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ABSTRACT

The B-2 Aircrew Training Device (ATD) employs object-oriented design (OOD) accompanied by
the Ada programming language. The task of choosing objects to simulate vortex, bow wave, and .
engine exhaust effects of a leadship on the B-2 is presented from an OOD perspective. The B-2
software architecture of the leadship effects model created from an OOD approach is analyzed and
compared to previously used software architecture at CAE-Link. These comparisons are ‘made -
against architectures used in other military trainers. The trainers are svaluated in terms of maintain-
ability and reusability. Conclusions are drawn as to which architectures are most efficient from a

" data concurrency/subjective evaluation and future applications perspective.

INTRODUCTION

The task of training a pilot to successiully navi-
gate air disturhances caused by a preceding aircraft
has been a goal of many high-fidelity simulators.
The design of what is called a leadship or othership
effects model has been approached differently
throughout the vears at CAE-Link, with the mostre-
cent model being that of the B-2. Alrcrew Training
Device (ATD}. The B-2 ATD was the first to use an
object-oriented design approach. Object-oriented
design (O0OD) is the organization of software into

layers of objects, where the higher layers of objecis -

usually relate to separately compilable software
units. s purpose is to emphasize maintainability
and reusability of the trainer software.

This paper firstintroduces the B-2 ATD sofiware
architecture of the leadship effects model. The cur-
rent B-2 leadship effects model, as well as its devel-
opment, is explained from an OOD perspective.
Next, the leadship effects software architecturas for
previous CAE-Link military trainers are discussed.
These architeciures are then evaluated in terms of
maintainability, reusability, model fidelity, and com-
plexity of software. This investigation also presents
possible areas for improving the B-2 architecture.
Such improvements could make the design more
object--oriented and more efiicient. The improve-
ments are based not only on this study, but on les-
sons learned throughout the B-2-ATD design and
test processes., Conclusions are presenied con-
cerning the effectiveness of these architectures as
they relate to maintainability and transportability.

B-2 ATD OOD OTHERSHIP SUBSYSTEM

An othership subsystem was developed to satisfy
the B-2 ATD fraining requirement for realistic aerial
refueling and base escape charactetistics. This
subsystem supplies the vortex/downwash, bow
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the aircraft manufacturér.
- needed to take another approach. .

wave, and engine exhaust characteristics of a ve-
hicle preceding the B-2. The preceding vehicle
(leadship or othership} could be a KG-135, KC-10,
or another B—2, Such characteristics require the
othership subsystem to determine the relative posi-
tion between the leadship and the B-2 (lagship).
This subsystem defines the leadship’s and lagship’s

- physical geometry. The leadship’s effects are trans-

mitted to the lagship by computing the delta forces
and moments due to the leadship's presence. Dif-
ferent vortex/downwash models are used to com-
pute these delta forces and moments depending on
whether a base sscape or aerial refueling maneuver
is performed.. The accomplishment of the B-2 ATD
fraining requirements mandated that these meodels
be of high fidelity. The details of this subsystem are
presented in Ref. 1. '

[t was originally planned that the aircraft man-
ufacturer would supply delta aerodynamic coeffi-
cient data describing the leadship effects on the
B-2. Unfortunately, this data was not available from

CAE-Link
applied an OOD software representatlon in Ada .
code and current software engineering concepts,
including generic modeling techniques. These.con-
cepts are discussed in the following paragraphs.

An OQD representation of a subsystem must sat-
isfy two general requirements:

1. The subsystem should consist of self-con-
tained objects that reflect logical/physical
real-warld entities. . This supports the con-
cepts of maintainability and reusability be-

- cause all characteristics of the obiegt are cen-
tralized. This allows eass of update, repair, -
and/or reuse by having these real-world enti-
ties modeled in one location, - -

.Therefore, CAE-Link



2. The software implementation of each object
will consist of a separately compilable unit or
unit and its subunits, This allows model fea-
tures to be selectable and therefore be more
reusable. Troubleshooting design problems
is made easier by having the objects coded
in this manner. This also reduces the risk of
accidentally affecting other software when
these objects need to be moditied.

The first step in our approach was to define the
objects of the othership subsystem. Three cobject
selection criteria were used:

1. The objects must be independent physical or
logical entities. The ithings that describe the
entities are called their attributes.

2. The objects must be such that changes to the
B-2 ATD training requirements can be easily
accommodated,

3. The level of decomposition of the: objects
must be- governed by the real-world system
operations, pure QOD theory, the data avail-
able to simulate the system, and the training
requirements,

The othership subsystem was decomposed into

ihree primary objects: leadship, air, and lagship. .

Each primary object satisfies the three OOD object
definition criteria and translates into separately com-
pilable Ada units. The Ada software configuration
-is depicted in Figure 1. This shows how each prima-
ry object was housed in separately compilable pack-

ages. The subsystem import and export interfaces

with other subsystems wers also-made separate
packages. The subsystem controller may contain
compltations but primarily contains logic code that
calls Ada procedures within the various object defi-
nition packages... This subsystem controller deter-
mines if a leadship is close enough to a lagship to
execute this code. The logic code then selects the
correct procedures for aerial refueling or base es-
cape training missions. Each object definition pack-
age contains Ada procedures relating to each pri-
mary cbject’s attributes (see Figure 1). The details
of the B-2 ATD software architecture can be found
in Ref. 1.

Figure 2 is a block diagram of the B-2 ATD other-
ship effects software architecture. This shows how
the othership subsystem interfaces with the lagship
forces and moments subsystem and gets [eadshlp
information from other subsystems.

Saveral software engineering principles were
applied to each of the objects. These principles also
support the goals of good COD. The equations in-
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clude “adjustment constants” that allow instant in-
vestigation of problems with the pilot in the loop.

. The numerical definition of all application-depend-
ent vehicle parameters is done in one lozation of the -

software. The definition of the vehicle parameters
is accomplished in the declaration package. Equa-
tions were written and coded in generic rather than
application-specific engineering notation.  These
principles allowed the coded equations to be inde-
pendent of the vehicle being simulated, and in-
creased their transportability and maintainability.
The following two groups of equations are pres-
ented as examples of generic and application—spe-

Generic
Engineering [Application-Specific

Notation - Engineering Netation .
L=gSC, ~ “|L = 2400.0 gC,, {where S = 2400.0
Y = {(w/4.0}b Y = 74.8, “lwhere b = 95.0
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With parameters b and S defined in one location,
if an update becomes necessary, these parameters
get modified only once. With the application-specif-
ic engineering notation, the parameters would be
meodified in each coded equation that uses them.
The generic engineering notation also improves
transportability because the equations and con-
stants are more easily understandable by fellow en-
gineers. These principles were applied o increase
the software maintainability and reusability.

The specific use of the object definition criteria
as they apply fo this subsystem is discussed in the
following paragraphs.

Leadship

This object models the preceding vehicle's ge-

ometry, vortex/downwash, and engine exhaust. All _

of this model's leadship information parameters and
equations are housed within this object. The gener-
ic engineering notation was used within this object.
This approach has the following advantages:

» The addition of a different leadship doesn't
change the leadship equation. Their numeri-
cal values are defined in the declaration pack-
age.

s Problems identified during simulator testing or
subjective evaluation related to the leadship -

can be addressed without risk of accidentally
touching non-leadship software.

= Model features are represented by Ada proce:
dures for each attribute. If 2 fuiure trainer
doesn’t require a certain feature, that proce-
dure is not included.

These advantages support maintainability and re-
usability. The attributes of the leadship object are
fisted below:

Leadship Velocity

Leadship Geometry

Leadship Position (Distance)

Leadship Engine Exhaust

Leadship—-Generated Vortex/Downwash Velocity
Leadship/Lagship Relative Position

Air

This object models vortex/downwash decay fac-

tors due to the leadship/fagship relative postition and
atmospheric turbulence. All of this model’'s air infor-
mation, parameters, and equations are housed

within this object. The generic engineering notation -

was used within this object. This approach has the
following advantages:

w

+ Problems identified during simulator testing or
subjective evaluation related to the air can be
addressed without risk of accidentai[y touch-

- ing non-air software.

» Model features are presented by Ada proce-
dures for each attribute. If a future trainer
doesn’t require a certain feature, that proce-

 dure is not included. .

These advantages support marntamablkty and re-
usability. The air object attributes are listed below:

_ Turbulence level decay rate - .
Position dependence decay relatlonshlp

‘Lagship

This ohject models the following vehicle's (lag-
ship} reaction 1o the air disturbance due to a lead-

ship. All of this model’s lagship information, param-
_eters, and equations are housed within this object.

The generic engineering notation was used within
this ebject. This approach has the followmg advan-
tages: - : o -

« Transporting this model to different trainers
would require no modification of the lagship
equations - only the declaration package
needs to.be modified.

» Problems identified during simulator testing or
subjective evaluation related to the: lagship
can be addressed without risk of accidentally
touching non-lagship sofiware. They can
also be addressed directly because the vari-
ous [agship aftributes (features) are pres-
ented in different Ada procedures. .- .

~ » Model attributes are presented by Ada proce-
dures for each atiribute. [f future trainers
don't require these attributes, the procedures
are not included. .

“These advantages support maintainability and re-
usability. The attributes of the lagship object are
listed below:

Lagship Geometry

Lagship Position {(distance)

Lagship Delta Dynamic Pressureé

Lagship Delta Aerodynamic Angles

Lagship Delta. Aerodynamic Forces and. Mo-
ments

The objects represent the key players inthe real—
world system of aerodynamic interference of alead-
ship on a lagship. The data available also fits the
objects selected. For example, the leadship geome-

~try data and vortex/downwash efifects are given in

terms cf the leadship reference system (Reference

" 1) and therefore are housed in the leadship object.

The leadship vortex/downwash and exhaust effects



gre applied to the lagship by computing a delta
angle of attack and dynamic pressures in the lag-
ship reference system. Therefore these items, as
well as the delta forces and moments, are com-
puted in the [agship object. The relative position at-
{ribute Is placed in the leadship object. This is.done
because the exhaust and vortex/downwash data
needs this parameter in the leadship axis system.
Placing relative position in the leadship object also
reduces_an interface between primary objects.

PREVIOUS LINK OTHERSHIP EFFECTS SOFT-
WARE ARCHITECTURES

The problem of simulating leadship (othership)
effects on a lagship is not unigue o the B-2-ATD.
It has been dealt with on at least five different frain-
ers. Each previous solution used a. different func-
tional approach:coded in Fortran. The level of fidel-
ity in each approach reflected that project’s training
requirements. A brief description of the five proj-
ects’ (A, B, C, F, and S). approaches, subsystem
software architectures in block diagram form, and
general training requirements is presented below.
The hblock diagrams cam be compared o Figure 2,
B-2 Software Architecture. The highlighted blocks
in Figures 2 through 7 compute the simulated lead-
ship effects. During the comparison, nots that a
software subsystem is similar to a module.

Proiect A

This project training requirement was to instruct
the pilot-on formation flying. This approach included
simulating leadship vortex/downwash and engine
exhaust effects onthe lagship. This training require-
ment mandated that this model be a high-fidelity
model. This approach was also coded in the appli-
cation—specific engineering notation. It consisted of

two primary moedules which interface with the lag-

ship’s forces and moments module. The software
architecture for Project A is given in Figure 3. . The
first primary module Module 1) computed the fead-
ship’s dynamics, relative position between the lead-
ship and lagship, geometry parameters, and lead-
ship exhaust effects on the lagship. “The second
module {(Module 2} computed the vortex/downwash
effects and summed the vortex/downwash with the
exhaust effects and passed the total delta forces
and moments to the [agship forces and moments
module. Module 2 used geometry parameters, ex-
haust effects, retative position, and leadship dynam-
ics computed in Module 1. No data was supplied
by the airframe. manufacturer for this model.

Project B

Project B's training requirement was 1o instruct
ihe pilot of the receiver in an aerial refueling
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Figure 3 Project A Othership Effects
Software Architecture

maneuver. This approach included simutating lead-
ship vortex/downwash and bow wave effects onthe
lagship. This training requirerment mandated that
this model be a high-fidelity model. This approach
was also coded in the application-specific engineer-
ing notation. it consisted of two primary modules,
plus pieces of code distributed throughout six other
existing modules. The software architecture for
Project B is given in Figure 4. The first module (Mod-
ule 1) contained the leadship dynamics. The sec-
ond medule :(Module 2) computed the relative posl- -
tion of the leadship and lagship. The six existing
modules were the six aerodynamic coefficient mod-
ules. The leadship effects on the lagship were han-
diled as components of the total six aerodynamic co-
efficients. Totaled aerodynamic coefficients were
passed to the forces and moments module, as is
normally done in Link simulations. Several outputs
of Module 1 were passed to Module 2 in the form
of direction cosines. Module 2’s relative position
was passed 1o each coefficient module io bs used

to compute the asrodynamic coefficient component

due to the leadship vortex/downwash and bow wave
effects. The airframe manufacturer supplied data
inthe form of aercdynamic coefficient components.

Project C

This project had two {raining requirements. The
first was to instruct pilots of the tanker in an aerial _
refueling maneuver. The second involved having a .
leadship in front of the aircraft. Therefore, the pilot

“could be either a leadship or a lagship. The training

requirements were. such that the ownship would
only need to experience a general effect whenin the
proximity of an othership. Therefore, Project C was
a high—quality, low-fidelity model containing transla-

-tional wind effects. This approach inciuded simulat-

ing the vortex/downwash and bow wave effects of
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a leadship on a lagship. : This model was coded in
generic engineering nofation with vehicle-specific
data locally defined. The software architecture for
Project Cis given in Figure 5. 1t consisted of a single
primary module which interfaced with the lagship
equations of motion module. The primary module
(Module 1) computed leadship dynamics, relative
position, and delta translational wind components.
These delta wind components were used to infro-
duce the lagship effects into Project C's equations
.of motion. No data was supplied by the manufactur-
er for this model.
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-Figure 5 Project C Othership Effecis
Sofiware Architecture

Project F

Project F's training requirement was to insiruct
the pilot of the receiver in an aerial refueling maneu-
ver. The training requirements were such that the
ownship would only need o experience a general
effect when in the proximity of an othership. There-
fore, this was a high—quality, low-fidelity model con-
taining translational wind effects. This approach in-
cluded simulating leadship vortex/downwash effects
on the lagship. This approach was also coded in
generic engineering notation with vehicle~specific
notation locally defined. i consisted of two primary

modules. The software architecture for Project F

is given in Figura 6. The first module (Module 1}
contained the leadship dynamics. The second mod-
ule (Module 2) computed the relative position of the

.leadship and lagship.

Both Modules 1 and 2
interfaced with the equations of motion module
which computed changes in translational wind com-

ponents. No airirame manufacturer data was
supplied for this model.
y Leadship
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Figure 6 Project F Othership Effects
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Project S

This project’s training requirement was to in-
struct the pilot of the receiver In an aerial refueling
maneuver. Although this project never implem-
ented the leadship effects on the lagship, the
planned approach is described in this paragraph.
This approach would have simulated leadship vor-
tex/downwash and bow wave effects on the lagship.
It would have been coded in generic engineering no-
tation.” It would have consisted of seven primary
modules, plus having cede in one existing module.
The software architecture for Project S is given i
Figure 7.” The first module (Module 1) would have -
contained the leadship dynamics. The existing navi-
gation/communications module would have com-
puted the relative position of the leadship and lag-
ship. The other six primary modules (Modules 2
through 7) would have produced delta asrodynamic
coefficients components due to the leadship and

-passed them to forces and moments to be incorpo-

rated with the other asrodynamic coefficients.. No
data was supplied by the airframe manufacturer.
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SUBJECTIVE EVALUATION

The sofiware architecture of the B—2 ATD project
was evaluated along with Projects A through. S.
Each project was considered a possible candidate
for a new program with personnel unfamiliar with the
software.  Assumptions were that the languages
-and the high-level operating systems’ architectures
would be the same. The projects were rated on re-
usability or transportability, ease of update or main-
tainability, complexity of software, and model fidelity.
A rating of good, fair, or poor was assigned for the
first three categories, and high or low was used for
model fidelity, ‘Following is a description of the rat-
ings categories.

The reusability category rates the ease with
which software can be removed from one simulator
and incorporated into another. Application-specific
designs of code decrease an architecture’s reus-
ability. Examples of this include vehicle dependency
and computational machine dependency.

The maintainability categary rates the ability fo

change data or features. Data embedded in code
is difficult to find and change. The addition of a new

feature, such as a new leadship, or the removal of

a feature, such as the base escape feature, is also

difficult to incorporate if features are not organized.

separately.

The complexity of software category is a rating
of how easy each project’s code is to understand

by a new user, and also the ability of any user to __

froubleshoot problems. Separation of features is an
important part of reducing the complexity of soft-
ware.

Model fidelity is not a rating but a training require- -

ment. Some projects did not require a high-fidelity
model. This category is included for insight into
each project’s design.

The subjective evaluation of the given software

architectures is presented in Figure 8.

PROJECT Reusability Ease of Complexity | Model
or ‘Update or of Fidelity
Transportability | Maintenance |. Software
A G B B HIGH
B [# B A HIGH
[o] B B B LOW
F B B B LOW.
S B A A N/ A
B-2 _ A A A HIGH
Key:
A = Good
B - Fair )
C —Poor

Figure 8 Evaluation of Othership Sofiware
Architectures

319

; followmg advantages:

LESSONS LEARNED

During the evaluation of the previous architec-
tures and throughout the testing process of the B-2
ATD othership subsystem, several lessons were
learned. = _.

Two primary [essons were learned durmg the de-

_velopment and testing of the OOD presentation of
. the othership subsystem. The first was that ali lead- .

ship attributes should be housed together. The B-2
ATD is a full Weapon. System Trainer (WST) which
has training requirements that necessitate the inter-
action of additional air vehicles. Early in the pro-
gram, it was decided to include the leadship dynam-
ics within the subsystem that modeled those
additional vehicles. The leadship attributes should
have been added to that subsystem instead of be:ng
placed in the othership subsystem. This has the fol-
Iowmg advaniages:

» The Ieadship computatlons depend on the
leadship parameters computed by the lead-
ship dynamics housed in & different subsys-

_. _tem, therefore reducing interfaces.

« The lagship relative position o the leadship af-
fects the leadship dynamics in the aena{ re-
fusling maneuver.

_ + Reduces dupl:cated definition of [eadshlp spe-
cific parameters.

The second lesson was that the use of Ada pro-
cedures to correlate to subsystem atiributes has the

« Increases transportabmty because model fea—
tures can be subtracted or added with minimal
work. The training requirements of a simulator
should govern what features are necessary.

« This allows exira flexibility if computational re-
sources become a problem. Medel features
that don’t have direct training value may be
eliminated with minimal effort.

Additionally, there were lessons learned during
the evaluation of the various leadship effects soft-
ware architectures. The higher—rated architectures
tended to have two general characteristics. .Both
could be .considered good software engmeenng

- techniques:

1. The leadship eifects were contalned wutnln
compilation units outside of any other ownship
models. Such centralization allowed a user to
easily debug problems. This enhanced main-

" tainability.

2. The leadship effects were modeied in generic
engineering notation, This enhanced trans-
portability and minimized errors to parameters -
used in muitiple locations.



CONCLUSIONS

The conclusions reached by this study are based
on the lessons learned and the subjective evaluation
of various othership software architectures. . .

First, othership effects that are modeled and
coded in separate compifation units yield high main-
tainability. This allows for quick problem isolation
and faster, safer modifications. .

Second, othership effects that are modeled and
coded in generic engineering notation vield high
transportability. This allows for quick changes of

particular vehicles without affecting the inner work- .

ings of the models/code. Generic enginesring nota-
tion also increases maintainability if data updates
occur because they can be done quickly and clear-
Iy.

Third, training devices which do not require high-
fidelity othership effects have less of a need for high
maintainability and transportability. - A design that is
less object-oriented in such cases is admissible be-
cause of the lower [ikelihood of data updates and

reuse. It would only be reusable on another project
that also had lower model fidelity requirements,

Lastly, the OOD architecture was the only archi-
tecture that provided high reusability and maintain-
ability for a high—fidelity model.
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