SOFTWARE METRICS, ADA, AND THE B-2 ATD

Paul E. McMahon, Staff Scientist
Dennis W. Meehi, Section Head
CAE-Link Corporation
Binghamton, New York

ABSTRACT

- Many believe the greatest benefit of Ada is that it encourages software engineers to explore naw
design approaches leading to higher quality software. However, Ada’s primary goal is to reduce the
life cycle cost of software. Furthermors, the relationship between cost and modern software tech-
niques is not always evident. This paper addresses the cost of Ada software. How long does it take
an engineer to develop software when using Ada and modern sofiware engineering technigques?
How much computational capacity dees Ada require? This paper provides answers to these gues-
tions based on data from the B-2 Aircrew Training Device (ATD). Lihes of code, development time,
and computational resources are provided for selected B-2 ATD software systems. Key confributing
factors include the cost of training engineers in modern software techniques and the impact caused
by developing and using more modern software tools. This paper identifies key factors found on -
the B~2 ATD to be influential in affecting today's sofiware cost and explains what we are doing fo

reduce this impact in the future.

"~ INTRODUCTION

The B-2 ATD was the first major training device
at Link to use Ada. With over 1.7 million iines of
code, it was also one of the most complex. Factors
contributing to software cost on a first Ada project
include on-the-job training in new design tech-
niques and costs associated with new tools. The
impact of these factors is expected to decrease on
future Ada projects.

There are no simple answers to software metrics
with Ada. Simple formulas fail to consider many of
the possibilities. Ada metrics can be sensitive to de-
sign techniques and compiler implementations.
These situations must be identified and managed.
This paper is intended to provide information that
can help in estimating, and also understanding, soft-
ware costs with Ada.

Ten - software components {CSCs in DOD-
STD-21687A terminclogy) were selected for this
study. Eight real-time and two non-real-time sys-
tems were investigated. The real-time systems
were selected from the disciplines of aerodynamics
and avionics. For the systems selected, the design
engineer’'s experience in simulation ranged from 2
10 25 years., Ada experience ranged from the first
10 the fourth Ada assignment. The following data
were obtained:

« Development Hours -~ Development hours
were derived from our Management Control
and Information System (MCIS). MCIS is a
performance measurement system and is a

le2

validated Cost/Schedule Control System (C/
SCS).

« Linas of Code.— Lines of code were measured -

by a source code scanning tool. Both “car-
riage return” lines of .code and “semicolon”
lines are reported.

« Bytes of Memory — Memory requirements
were derived from computer vendor load
maps and measured stack space needs for
pragram execution.

» Execution Time — Execution time was mea-

sured using a microsecond clock on the real- - -

time target system.
HISTORY OF PROJECT
Resour ti io

[nitial computational resource estimates on the
B-2 ATD were based on a Fortran to Ada translated
benchmark known as Mainfit. Translating Mainfit re-
sulted in Ada code employing prirnarily integer, float,
and boolean data types. o

This benchmark required 40 bytes per line of

code and 1.25 times the equivalent Foriran execu-
tion time. Additional resources for new design tech-
nigues with Ada were unknown at the start of the
project. The cost of new design techniques with
Ada is discussed later in the paper.

e men

The B-2 ATD software was developed usingone

of the most mature Ada development environments
available today. After test, the software is

e 2B L 1 el L L

A il bk L

transferred through a local area network to the
target system, where it is compiled again and linked.
The target computer has its own distinct operating
system and Ada compilation environment. A single
processor on the target system provides approxi-
mately 6 VUPS (VAX units of processing speed) of

. computing power. The B~2 Weapon Systemn Train-

er (WST) requires approximately 20 processors, or
120 VUPS. The target provides a real-time non-vir-

tual operating environment with limits, such as

memory, that do not exist in the development envi-
ronment.

Cur experience indicates that the resource de-
mands of Ada compilers may differ. It is not recom-
mended that the numbers presented in this paper
be applied to estimates for other Ada emvironments.
This information should be viewed as frend data
only. Benchmarking ong’s chosen compiler and tar-
get hardware Is necessary to arrive at accurate re-
source estimates.

SOFTWARE STRUCTURE MODEL

Many simulation design issues are common, pro-
viding an opporiunity for reuse. One vehicle that
aids us in applying reuse at Link is our software
structure model developed specifically for use with
Ada. This model has been developed and coordi-
nated with members of the Software Engineering In-
stitute (SEI) staff.

In this section a brief description of the model and
real-time environment is provided. This subject is

discussed here because understanding the soft-

ware structure is helpful in understanding some of
the new cost trends with Ada, The structure model
can also be used in reducing software costs.

eal-Ti Environment

The B-2 simulaticn sofiware runs in a tightly- -

coupled parallel-processor environment. Separate
processors communicate through a glebal memory
system. - Application software does not directly ac-

cess global memory except for time-critical applica- -

fions. Communication through global memory,
common file VO services, and exscutive control are
pravided by automatically generated softwars:

interface Management

During the design phase, giobal interfaces are
defined through a data base referred to as the Inter-
face Management Data Base (IMDB). An off-ling
processor uses the IMDB.to generate” GLOBAL
DATA PACKAGES and IMPORT and EXPORT PRO-
CEDURES. These procedures move the data in real
time to and from the global packages at rates speci-
fied in a control file. Imporis are moved 1o local

163

IMPORT PACKAGES and exports are moved from,
DECLARATION PACKAGES. The automatically
generated IMPORT and EXPORT procedures are
referred to as CONNECTION MANAGERS,

Application Software

CONTROL MANAGERS are called at rates speci-
fied In a controf file by an automatically generated
EXECUTIVE. A CONTROL MANAGER is the top-le-
vel user procedure and usually controls software the
equivalent of a DOD-STD-2167A CSC. However,
a single controi manager may control multiple CSCs,
or a single CSC may have multlple conirol manag-
ers. :

“Objects”, in an object-oriented design (00D}
sense, are defined in OBJECT DEFINITION PACK-
AGES. These packages define Ada data types and
Ada procedures that operate on these types. The
CONTROL MANAGERS invoke these “objects”,
passing data jrom the IMPORT PACKAGES and
DECLARATION PACKAGES. - OBJECT DEFINITION
PACKAGES may contain only types or types and .
pracedures together,

Real-time application designers develop CON-
TROL MANAGERS, DECLARATION PACKAGES, IM-
PORT PACKAGES and DEFINITION PACKAGES.
The EXECUTIVE, IMPORT and EXPORT CONNEC-
TION MANAGERS, and GLOBAL DATA PACKAGES
are automatically generated. '

Real-time file /O services required by the appli-
cation code are created, using Ada's generic capa-
hility, based on the application types. Direct /O is
provided to application software for both locail and
remote file access. Figure 1 is a diagram of the
Structure Model Components.

DEFINITIONS

Ciosure

Closure consists of all the Ada units reqﬂired in
the library for a given unit to compile (compllat:on
closure} or link (execution closure).

Design Phase -

The design phase includes the development of
the CONTROL MANAGER. specifications, DEFIN-
TION PACKAGE specifications, DECLARATION
PACKAGES, and IMPORT PACKAGES.

Caode and Test Phase _

In the code and test phase the Ada bodies are
completed for the CONTROL MANAGERS and the
DEFINITION PACKAGES. Simulation algorithrs re-
side in the bodies.

GLOBAL

DATA
PACKAGES \

IMPORAT EXPORT
CONNECTION . CONNECTION
MANAGER . MANAGER

.

EXECUTIVE

!

-CONTBOL.

MANAGER

TIPSR PRR
PACKAGES % [Packanes:

TORIECT |
DEEHITION-
.- PACKAGE?

—= “data flow™

_> *control flow”

“Shadad areas are components developed by enginears.

Figure 1 Structure Model Components

Ada Lines of Code

In this study we report both the number of semi-
colons and the number of linss with carriage returns
containing Ada compilable statements. Lines of

code generated automatically by off-line proces-- -

sors and generic instantiations are reported sepa-
rately and are not used in productivity calculations
since engineers de not manually generate this soft-
ware,

Compiler-Generaied Code

Compiler—-Generated Code consists of all execut-
able instructions generated by the compiler. This
includes elaboration code and user code.

User Code

User code consists of all compiler—generated
code produced from Ada statements found after the
BEGIN in procedure and function bodies. The code
that carries out the simulation algorithms is user
code.

Elahoration Code)

Elaboration code consists of all compiler—-gener-

ated code used solely to carry out MIL-STD-1815A

elaboration rules. Elaboration code can be thought
of as set-up code. [t is only run-in preparation for
executing user code.

164

Static Data =

Static data includes all Ada variables allocated to
dedicated memory locations. Static data remain
fixed in size and location throughout the simulation
exercise. . . ’

Stack

The stack has two parts. First, the stack is used
1o elaborate packages. This only occurs once prior
to the start of simulation. Secondly, the stack.con-
sists of temporary data used during simulation. This -
temporary data on the stack does notretain its value
between program calls, does not remain fixed in lo-

_ cation between program calls, and may not be fixed

in size.
DATA ANALYSIS

For each of the systems analyzed, Table 1 pro-
vides numbers of Ada units, lines of code, and
memory requirements. Table 2 provides experience
levels of the software engineers assigned to develop
these systems. Development time is discussed later
in the paper. ' -

This data indicates that traditional methods used
to estimate computational resources may fall short
with Ada. This is because there are new and influen-
ttal factors with Ada. Such factors include the use
of composite types (records and arrays), elabora-
tion code, overhead for packaging system services,
stacks, and the use of generics. Thess five factors .
are discussed in the following paragraphs.

Composite Types in Ada

The resources required for a single. Ada state- .
ment can vary dramatically as a result of Ada's com-
posite type capabilities. Consider the data for
Forces_And _Moments, Aero_Coefficients,. and
Nav_Geographyin Table 1, These systems average
66, 41, and 39 bytes per semicolon per declaration .
package. The data in these systems consists pri-
marily of “small” records each containing 5-10 sca-
lar components. On the other hand, the Mass_Stor-_
age Unit CSC averages 1930 bytss per semicolon
per declaration packages. This is due to a single
declaration requiring over 150 kilobytes.

In many cases with Ada, we are seeing complex-
ity moving out of the code and into the data. Data :
struciures can become complex rapidly. Evidehce
of this fact is found in the size of the declaration
packages.

AL LU i B S

Tabie 1 B-2 ATD Lines of Code and Memory Requirements

Structure | No. of No. of | No. of ;s | Constants | Static Compiler +Total Byles Avg. ;
(Note 1) Ada Ada Data Generated | Byles Per ; Per Unit
Units: Lines Code
<CRs>)
Real-Time Systems ~

~ Forces and Moments _ N o B _
Defns 5 388 - 209 . 140 544 196 880 4 42
Declar 2 108 51 40 1488 1848 3376 68 26
Bodies 5 443 216 | 20 80 {7 6260 6320 29 a3
Exp Imp 2 586 270 112 48 2272 2432 g 135
Total 12 945 | 476 | 200 |2i12 8264 10576 22 40

) Mass Storage Unit) i R .
Defns 6 1049 795 1752 368 24 2144 3 133
Declar 4 136 85 2184 161504 424 164112 1930 21
Bodigs 5 4640 2321 3400 48485 70168 78416 34 464
Exp Imp N/A, N/A N/A N/A N/A N/A N/A NA N/A
Rfio 3 [36 21 28 |10738 164 10928 | 520, 7
Total = | 15 5825 3201 7336 |166720° | 70016 | 244672 | 76 213
- ~ Weight and Balance _ . ' .
Defns 2 193 141 136 160 184 480 3 71
Declar 2 374 130 116 4200 8844 18160 140 65
Bodies 10 744 387 136 160 10350 { 10856 . 28 38
Exp Imp 2 2058 1059 636 3z - 8116 6787 & 530
Total 14 1311 - €58 388 11520 17388 29296 45 47
N] Aero Coefficlents . i -
Defns 7 423 329 144 1872 2312 4328 13 47
Declar 2 60 57 24 |720 1608 | 2352 49 23
Bodles 19 | 2494 1085 . 196 |1328 30488 | 32012 30 56
Exp Imp 2 ' |" 578 286 252 48 6100 6400 22 143
Total™ 28 2977 1451 364 (3920 | 34408 | 38692 27 | 52
_ Nav Geography o .
Defns 2 345 | 297 48 96 16 160 1 74
Declar 2 183 a1 780 1408 952 3120 | . 39 41
Bodies 2 2198 856 1244 400 16468 18112 21 428
Exp Imp 2 428 215 | 16 48 2540 | 2604 12 108
Total 6 2726 1234 2052 1904 17436 | 21396 17 154
' Motion j j

Defns 10 713 453 982 352 848 2192 5 45
Declar 2 181 42 24 2432 216 2672 64 21
Bodiss 10 1402 703 204 224 17700 18128 26 70
Exp Imp 2 428 250 224 80 4960 5264 21 125
Gen Ins 11 N/A N/A o2 192 7620 7904 N/A N/A
Total 22 2296 1198 1220 3008 18764 22092 | 19 85
Note 1:

Exp Imp means EXPORT/IMPORT PROCEDURES, Sea Scftware Structure Model.

Rtio means Real-Time /O Auto-Generated Softwars

Genlns means Generic instantlation i .

Defns means DEFINITION PACKAGES. See Software Structure Model. . _

Declar means DECLARATION and IMPORT PACKAGES. See Software Structure Model,

Note 2:
Totals do not Include autornatically generated software. B ,
This includes Export/import soitware, Real-Time /0, and Genaric Instantiations. .

165

Table 1 B-2 ATD Lines of Code and Memory Requirements (Cont'd)

Exp fmp means EXPORT/IMPCRT PBOCEDURES. See Software Structure Model.
Atlo means Real-Time O Auto-Generated Software
Genlns means Generic Instantiation
Defns means DEFINITION PACKAGES. See Software Structure Moded,

Declar mezans DECLARATION and IMPORT PACKAGES. See Software Structure Model.

Nate 2:

Totals do not include automatically generated scftware.
This includes Export/lmpart software, Real-Tima /O, and Generic instantiations.

Table 2 Personnel Experience

- [Structure | No. of No. of [No. of ;s [Constants | Static Compiler Total Bytes Avd. ;
{Note 1) Ada Ada Data Generated | Byles Per ; Per Unit
Units Lines Cade
<CRs>
Motion Supplement
Defns 18 310 443 1035 1792 68 2895 7 25
Beclar 2 269 99 . 2356 3376 460 g192 63 50
Badles- 16 1274 665 204 816 15236 162586 25 42
Exp Imp 2 1903 424 B84 48 4796 4828 12 212
Gen Ins 14 N/A N/A 324 292 6312 6928 N/A N/A
| Total 38 2353 1207 3596 5984 15764 25344 21 34
Seat Shaker
Defns 9 278 212 268 240 308 808 4 24
Declar 2 117 47 140 336 196 672 14 24
Bodies 7 497 244 108 160 7684 7852 33 35
Exp imp 2 288 190 120 64 3912 4096 - 22 95
Gen Ins 2 N/A N/A 16 3z 688 736 N/A N/A
[Total i8 892 503 516 736 8188 432 19 28
LF Data (Sample)))
1 Var N7A 32 16 92 176 468 736 46 N/A
|2 Var N/A 48 16 364 6872 5684 1600 100 N/A
3 Var N/A 855 [315] 11160 21984 3608 36752 540 N/A
Real-Time Totals
Defns 59 2879 13888 - 5
Declar 18 522 200656 339
Bodies 74 6457 187852 29
Exp/mp 14 2694 32508 12
Gen Ins 27 NFA 15568 N/A
Non-Real-Time Systems |
Master Bootstrap
Defns g 451 292 1112 12480 1732 15324 52 32
Declar 6 30 30 444 12544 1872 14860 4395 &
Bodies 40 2290 1343 18024 1148 73700 92870 69 34
Total 55 2781 1665 19580 26172 77304 123056 74 30
Slave Bootstrap)
Dafns 2 12 8 24 48 8 80 10 4
Declar 1 7 5 12 18 4 32 5] 3]
Bodies 22 1154 660 2996 608 25352 28956 44 30
[Fotal 25 1173 673 3032 672 25364 . 23068 43 27
Note 1:

System - Enginesr Years of Experience Years of Prior
in Simulation Ada Experience

Forces and Moments, Aero Coefficients, A 25 0

Weight and Balance o

Mass Storage Unit B 2 3

Slave Bootstrap, Master Boctstrap o] 1 1

Nav-Geography D 15 0

Motion, Seat Shaker, Supplemental E 9 0

Motion

166

Deciaration packages tend to require significant-
ly more memory per semicolon than other structural
components, On average, the B-2 data indicates
that our estimate of 40 bytes per semicolon, based
on our Mainfit benchmark, is valid for definition pack-

- ages and bodies. For declaration packages this es-
timate may be off by a factor as greatas 10 ormore.
The average number of bytes per semicolon of all
measured declaration packages was 375 (338 for
real-time along).

However, by not including the large data struc-
fure within the Mass Storage Unit, the average
- number of bytes per semicolon for declaration pack-
ages drops to 77. This analysis may indicate that
large data structures within the application software
should be accounted for together with other largs
data structures such as globalhardware Interfaces.
As a result, one can use a single “bytes per semico-
lon" estimate treaiing all structural components as
code. This simplifies the resource estimation pro-
cess for the application designer.

Elaboration Code

In the data analyzed, only about half of the
memory required for declaration packages was allo-
cated for user data. The other half was elaboration
code. Any compiler-generated code in a declara-
tion or definition package is elaboration code User .
code resides only in bodies.

Ada compilers today can generate significant
amounts of code in carrying out the: elaboration
rules of Ada. - Elaboration code can be particularly
costly in initializing data of a composite type. As an
example, compilers may generate elaboration code
to initialize records and arrays even when the initial
values are known at compilation time. Gompiler en- .
hancements in this area can result in significant
memory savings.

OVERHEAD COSTS

The memory demands of Ada extend beyond the
application software itseli. Memory required for
stacks, generic instantiations, and “closure” units
adds to the total resource picture.

Closure

All units in another unit’s closure do not. neces-
sarily need to be loaded into memory at execution
time. A package specification that contains only.
type information may be needed only during compi-
lation. However, when “withed” units contain infor-
mation that may change at run time or cannot be
determined at compilation time, *his unit. may need
to be loaded at run time,

167

When muliiple procedures and/ar functions are
placed within a single Ada package, all of the soft-

. ware or only those procedures or functions actually

referenced may require memory. These memory is-
sues are dependent on compiler vendor implemen-

. tations and can result in different memory demands

between compilars.

An Example of Overhead Costs

On the B-2 ATD, Bootstrap is & set of interactive
0S8 processes providing a menu-driven capability to
initiate various simulator functions, such as simuia-
tor loading. Slave Bootstrap provides control for a
single OS environment and Master_Bootstrap pro-
vides common control over all Slave_Booistraps.
The total amount of memory required by the
Slave Bootstrap application software is 85 kilo-
bytes. This includes 85 KB of software retsed from
Master_Bootstrap. However, the OS sérvices re-
quired for such functions as loading and starting
tasks require another 120 kilobytes. The package
text_io requires 200 kilobytes. The_stack requires
110 kilobytes and closure units add 35 kilobytes.
As a result, the total task size of Slave_Bootstrap
is 465 kilobytes. Master_Bootstrap requires 400 ki-

- lobytes,

Stacks

Most simulation processes cn the B-2 ATD re-
quire approximately a 500 KB stack. Stack de-
mands, however, are highly dependent on user soft-
ware characteristics. It is not unusual for some

- applications to require stacks as large as 2 MB or

larger. This includes the stack space required to
initially elaborate packages as well as the space
neaded to axecute the simufation programs. Deter-
mining worst-case stack requirements may de-
mand special togls. Wehave useda specially devel-
oped vendor tool reporting worst-case stack needs
to assisi us in managing this resource.

Generics

Generic instantiations result in complete soft-
ware units from a single Ada statement. Dependent
on the compiler, these units may require computa-
tional resources similar to manually generated units.

Most of the systems analyzed do not use gener-

ics.. Weight_and_Balance, Aero_Coefficients,

Nav _Geography, and Forces_; and_; Moments do not
utilize generics. Iti is not uncommon for flrst and sec-
ond Ada systems to make little use of generics. Ge-
nerics tend to be used by more experienced Ada

_engineers. However, when genencs are employed,

their resource demands can be substantial. Large

quantities of code requiring significant resources
can be generated rapidly when using generics. Our.
Motion and Mation Supplemental CSCs utilize gener-
ics (see Table 1).

Unconstrai as

Unconstrained types in Ada provide simulation
software engineers with a powerful new capability
for managing data. The resource demands of this
new feature, however, may be more costly than ex-
pected.

An Example

On the B-2 ATD project, an off-line processor
called the LF! {Linear Function Interpolation} Compil-
er is used to transform aircraft data sets into an
Ada-compilable format for use in the training de-
vice. The data is interpolated inreal time, frequently
at high rates. Since each data set may vary in size,
the use of an unconstrained Ada iype was chosen.

We found with our real-time compiler that cb-
jects of an unconstrained record type required more
computational time and mernory than expected. In
certain cases the maximum size of an object rather
than the actual size was allocated both on the stack.
and in memory. This maximum was almost 2 MB..
Furthermore, additional computational time was re-
guired since these objects were being passed on
the stack as parameters to an interpolation routine.
Objects of a constrained record type are passed as
parameters more efficiently,

Limits and Automatically Generated {(Auto-
Gen) Software

We also found that some of the larger LFI data
sets caused a constant table limit to be exceedsd
within the compiler and used excessive stack space
during elaboration which was never recovered.

The LFl data sets are not the only Ada software
automatically generated (Autc-Gen) on the B-2.
Import and Expeort Procedures are automatically
generated from the Interface Management Data
Base (IMDB). Real-time disk /O software employs
generics. The Executive software is partially generic
and partially autornatically generated. . _

Automatically generated software can enhance.
productivity and reliability and is highly recom-
mended. However, our experience indicates that
real-time software employing unconstrained types
and Auto-Gen software may have an increased risk
of encountering target compiler limitations or ineffi-
cient use of resources. These conditions may not
he-evident when initially developing the software in
a virtual non-real-time environment.

168 .

ADA CODE CHARACTERISTICS
Counting Ada Lines

Today there is not a single accepted standard for
measuwring lines of code in Ada. In this paper both
lines with carriage returns and lines with semicolons
are reported. We have seen approximately a 2 to
1 ratio between “carriags return” lines of Ada and
semicolon lines. However, this relationship can vary
depending on the particular Ada constructs
employed and coding style. As an sxample, in the
case of a 3—variable LF| (see Table 1) containing a
large aggregate, this ratio is more than 10 to 1. Nev-
ertheless, our experience indicates that managing
size is best accomplished by focusing on terminat- -
ing semicclons. -

Comparing Ada to Other Languages

Qur experience indicates that Ada may require
more lines of code than languages such as Fortran.
This is partially a result of design techniques and
coding style, but it is also a result of the language
itseli.

Tabile 3 indicates that the ratio of code contained
in the DEFINITION AND DECLARATION PACKAGES
to the total manually generated code averages 41%
for the real-time software analyzed. This may indi-
cate that we can expect 40% more lines of code
with Ada. This statistic also indicates that 40% of
the Ada code generated occuwrs in the design
phase. :

Table 3 Percentage of Ada Generated During

Design
Percentage of Design Code
{DEFNS, DECLARS)
System o Total
Foreas_And_Moments ' 54%
Mass_Storage Unit _ . 38%
Weight_And_Balance 41%
Aerg_Coefficients 27%
Nav_Geography o 31%
Motion _ 41%
Mpotion_Supplement 45%
Seat_Shaker . 51%
Average 41%

In Fortran a prép'rocessor to compilation added

interface declarations from a symbol dictionary.

These declarations were not part of lines of code
management. - In Ada, these declarations are in-
cluded in lines of code management.

EXECUTION TIVE

Exscution time can vary depending on 166[53 and
branch paths. Nevertheless, when code is primarily

‘straight line and the data used is small records or

scalars, estimates based on source line counts are
possible.

Table 4 indicates a range of 0.5 microseconds
to 4.1 micrgseconds per semicolon for the systems
measured. Be advised that all of the instructions in
these.systems may not have been exercised during
fiming. However, this data indicates that Ada com-
pilers today can generate code that meets stringent
real-time simulation needs. [n fact, we have found
that managing real-time computational time is ac-
tually more of a simulation software design issus
than a compiler issue.

Table 4 Real-Time Software Execution Time

Measured
Execution Time* Per
System Tims* Semicolon™”

Ferces_And_Moments 240 1.7
Mation 320 0.5
Seat-Shaker 440 1.8
Nav_Geography 1482 . 1.7
Weight-And_Balance 1570 4.1

* Exegcution Time is reported in microseconds

** Manuzlly generated bodies only are used for this calculation

The reader is cautioned against applying this
data to code with varying design fechnigues and
styles. Deep nesting of small procedures, the use
of large composite data types, or'the use of uncon-
. strained types can dramatically alter timing results.
For example, in a separate case study of a high-rate
CSC on the B-2 ATD, 6-10 microseconds per semi-
colon was measured, Characteristics of this CSC
included many array references, procedure calls,
and loops,

DEVELOPMENT TIME

The ultimate success of Ada may rest with how
favorably engineering productivity compares with
previous generation languages. Table 5 provides
the hours required to develop the eight real-time
systems studied from the B-2 ATD. Productivity
ranges from 0.7 to 4.0 Ada statements (semico-
lons) per hour. In all the cases analyzed productivity
improved (frequently by 100% or more} moving
from the design stage o code and test. This is be-
lieved to be due to two factors. .

First, designing the definition packages requires
considerably more thought than coding the bodies.
Secondly, on a first and second Ada assignment,
on-the—job training in Object Criented Design
(O0D), costs associated with new tools, and rework
dus to immature compilers all impact cost, particu-
larly in the early design stages. T

We have found that the OOD cost frequently in-
cludes a redesign of the first system and a refine-
ment cost on secorid and third assignments. De-
spite this situation, our data indicates that
developing software with Ada can be cost—-competi-
tive today. Once Ada experience has been gained,
and a process and mature toolset put in-place, fur-
ther producfivity gains can be expected. While indi-
vidual results will vary, dramatic productivity gains
can occur, as seen from our experience with the -
Mass_Storage_Unit.

RECCVIMENDATIONS
Use LT Ear

Ada’s goal is to reduce the life cycle cost of soft-
ware. New factors with Ada can increase complex-
ity leading to higher, rather than lower, software
maintenance costs. The use of small teams with fo-
cused goals can play a key role in managing this
complexity early.

We recommend that a small team investigate the
factors discussed in this paper as early in the project
as possible. This activity must occur on the.chosen
real-time targel system. _ o

Qur goal is to keep the software process simple.
Software designers nead clear and concise rules to
achieve maintainable software. These rules must
be based-on the structure model, and on target-
specific factors that can be learned only through
prototyping. Rules for estimating resources can
also be kept simple by managing large data struc-
tures as system data, allowing a common approach
to all application structural components.

Table 5 Development Time

Design Time* | Code and Test | i Per Hour De- i Per Hour + Per Hour
System Time* sign Bodies Tatal
Mass_Storage_Unit 436 360 2.0 6.4 4.0
Nav_Geoography 1200 700 " 0.3 1.2 0.7
Weight_And_Balance, Aera_Coeificierts, 1753 2140 0.5 0.3 0.7
Forces_And_Moments
Moticn, Motion_Supplement, Seat_Shaker 1695 ° 839 0.8 1.7 1.

* Time reported in hours

169

Data types used for system interfaces must be
established and controlled early. Typing strategies
must consider both the value of modern software
techniques and the “side effecis” that may occur
cn one's chosen machine. The impact of data
structures {such as structures using unconstrained
and composite types) on stacks, elaboration code,
and ¢losura software must be known early and con-
sidered in establishing the rules.

Use Compiler Options When the Software Is
Mature

We have found that once the real-time software
is mature, significart computational resource sav-
ings can be gained through compilation options.
While individual results may vary, we have seen ex-
acution Hime reductions of 30% when disabling run-
time checks and a 25% savings in memory. By in-
lining small units (less than & semicolons) another
10% reduction in execution fime can be achieved,
although in-lining does increase memory.

To gain these benegfits it is important not to “de-
sign in" "Ada’s run-time checks. For example, one
should not employ constraint exception processing

to limit data. Otherwise, the software will not oper-.

ate properly when the checks are disabled.

We recommend that these options be employed
only toward the end of the project when the software
is mature and the full impact is clear. "Ada’s run-
time checks {e.g., range checking of interface data,
ranging of indexes, etc.) are invaluable during test
and in-lining can increase recompilation during de-
velopment when the software needs to bs modified
frequently.

DISCIPLINE AND COMPUTER SYSTEMS
SUPPORT

Although hardware/software integration (HS
time is not included in this study, our experience on
the B-2 ATD project indicates that HSI! time is con-
siderably shorter with Ada. While the time {o build
a load is longer, fewer loads are required to attain
funciionality. Although this is partially due to Ada it-
self, it may also be partially a resuli of the discipline
the host-target environment brings to the software
process.

Most, if not all, projects face schedule pressures,
aspecially late in integration.: Mounting pressure to
integrate more software faster doesn’t change with
Ada. However, providing development toals in a dif-
ferent envircnment from the real-time target moti-
vates engineers to test more thoroughly prior to saoft-
ware release. On the B-2 ATD we have found the
software released-for integration to be significantly

170

more mature, leading to shorter integration sched-

" ules. .) . R

However, we have also found that the application
engineers require more computer systems support
in the integration stage. This is due to ths fact that
the development tools they have become familiar
with may not be available in the target environment.
Having spent most of their time in development, they
are simply not as famitiar with the target tools. As
a result, we have found a need to provide more tar-
get computer systems support .during integration
than on traditional programs where development
occurs on the real-time target machine.

CONCLUSIONS

Ada is complex and introduces new software
measurafnent factors and trends. With Ada we are
seeing maore lines of code, but we are also sesing
higher productivity rates. Complexity is moving out
of the code and into the data. Data declarations are
requiring factors of 10 or more times traditional
memory requirements. Design time is increasing,
but code and test time is decreasing. There arenew
costs associated with language- features such as
composite types, unconstrained types, and gener-
ics. There are also many new factors to consider
in managing computational resources with Ada;
stack spacse, closure software, system services, ge-
nerics, and structural overhead all must be closely
managed. .

Today, compilers, tools, and Ada environments
are rapidly maturing. The cost of computational
hardware is continually decreasing. Clear and sim-
ple rules supporting modern software techniques
canlead to increased productivity and reduced soft-
ware costs with Ada. This is being realized today on
the B-2 ATD project.

ABOUT THE AUTHORS

Paul E. McMahon is a Staff Scientist at the Bing-
hamton Operations of CAE-Link Corporation. Mr.
McMahon has besen with Link since 1973 and has
held various mandagement and technical positions
within the comipany. He has beer involved with Ada
development on the B-2 project since 1985. Hare-
ceived his BA in Mathematics from the University of
Scranton in 1971 (Magna Cum Laude) and his MA
in Mathematics from the State University of New
York atBinghamton in 1973, Mr. McMahon has pub-
lished numerous papers on Ada dating back to

1885, His most recent publications include a paper

entitled “On the Fringe of Ada”, presented at the
1989 NAECON Conference, a paper entitled “Les-
sons Leaned on the Fringe of Ada”, which was
nominated for best paper at the 1989 Interservice/

Industry Training Systems Conference, a paper en-
titted “Ada: Experiencs It Again for the First Time”,
presented at the 1990 Tri-Ada Conference, and a
paper entitied “Ada in the 90’s,” presented at the
1880 Interservice/ndustry Training Systems Gonfer-
ence.- :

Dennis W. Meehl is the Departrment Manager for
Special Programs Computer Systems at the Bing-

i71

hamton Operations of CAE-Link Corporation. Mr.
Meehl started work with Link in 1977 and has held
various technical positions in real-time simulation
systems and software development environments.
In 1986, he began investigating the use of Ada in
real-time simulation and waorked technical issues
until 1987, when he was assigned as Department
Manager. Mr. Meehi received his BS degree in Engi-
neering at Case Western Reserve University in 1871.

