seed value for the random
number generator and the allowable range for the
random values themselvés may affect the eventual
performance of the trained petwork. In effect,
they determine the starting point for the
gradient descent process on the weight surface.

The only way to determine the best random seed

value is by trial and error, but the optimal
range for the ‘initial weight values can be
dotermined in a more systematic Fachion,
$imilarly, experimental procedures are used to
determine optimal values for the nelwork’s
learning rate and other factors of the weight
update equations.

network is_
more .

The number. of PEs_

sufficient number

show poor -

Without any previous data to

Each value is chosen so as to

optimize (in a local fashion) the reduction of

MSE for a given training set.

The optimal Jength of training, that is, the

is best

total number of training iterations, L
training

determined by observing -~ MSE as

progresses and by noting the absolute differences

in the desired and computed output values. In
general, it is desirable to coatinue training
until the output deltas in the training set
become very smatl, with absolute errors below one
percent; however, the actual perfermance is best



tested in a run mode with a broader set of data.
Every problem will require a different amount of
training to achieve a Tlevel of optimal
performance. Care must also be taken not to

over-train the network and therefore degrade

generalization capability. The gradient descent
algorithm proceeds asymptotically, so the vast
majority of learning occurs at the beginning of
training, and the final stages comprise a slower,
fine-tuning process. This phenomenon is shown
pictorially in Figure 8. 1If a given network is
going to converge to a solution, performance
should. be tested when the MSE plot begins to
flatten out.
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Figure 8. The Asymptotic Reduction of MSE as a
Function of Network Training Iterations.

CURRENT STATUS OF THE ARCADE SYSTEM

Prior to. the development. of the ARCADE
system, a scaled-down, prototype neural network
environment was created for proof-of-principle
testing purposes. The goal of this system was to
provide a framework upon which to develop the
ARCADE system, while allowing system concepts to
be investigated in a workable environment with a
controlied database. Instead of using actual ACM
performance . data, the prototype system was
trained to simulate the behavior of a simple Lead
Pursuit and Intercept algerithm. To accomplish
this, an algorithm was designed which would
successfully fly a Tead pursuit profile followed
by an intercept maneuver for any initial relative
geometry of two aircraft. Intercept is achieved
by the pursuit aircraft when the target’s
position and velocity are matched within a
certain tolerance for a certain time period. The
algorithm works by generating iateral and axial
acceleration commands based on the cyrrent
relative geometry of the two atrcraft. For each
set of commands, the flight path is updated and
new geometry calculated at an- update rate of one
per second. A body of neural network training
data was then collected by sampling the
performance of the Lead Pursuit/Intercept (LPI)
algorithm over a wide range of starting
geometries., The intent was to use this body of
knowledge to train a neural network to arrive at
a generalized solution to the LPI preblem.

The structure of the LPI neural network is
shown in Figure 9. The tactical situatien is
represented on the input tayer in terms of
angles, ranges, and  velocitijes. - The
corresponding output is represented on the input
Tayer as the Tlateral and axial acceleratien
commands. A single layer of fifteen hidden PEs
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- created.
trafned to Tearn a generalized solutien, it is
:capable of generating successful

was used to complete the most successful network
structure. The training file was constructed of
approximately 1500 . associations of tactical
situations and maneuver responses generated by
the ailgorithm. Training was cavrried gut frv

approximately 250,000 iterations, or about 160
passes through the training set. L

ACC 5y AGC oy

QUTPUT
LAYER

INPUT
LAYER

-- ATA TAA RNG v av Phase
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Figure 9. - Network Structure of the Lead
Pursuit/Intercept Demonstration System.

To validate the performance of the LPI
network, it was incorporated into a software
package which includes a flight path update
routine and a flight profile plotting feature.

This system allows the network to provide:

maneuver respenses in a dynamic fl1ight sjtuation,
and the results are plotted simultanecusly with
the responses of the algorithm under the same
conditions, Results of this demonstration
program using an optimally trained LPI network
exhibit a behavior remarkably similar to that of
the algorithm. - In most cases, the network’s
pursuit profile develops very near to or directly
on top of the algorithm’s profile. Furthermore,
the network is capable of attaining the intercept
conditions in much the same fashion as the
algorithm. By maneuvering the target aircraft,

- via input from a: jeystick control, a variety of

unusual geometries and novel situations can be
Because the LPI neural network was

responses,
sometimes uniquely so, to even these novel input
cenditions.

Building . on the successes of the LPI
network, work js in progress to convert that
software into a form that will support the ARCADE
reseéarch.  Prototype neural networks have been
developed using actual SAAC ACM data, and these

‘networks -indicate that the appropriate mapping

can be successfully Tearned. To fully validate
the ARCADE network’s performance, however, it
must be incorporated inte a dynamic flight path
generator and display system and exercised as
were the LPI networks. It s anticipated that
the results from this system will be available in
the near future.
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CONCLUSION

The research goals of the ARCADE project
were to ascertain the applicability of ANS
technology to expert systems tasks in general and
to support the simulation of ACM decision-making
in the training envirenment. In the experiments
conducted thus far under this program, neural
networks have aptly displayed their unique
capabilities to overcome  some of the more
difficult aspects of knowledge engineering, ANS
approaches have been shown to be capable of
producing robust, generalized solutions even
under novel circumstances. By capturing and
simylating the expertise of human pilols in a
neural network, students may be provided with
expert training devices which come very close to
the look and feel of real air-to-air combat.
Other research confirms the successes of this
program [** >+ ®], and it is expected that ANS
technology will continue to provide new solutions
te the simulation of human performance for
training purposes.
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