USING PARALLEL ADA IN THE IMPLEMENTATION
OF SIMULATION AND TRAINING SYSTEMS

By Gary Croucher and Don Law
Encore Computer Corporation ,
Fort Lauderdale, Florida 33313 _

ABSTRACT

Ag simulation and training systems become more complex, vendors must rely on the
ability of the target system to meet the processing needs of the application. The ever
increasing complexity of today's training systems has exceeded the processing
capabilities of many single CPU systerns. As an alternative, more and more vendors
are now considering multi-processor systems.

The Ada language is the logical choice as a software environment for developing
these large scale applications. The Ada tasking mechanism can be extended to

schedule and distribute tasks over multiple processors. This resulting parallel Ada

runtime is capable of executing Ada
the Ada language. _

tasks in parallel, while upholding the rules of

The decision to migrate to a parallel Ada environment is an important one involving
many important factors. The intention of this study is to provide the applications
developer with an insight into the specific features available in parallel Ada
environments, and which features will be most useful throughout the life cycle of his
application, With this information, the decision maker should be zble to determine
if a parallel Ada target environment is worth considering, and which types of

- parallel environments provide the individual features most essential to the success of

his application.

"INTRODUCTION .

There are a number of parallel Ada environments
currently available in the marketplace, each with its
own set of fitnctionality and restrictions.
Unfortonately, the term "paratle]” has been left open
for interpretation, resulting in a conglomerate of
vastly different Ada development systems being
Iabeled as parallel. For example, it is uncertain
whether an Ada development environment is to be
labeled parallel because it compiles an Ada program
in parallel, executes an Ada program in paraliel, or
compiles and executes the Ada program in parallel.

The relevant issue is not whether a particular:Ada
environment is or isn't parallel, or even which Ada
environments have the most sophisticated parallel
features. The major consideration for the developer
of a large scale Ada application should be whether or
not a particular parailel Ada implementation has the
necessary features and performance to support and
enhance the execution of his or her individual

* application throughout its life cycle. The ideal

198

parallel environment for one developer may be
totally inadequate for a second developer.
Developers need to-evaluate parallel Ada
environments with respect to their own applications
to determine which parallel implementation

maintains the most useful set of features.

- Parallel Ada environments may be capable of

compiling and/or executing the target application in
parallel. While parallel compilation can significantly
increase the speed at which the application can be
built, it has no effect on the execution speed of the
application, Parallel execution (the ability of the Ada
runtime system to distribute the Ada application
across multiple processors to be executed in parallel),
on the other hand, can have a significant impact on
application performance. The remainder. of this
study focuses specifically on parallel runtime features
that impact the execution of the application.

Clearly, the focal point for the developer is to first
understand the features and attributes of parallel Ada
runtimes in general, then to determine the advantages -

and disadvantages of specific parallel features with

respect to his application. With the information in =~ ~

this paper, the developer is more likely to make a
more intelligent, cost-effective decision about the
future direction of his or her application.

The remainder of this study is devoted to presenting
a general set of features needed in parallel Ada
environments used for the real-time execution of
simulation and training systems. Specific advantages
and disadvantages associated with some of these
features, and how these features impact large-scale
time critical applications, is also investigated.

PARALLELISM AND
APPLICATION SUITABILITY

Before the developer decides to make the transition
to a parallel Ada environment, he or she must
examine the application to determine which types of
paraliel features would be most advantageous. The
answers to the following questions typically provide
good insight into how an application will perform in
a parallel environment.

+ Does the application utilize & large number of Ada
tasks, or are runtime calls (from the underlying
operating system) used to schedule and invoke
concurrent code segments?

If a particular Ada runtime is paraliel because it
distributes Ada tasks in parallel to run over multiple
processors, but the target application utilizes
proprietary runtime calls, or for whatever reason,
does not use Ada tasking, then this paraliel
implementation will not benefit the application at all.
Further, applications that do utilize Ada tagks must
be designed so that Ada task execution can take place
in parallel. For example, an application that uses
Ada tasks, but serializes execution with rendezvous,
synchronization, or other methods, reaps no benefit
from task parallelism. '

» Does the application consist of multiple Ada tasks
within a single Ada main program, or is it made up
ofh ml.t‘?ltiple main programs communicating with each
other? -

If the functionality of the target application is divided
-up into multiple Ada main programs instead of Ada
tasks, then 2 parallel Ada software environment is
not necessary. In this case, the developer need only
-build and execute each main program encompassing
the application using a non-parallel execntion
environment and assign each of the resulting
executable programs to a different processor.: The
disadvantages to this approach are that the rich flow
of cantrol between constructs within a single Ada
program is lost. Additionally, the developer is now
forced to consciously partition the application
himself. Finally, this approach is very inflexible.

197

The degree of parallelism is limited to the number
of ‘main programs, and the addition or reduction of
processing power requires major application rework.

« Does the application require strict priority
scheduling and.preeraption?”

Most simulation and training systems rely on
preemption of executing tasks by more urgent

- operations, such as the expiration of a delay oran

interrupt. For these systems to run smoothly using
an Ada tasking model, it is usually necessary to use a
runtime environment that supports strict priority
scheduling. Additionally, some ruitimes may even
allow very high priority tasks to be locked
exchusively to individual processors.

= Are fast real-time feamrés"(ty";_!ically found on

sequential, uniprocessor based mintimes) necessary-
for application execution?

Some Ada implementations support real-time
features that exploit the underlying computer system.
There are Ada untirne environments available with
good support of real-time programs. A parallel
environment to be used for simulation and training
systems should not only support real-time features,
but should integrate them with the parallel tasking
model, These high speed features are essential tor
time critical applications and must not be overlooked.
Some of these features may include task connections
to external interrupts, optimized context switch
times, and user configurable device drivers. If the
application under consideration utilizes any of these

- relevant features, then it behooves the developer to

consider parallel runtimes that incorporate some, or
possibly even 2ll, of these unique real-time features.

If the answers to the gbove questions indicate that a
paralle] implementation may be capable of providing
increased application performance and additional
functionality, then the next step is to evaluate typical
features of parallel Ada runtimes to determine which
features will be most beneficial.

In addition to systems that are in the coding or
maintenance phase of their life cycle, new systems
should also be evaluated for whatever type of parallel
Ada execution environment is needed. An ideal
situation would be for the developer to study the list
of paralle]l features presented ir: the next section
before beginning the high-level design of his
application. In this way, the application could be
designed to fully exploit the parallel features of
whichever parallel Ada implementation the developer
chooses.

-

PARALLEL RUNTIMES,
FEATURES, AND
FUNCTIONALITY

-Assumptions

» In this section, the scope of the discussion is limited
to the execution environment in which the unit of
parallelism is the Ada task.
+ The computer systems discussed are multiprocessor
systems.
.» The runtime execution environment conforms to
the Ada Language Reference Manual, MIL-STD-
1815.

System Architecture

The choice as to what features will be offered on a
given parallel Ada implementation is ultimately
driven by the underlying system architecture.
System hardware can range from dual to massively

parallel processors, with very tightly coupled, tightly .

coupled, or loosely coupled CPU/memory
configurations. -

A very tightly coupled multiprocessor system, where
all of the processors have access to all of memory
(see figure 1), is the most widely accepted
architecture for parallel’ Ada implementations. With
this architecture, task synchronization and task
distribution can be controlled by the runtime kernel,
which is accessible by all processors. Additionally,
the rules for goveming the Ada langoage, including
the rules that dictate the scope of visibility of
variables, can be adhered to without restriction, -
because the entire range of memory is visible to each
processor in the configuration. If anything less than
the entire range of memory is visible to any of the
processors, then the Ada implementation either must
mun the risk of placing restrictions on the rules
governing Ada or introduce additional overhead to
support inter-processor communication. This
additional overhead is typically not acceptable when
introduced into. large-scale time critical applications.

The applications developer should seriously consider
the number of processors available on the underlying
hardware before deciding whether or not to utilize a
parallel Ada implementation on top of this hardware.
If the processing needs of the application could
increase over the life cycle of the application, then
the developer should ensure that additional
processors can be easily added to the existing
hardware, or that compatible systems with
augmented numbers of processors are available. Of
course, the parallel Ada implementation should be
capable of utilizing all of the available processors in
the system.

Lishtweight Thread Impl tati

If a patailel Ada runtime environment is
implemented on a multiprocessor bare machine, then
the Ada environment is free to schedule the
processors according to Ada semantics. One of the
most desirable features of a bare machine
implementation is its freedom from any constraint of
an operating system scheduler. The disadvantages of
a bare machine approach are that the machine must
be dedicated to a single application and resources
typically found on & general purpose operating
system are not available,

Fhe scheduling advantage of the bare machine
approach may be captured in an Ada environment
implemented on top of a real-time operating system
if that operating system supports a lightweight thread
model. The term "lightweight thread" refers to the
ability to create additional threads of execution in a
program without the overhead of creating a new
process. A lightweight thread is an execution entity
that is added to an existing program. It does not
have its own set of files, its own, address space, or the
other items associated with a process. A lightweight
thread consists only of a stack, a set of registers, and
a program counter. Figure 2 illustrates Ada tasks
implemented on traditional processes versus Ada
tasks implemented with lightweight threads.

Local
Memory

Bus
Processor Processer Processor
1 2 S o @ N

Figure 1: Multiple processors sharing one common memory

198

Ada tasks implemanted with
traditionat OS processes

/——-| Ada program

Task A Task B
Thread of Thread of
cantraol control
Stack Stack
Files Files
Trap Trap
processing processing
Heap Heap
Code Code
Memaory map Memory map

P

Shared memory

r—| Ada program

Ada tasks implemented with
lightweight threads

Task A Task B
Thread of. Thread of
control control
Stack Stack

Memory
S}_lared: Filaes

Trap processing }
Heap
Code

Figure 2: Traditional processes versus lightweight threads

The lightweight thread model is exactly the paradigm
that is needed for Ada execution. Ada programs
consist of multiple paralle! threads of execution
within a.single program, all of which share open
files, address space, trap processing, heap, and so
forth,

When parallel Ada is used for a simulation system, it
should be implemented on a system that matches the
Ada tasking model to the computer being used. The
lightweight thread model of a real-time operating
systemn matches the needs of a multitasking Ada
program.

Fine. Grai C Griin Paralleii

There are varying degrees of parallelism, even
among parallel Ada runtime environments. Within
the environment itself are critical regions, where .
tasks modify data structures shared by other tasks.
The modifications must occur atomically, requiring
an internal locking mechanism that is invisible to the
user. -

The most coarse grain environment contains a single
iock for all runtime environment data structures.

Whenever any task is performing any runtime action, .

the lock is held. In other words, the entire runtime
library is considered a critical region, -
Fine grain parallelism is achieved with more locking
mechanisms, with locks being associated with
individual data structures. This allows multiple tasks
10 be performing runtime system operations at the
same time. Instead of contention occuring at the

level of the entire runtime system, it occurs only -
when more than one task attempts to modify the same
data structure within the runtime system at the same
time.

Figure 3 illustrates the different behavior of fine
grain and coarse grain environments. Time
progresses from left to right in the diagram. In the
coarse grain system, all four tasks compete for the
same critical region, the runtime kernel. When any
task is executing in the kernel, all other tasks are
blocked and have to wait for the lock to be released
(shown as thick arrows). This represents wasted
computer resources and should be minimized. In the
lower portion of the diagram, a fine grain system
allows different tasks to hold locks to different
resources concurrently. The only time that a task is
blocked is when it needs a resource that is held by
another task, illustrated by task C requesting
resource X while it is in use by task B.

For an application which is not paraliel or that
executes on a small number of processors, a coarse
grain locking system may execute slightly faster than
a fine grain system becanse the locking mechanism _
has some overhead associated with it . The coarse
grain system only requires a single lock and unlock
operation for any runtime system call. The coarse
grain system may be a satisfactory solution when a
small number of processors are being used, but as the
number of processors increases, the contention for -
the critical region increases. o

Fine grain locking environments reduce the
contention and therefore the blocking time of Ada _

Rkl LS

R

Coarse Grain Parallelism

Task A . Runtime Kernel

Task B —{pm | Runtime Kemal —_—
Task C > ! Runtime Kernal F——uw————» - T
Task D —

Fine Grain Parallelism

Task A — X_P{W }—— X |——>

TaskB——>L__i—'L__J-—"L___J ——
Task ¢ ———{Z |—==b{ X |-

Task D

Legend
— Normal execution

=menf- Blocked waiting for critical section

[:[Executing in critical section

Figure 3: Coarse grain versus fine grain parallelism

tasks during nuntime system operations. They are
well-suited for applications that use larger numbers
of processors because they use system resources
more efficiently. A fine grain system may have
slightly slower runtime operations than a coarse
grain system because a larger number of locks must
be processed for runtime operations, but the system
will be more deterministic because of the reduced
waiting times.

Prioriti h in h

The task priority mechanism of Ada has been a topic
of much debate in the real-time systems arena.
There have been several papers published on the
topic that discuss some possible solutions.

A major issue is that of priority inversion on task
entry queues. Ada requires that a server task execute
at the priority of the client task during the

rendezvous between these two tasks. This helps to
reduce priority inversion, but doesn't prevent it.

The pricrity of the server task is not affected by the
client tasks which are queued waiting for a

rendezvous with the server. - A high priority client
task may be queued waiting for a low priority

200

operation to occur. This is priority inversion since
the high priority task is held off by the execution of a
lower priority task.

An example of priority inversion is shown in figure
4. The upper block shows the tasks involved, with
the Fire_alarm task unable to obtain service from the
Comm_server task because the Check_calendar task
is using the rendezvous. The exampie shows how the
urgent Fire_alarm task is prevented from continuing
execution because of the unimportant Check_calendar
task. Even worse, the unrelated Sori_database task
may hold off the urgent completion of the

Fire_alarm rendezvous indefinitely.

The lower portion of figure 4 shows the sequence of
evenis leading to priority inversion from left to
right. When the Fire_alarm task is scheduled to run,
it gains control of the processor immediately becaunse
of its priority. However is is blocked awaiting the
rendezvous with Comm_server, which is executing at
priority 2 (since it is serving a task- with priority 2).
The rendezvous may be kept from execution
indefinitely by the Sort_database task, which

‘preempts the server because of its hxgher priorify. ~

Example of Priority

Inversion

Client task
Fire_alarm

Client task
Check_calendar

Unrelated task

Sort_database

Server task
Comm_server.

Check_calendar ___% pry——
(Priority 2)

Comm_server ~ 13erving Check_cal. Resumed -
. 1 2 e P Presmpted
(Priority 1) Await rendezv. reempted — P , _

Sort_database
{Priority- 3)

Fire_alarm
(Prigrity 8)

Legend:

: Blocked from executing

——» Executing on processor

Figure 4: Priority Inversion

The problem of priority inversion is partially
alleviated in a parallel Ada execution environment,
With multiple parallel processors, more intermediate
priority tasks must be present to starve out the low
priority server. The inversion example pertains to a
single processor system, but may be scaled to any

- mumber of processors by adding an unrelated
medium priority task for each added processor.

The best approach when using of priorities in real-
time simulation systems is to keep the model very
simple. Ideally, it should be simple enough to
facilitate formal proofs that priority inversion and
other priority problems will not occur.

D ic_Allocation. of P ing P

In a multiprocessor system, there is some point at
which the simulation application developer specifies -
the number of processors that will be used to execute
the target application. The longer the developer can
defer this decision, the more flexible he can be with
the parallelism of the application. If a non-Ada task
allocation method is used, then the decision about the
number of processors may have to be made as early
as the design phase of the application. This is
undesirable since the computer technology is likely to

201

Scheduled

Await rendezvous

|- INVERSION—

change before the deployment phase of the project.
{see "Proprietary versus Generic Elements” above.)

The developer may be required to specify the
number or processors at comgpile time or link time, -
with some directive to the compilation system or
with some statements or pragmas in the source code.
This requires a much lower turnaround time to
change the number of processors used.

Some parallel Ada environments may allow the user
to change the number of processors at the time when
the program is invoked. The ultimate flexibility is
the environment that zllows processors to be added .
or removed while the program is executing. The
latter feature is useful for systems that execute for
long periods of time or have some fault-tolerant
requirement.

Context switch times in a sequential Ada mntime are

minimal, because all of the context switching and task

rendezvous overhead is being carried out within a
single executing process. By contrast, a parallel
runtime will usually have longer context switch and
task rendezvous times, because the parallel runtime

Time
[secon’ds)4

: - Sequential Runtime

Parallel Runtime (optimai)
Parailel runtime (typical)

. 2

-3 -

—

Number of Processors

Figurs 5: Execution speed of a sample application for 1 o 4 processors
using a sequential and coarse grain parallel Ada runtime. o

incurs the additional overhead of creating and
commumicating between independent threads of
execution. Running on a single processor, the
-sequential Ada implementation will typically
outperform its parallel counterpart, particularly if -
the application contains Ada tasks. However, as the
number of available processors increase, the
-advantages of a parallel Ada implementation become
clearer and clearer. Figure 5 is a graph of the
execution of an Ada application containing

a specified number of Ada tasks (in this case, more
than four tasks were used). There is no
interprecessor communication between tasks. The
results are graphed for 1 to 4 processors when
executing with a target load module linked to a
sequential runtime and a paralle]l runtime.

The parallel runtime begins slightly slower for a
single processor, due to the aforementioned
overhead. However, as the number of processors
-increases, the parallel runtime's performance
increases almost linearly. Speedup is-almost linear
because the application represents the optimal case
(no interprocess communication and tasks
immediately ready to run on available processors).
A more realistic performance expectation is
generated by the graph of the "typical” parallel
runtime, which takes into account overhead for task
initialization and communication, and assumes that
there are not always tasks available to run
immediately. As more and more procassors are

202

added to a parallel system, the benefits of the parallel
mntime tend to diminish, until the number of
processors exceed the number of available tasks and
the line graph becomes horizontal.

- ¢ [

It is difficult to implement a real-time simulation
system using nothing but the generic features of Ada.
However, to maximize the portability and
maintainability of the system, it is best to keep the
use of proprietary interfaces to a minimum.

It is good programming practice to isclate these
interfaces into small areas of the systemn and to
contain them within Ada package bodies where
possible. This "information hiding" technique will
make it easier to move the application to a different
real-time system later in the life cycle,

The encapsulation of non-Ada real-time interfaces in
packages may add some overhead to their use. The
pragma "inline” may be used to reduce this overhead
by causing the compiler to include the "wrapper”
code directly in the calling procedure. Pragma
“interface” may also be used in Ada package
specifications to allow calling programs to call non-
Ada interfaces.

Some simple real-time features of the systermn may be
needed in some instances, especially where the Ada

Control
Task

Qperator

.
-0
g

Agent Tasks

Agent 3

Agent n

Simulation
Tasks

Airframe

Freez8 | Navigation

i

Freeze | Hydraulics

Freeze | Racorder

Figure 6: Sclution to waitng for Freeze rendezvous

tasking model does not answer all the needs of the
simulation system. One such example of this ocoured
in a European nuclear power plant simulation and
training system. The trainer required a "freeze" and
"unfreeze" function, whereby the simulation could be
frozen in time. Various simulation functions were
needed while the freeze was in effect, so the
implementation was to suspend the execution of a
subset of tasks in the systenr. The tasks that were
moving the simulation through time were 1o be
frozen, while the maintenance tasks continued to
execute.

The tasks to be frozen were synchronized by
rendezvous from a master, but had "select"
statements to allow the freeze operation to take place
instead of the normal start of a frame. The task that
performed the "freeze" operation was required to
rendezvous with every task which was to be frozen.
Each such rendezvous required the frecze operation
task to wait until the task to be frozen reached the
rendezvous before it could proceed and rendezvous
with the next task to be frozen. The resulting lag
caused the freeze operation to take too long to
complete.,

The solution to the problem was to introduce an
"agent" task for every task that was to be frozen.

The agent was always ready to aceept the rendezvous
from the freeze operation task and would then
rendezvous with the task that was actually to be

- frozen. This solution accomplished the desired

operation, but required significantly more tasks to be
introduced into the system and required two

203

rendezvouses to occur for every task to be frozen.
The solution is shown in figure 6.

If a real-time supplement to suspend and resume an
Ada task had been available, then the solution could
have been much simpler. Using this real-time
supplement, the freeze operation could have gone -
down the list of tasks to be frozen and issued a
suspend on each one.

A basic set of real-time features should be included
in a Parallel Ada system which is to be used for
simulators and trainers. Besides the suspend and

- resuime operations already mentioned, services to
- manage interrupts and timers, facilities for writing

custom device drivers, and interfaces to real-time
disk 1/0 are examples of other supplemental real-

time services. These services could have a-significant: _ .

irapact on the performance and success of the
simulation system.

CONCLUSION

Parallel Ada developmeni systems are an important
step in the maturation of the Ada language, What
was once seen only as research projects are riow
maturing intc commercially available systems.

Some research into the high-level design of the
simulation system should occur before the supporting
Ada development system is selected. The '

Jimplementor needs to know what questions to ask in

the selection of a parallel Ada execution

implementation. There are many issues that are not
apparent at the beginning of a project, but can be
brought to light by looking at other similar projects
that have used Ada.

The use of the Ada language does not guarantee

parallelism, portability, or maintainability in itself. -

Such goals must be incorporated in the design of the
simulation and training system. The parailelism of
Ada is yet another tool, that if properly evaluated
and utilized, can provide the implementor with an
additional resource to help achieve his execution
goals.

ABOUT THE AUTHORS

Both Don Law and Gary Croucher are senior
members of the technical staff at Encore Computer
Corporation in Fort Lauderdale, Florida. Both
authors hold a Bachelor of Science in Computer
Science and Mathematics from Furman University.

204

Mr. Croucher is the manager of Series 90 Ada
development at Encore. He holds a Master of
Science degree in Computer and Information
Sciences from the University of Florida, College of
Engineering. He as worked at Encore for seven -~
years and with Apple Computers for two years prior
to that.

Mr. Law has been with Encore since graduating
from college seven years ago. He has worked on a
prototype of the Common APSE Interface Set ,
(CAJS) and the Ada Real-Time Executive project for
Concept computers. He is currently the project
leader of the Micro-ARTE project for Series 90
computers and working on a Master of Science
degree from Florida Atlantic University and
Camegie-Mellon University.

