Efficiency As A Part of Sound Software Engineering:
Does Ada Need C?

By Marc L. Howell and Lynn D. Stuckey, Jr.

Boeing Defense and Space Group
Missiles and Space Division
Huntsville, Alabama

ABSTRACT

As high level computer langnages (e.g. FORTRAN) became the required standard for

new software implementation, simulation contractors began to seek exceptions for cer-

tain high utilization procedures. The contractors protested that they simply could not

meet the customer’s execution efficiency requirements if the language requirement was -
rigidly enforced. Customers frequently agreed to a marriage of conveniehce mixing

FORTRAN and assembly language. The resulting problems of language mix helped

lead the Department of Defense to develop a next generation language as the basis for

all embedded computer systems, namely Ada. Since the efficiency requirements for

embedded systems are even more stringent than real time simulation,. one might have

expected that Ada would fulfill the real time simulation speed requirements. However,

as Ada has become the required simulation language in recent years, new contractor
complaints about execution speed and memory usage have arisen. Contractors have
sought waivers for these systems to implement certain procedures in the C language
(the next generation assembly language) to improve efficiency.

The accepted truism has been that since a low level language executes so much faster
and requires less memory than high level languages, then the loss to the customer of
the desired features of the high order language is worth the gain in efficiency. Does .
this idea equally apply to applications using Ada? Is an Ada-C marriage convenient,
much less in the customer’s best interest? This paper presents a contrasting experience

in two software applications that have
low level interface drivers and multi-d
the specific benefits and costs of develo

INTRODUCTION

Efficiency is defined-as "the fact or quality of
being efficient; competency in performance; the
ratio of work done or energy developed by a
machine or engine, etc., to the energy supplied to
it". In the computer simulation world, efficiency
breaks down into two basic concepts; execution
speed and memory usage. To be efficient, a pro-
gram must be "fast and small". In early simula-
tion and training systems, efficiency was every-

thing. Computers were inherently slow and pos- -

sessed little memory. The program’s run-time
had to compensate for these drawbacks. The
solution was usually assembly language, one step
above the 1’s and 0’s. As computers progressed
so did the langnages, but assembly language con-
tinued to be the old standby for efficiency. So it
remained in simulation until the introduction of
C. Fast and compact, C provided efficiericy and
some of the "creature comforts” of advanced pro-
gramming languages.

205

traditionally been targets for language waivers:
imensional interpolations. The paper discusses
ping such applications in Ada and in C.

A few years later Ada was introduced as the new
language of choice for the Department of
Defense. It was primarily targeted at replacing
the more than 250 languages used in military sys-
tems and to standardize -the software inventory.’
Ada was developed with the whole software life
cycle in mind. It was to address requirements
analysis, production, maintenance, and reusability.”
Ada was not designed to be a next generation
assembly language. Ada’s designers assumed
that processor and compiler technology would

‘progress to the point that execution efficiency

would no longer be a major concern for software
development. Unfortunately, this has not always -
been the case. Numerous contractors have sought.
to use C a5 dn. efficient alternative_to Ada in
specific application areas. High level languages
are genérally considered not well sunitéd for inter:
facing at the machine level or for fast executién
speeds. The question arises: is the problem with
the langwage, the compiler, or the designer?
More specifically, is the question of efficiency a
hardware problem or a problem with software

]

designers still making choices based on priorities
of the past. As an answer, this paper studies the
comparison of Ada and C as they were employed
to develop interpolation routines and' a serial I/O
driver. The paper will provide a background on
the software models, their development, and the
results of efficiency comparisons. Also general

software principals were considered -in-the com-

parison. The paper ends with a look at the future
of efficiency concerns for Ada and C.

BACKGROUND

Model Choice

The candidate routines chosen for the Ada versus

C comparison were interpolation routines and a
serial 1/O driver. Interpolation routines are used
to extract operating information from a table of
known values. This is done by a set of algo-

rithms that determine a value between two known

values through the assumption of linearity. These
routines are used extensively in simulation and
are commonly referred to as table look-ups.
Their use has, in the past, been the cause. of
many execution efficiency problems. In many
cases they must be executed hundreds of times a
second, therefore, they need to be fast. In older
simulations this meant that the routines were
written in assembly language instead of the
required application language. The test for the
interpolation routines included one, two, and
three dimensional data types.

The second comparison was made on a low level
RS-232 serial I/Q driver. As with the interpola-
tion routines, the concern for speed of execution
has driven programmers to resort to assembly
language. - Other important factors in I/O drivers
are the needs for direct memory access and inter-
rupts. This type of machine level interface has
long been considered cumbersome or impossible
in higher order languages. The drivers were
designed to read and write on a serial port. The
data did not have to be in ASCIL.)

These test cases are representative of the software

applications: that have historically been developed

with low level languages. The two test cases

selected were developed for delivery on recent
_contracted systems. The interpolation routines
were developed in Ada for use on a flight crew
trainer. The contract involved the redevelopment
-of existing FORTRAN code, and as such the
interpolation routines were designed based on
.requirements and data from a earlier program.
The serial driver on the other hand was

developed in C as part of a confrol system. This o

control systern was developed with Ada as the

primary application language, while C was used

for the low level I/O. In both cases, the software

was developed by competent software engineers .

whose language of choice and expertise was the
language used for development The use of these
existing software models led to a fair and more
meaningful test. The fact that they were previ-
ously developed as part of a delivered product

- “means that the software is a better representation

of code actually found in industry. The original
implementations are also frec of any contrived

problems that may have arisen from the co-

development of comparison models, . The

development of the new routines and a closer
lock at the modeling details are covered in the

development section of the paper.

Test Environment

The tests .for efficiency were performed in an .

environment based on the target system for the
original models. All of the code was developed
on a Sun 3/260 development system running
SunOS 4.0.3. The iarget system was a Motorola,
MVME-133XT (68020) running ~a~ VxWorks
real-time operating system. The Ada compiler
nsed was the VERDIX VADSWorks compiler.
The C compiler was the standard C compiler
delivered with Sun development systems. No
physical differences existed between the two test
cases for ecach language nnplementatlon A

synopsis of the test environment is found in.

Table 1.

Model Language Development Compiler Target

System System
Interpolation | Ada Sun 3/260 with | VERDIX Motorola {68020)
Routines SunOS 4.0.3 YVADSWorks | MVME-133XT 25MHz
Interpolation | C Sun 3/260 with { Sun C " | Motorola (68020)

Routines SunOS 4.0.3 MVME-133XT 25MHz L
RS-232 . | Ada Sun 3/260 with | VERDIX Motorola (68020)

Serial Sun08 4.0.3 VADSWorks | MVYME-133XT 25MHz

1/Q Driver Z8530 Serial Controller

RS-232 -t C Sun 3/260 with | Sun C Motorola (68020)

Serial Sun0S$ 4.0.3
1/Q Driver

MVYME-133XT 25MHz2
Z8530 Serial Controller

Table 1. Test Environment.

206

ALUR A Ik L

e

=1 -

DEVELOPMENT
Interpolation Routines

The Ada interpolation routines were originally
developed for use on flight trainer program, This
program used the routines to determine the flight
data required for the flight dynamics of a simula-

tor. The algorithms- for the interpolation routines’

used search techniques which were based on the
last value computed. The fast value was bounded
by upper and lower known points. These boumn-
daries were saved and used as the starting point
for the next search, thus reducing the required

- search time for the next value. This approach
was based on the expected application usage in
fiight dynamics.

The routines were optimized by the compiler and
the compiled code included calls to the floating
point processor. In general, the Ada implementa-
tion of the data tables required the use of variable
length arrays of up to three dimensions. It was
desired to improve the calling structure of the
code by using array slicing to reduce the size of
the arrays being passed between routines. The
Ada language has very limited capabilities for
multi-dimensional array slices. This required the
duplication of the ‘interpolation routines within
the two and three dimensional cases. This limita-
tion also required longer parameter lists for the
Ada routines. The code structure of the Ada
implementation for the interpolation program is
shown in Figure 1.

Interpolailon ‘Interpalation
Typas Fackage Package
Search iD Interpoiate On
Array Two Variables
X |
Search 2D Execute Local
Array 1D Interpolation
Soarch 3D Interpolata On
Array Threa Varichles
1
Intarpolate On Executa Local
One Varlable 2D Interpolation
I
Exacute Local
1D interpolation

Figure 1. interpolation Routines Software Structure, Ada Version.

207

The C imterpolation routines were developed
explicitly for this comparison. They were
modeled according to the same basic require-
ments as the Ada routines. A number of optimi-
zations were made in the C routines which could
not be used with the Ada compiler. These
included the use of register allocation and array
slicing into the two and three dimensional cases.
Register allocation allows the C compiler to use
intemal CPU registers to store frequently used

values whenever possible, thus significantly -
reducing memory access times. As a further

comparison, amray slicing in the C routines was
developed using two approaches, first with the
actual array slices and second with pointers into
the arrays. Mo significant impact on exzecution
was noticed. However, it was feli that passing the
actual array slices was somewhat easier to follow
in the code. Since amay slicing was used in the
C implementation, it’s structure was slightly
different than the Ada. Notice the apparent lack
of obvious structure with the C code structure
shown in Figure 2.

Supporting Application
Flles Routines
Thres Varlahle
Types.h Interpotation

Two Varlable
Interpofation |

Onoe Varlable
{nterpolation

Search 1D
Array

Figure 2. Interpolation Routlines Softwars Structurs, C Verslon.

Serial YO Driver Routines

The C driver was written as the interface to an

operator display. The required routines included.
a serial port initialization routine, a read port rou- -

tine, a write port routine, and a routine to change
the port configuration. As a standard of com-
parison, both implementations used the same
operating system routiries to achieve their pur-
pose, i.e. VxWorks semaphores and the VxWorks
I/O System interface for driver creation and cal-

- ling. As with most low level I/O, it was neces-

sary to access specific address locations in regis-
ters and memory. The C routines used declara-
tions which defined the addresses required so that
changes to the port control registers occurred

whenever the value at the address changed. The
bit-wise operations built into the language
allowed for easy changes to these values. The
read and write routines included interrupts to
notify the main procedure when the respective
operation was possible. The original C code was
written by a programmer experienced with_writ-
ing I/O drivers in C. The original code was
difficult to follow due to the extensive use of
abbreviated and mnemonic variable names. The
structure for the C implementation of the serial
driver is shown in Figure 3. In this case the code
has an implied structure, as shown by the groups
of logically related functions. Unfortunately, the
actial code. was not grouped in this manner. Even
this structure is somewhat hard to follow.

Header Write o Read
Fllas i Tarminal i Tarminal
7 Ellas i

Tywrite i Tyread

Tyloetl TylSR : Tybrv
e Ry fnteruptsaics | 1| qnitatzation)
SC?Sgead 1ok
Ty Shutdewn
SCC Write inlt sCC
ISR Channels
Ty Cpen o
Road b Sot Up Ty

Raglster

Channsl

" Related Functions
» not grauped like this In the codea.

Figure 3. Sarlal I/Q Driver Routines Software Structure,
C Veralon.

The Ada implementation of the driver was writ-
ten explicitly for this comparison. It was based
on the same requirements that existed for the ori-

ginal C version. The program successfully used
direct addressing to effect the necessary register -

and memory accesses. The VERDIX Ada com-
piler includes a set of functions which perform
bit-wise operations, however, these were not
nsed. A more desirable: approach, from a porta-
bility standpoint, was to' build a generic package
which could be used with any integer type. This
approach led to a slightly larger program size for
the Ada but enhanced portability. The Ada code
structure was- quite different from the C. This
was done as a result of the programmers experi-
ence with effective Ada packaging structure and
10 improve absiraction and leveling. The struc-
ture for the Ada implementation of the serial
driver is shown in Figure 4.

208

Sarlal Driver Channel Interrupt Sarvice
Package Routines Routlnes Package
g Package g
Inttializa _| Setup | | Reed Intatrupt
Driver Channels Service Routine
i | Write To _{ Channel || Write Interrupt
Tarminal Open Service Rouline
Read From || Channet | | Interrupt
Terminal Close Service Routine
i | Changs Driver | | Channal || Read
Functions Read Reglstor
L| Shutdown | | Channel
Drlver Write
| | Channai
loct]
Serial Driver Ll inltlalize
Types | Channels

Figure 4. Serlal /O Driver Routines Software Structure,
Ada Version.

RESULTS

Interpolation

The test cases for the interpolation routines con-
sisted of several runs of different starting boun-
daries and desired values. The possible. boun-
daries and the desired values included in the test
are shown in Table 2. These values exercised all
possible conditions for expected use of the rou-
tines. The execution times were measured using
these conditioris for both the Ada and C versions
with the VxWorks timing function. The results
were collected and ranked as worst, best, and typ-
ical (average) execution times for the one, Ewo,
and three dimensional cases. The typical case
represents the most commen. condition for 2 pre-
vious value, between two known values in the
table, while computing the next value, also
between two known values.

Previous Boundary Desired Value

Lower Table Limit | Lower Limit

Lower Table Limit | Interpolated

Middle of Table Interpolated

Middle of Table Interpolated to Next Boundary
Upper Table Limit | Upper Limit =~ ’
Upper Table Limit | Interpolated

Table 2. Interpolation Test Cases. . .

The actual results for the one, two, and three
dirmensional cases are shown in Figure 5. In both
language versions the best case occurred when
the desired poimt was exactly on the upper or
lower bound of the particular table searched. For
this case the difference between the iypical Ada
and C versions is less than 5 percent. This is
because the amount of code executed for this
case is small and the implementations are very
similar.

. These internal routines acted on the entire three

dimensional array with poimters to the actual
desired slices. ~This is the primary reason for the
poor performance. of the three dimensional rou-
tines in comparison with C. Similar to the two
dimensional case, the C version first passed a two
dimensional slice and then a one dimensional
slice to the respective routines. This required

fewer additional parameters resulting in shorter

execution iimes. _

1000

900

800

700

600 -

500 1

Microseconds

400

300 -

200 1

100

0 —= X

=

T T
Worst Best Typical
1D interpolation

Typlcal Worst Best

2D Interpolation

E== AdaVersion C Version

Figure 5. Interpolation Aoutines Speed Resuils. .

Typical

3D Interpolation

In the two dimensional application, the variation
between the two versions was greater but still
fairly insigrificant. For this application, the Ada
version typically required 13 percent more time
than the C version. This additional time in the
Ada version is due to the fact that it passes the
entire two dimensional array to a local ome
dimensional routine. It must then maintain the
two dimensional indices to determine the required
row from the data table. The C version uses
atray slicing to strip off a one dimensional slice
and then passes the slice to the one dimensional
routine, thus saving time and space.

For the three dimensional application, the Ada
implementation required substantially more time
than the C version. Again, this is a direct result
of the difference between the Ada and C metheds
of passing array slices. The three dimensional
routine used intemal routines to handle the two
and one dimensional interpolations it required.

209

The large difference in execution speed in the
three dimensional case requires further discus-
sion. Since Ada does not provide an extensive

array slicing capability, the three dimensional .

interpolation routine could not simply call the

two dimensional routine and pass it a slice frohi

the three dimensional data array. The Ada inter-
polation routine used of unconstrained arrays
since the size of the data array was. variable.
_8Several possible solutions to this problem were
studied. The injtial intuitive solution was to just
declare a one dimensional unconstrained array,
then declare an unconstrained of that array and so
forth. The problem with this approach was that
once an unconstrained array is declared it must
be constrained in the declaration of -the next
array. Another possible solution was to declare a
three dimensional array with the dimensions
declared as large constants. Then an index has to
be kept as to the real number of data points or
the array has to be padded with zeros. This, in

fact, was the method used the method used in the
C version. A brute force solution was to use
representation specifications to fix the memory
locations internal to the three dimensional routine.
Then, through the wuse of the Ada
Unchecked_Conversion fonction, . create the
desired slices. Based on primary design criteria
of maintainability, readability, and portability
these approaches were not considered effective.
Thus although the solution employed is slower, it
is considered a -better software engineering
approach in the long run,

 The following inforrbation represents the relative
memory sizes of the interpolation routines tested.
This size consists of two numbers, the total
object module size and the size of the actual exe-
cutable routines excluding space for data. The
compiled C routines had a total size of 1764
bytes. The actual executable code required 1466
bytes which disassembled into 367 lines of
assembly language instructions. The compiled
Ada routines had a total size of 75916 bytes.
The actual executable code required 3538 bytes,
which disassembled into 970 lines of assembly
language instructions. The obvious size
difference in the total object modules represents
the unsuppressible overhead routines which Ada
automatically provides any routine to control pro-
gram errors. ‘The difference in the actual non-
error program paths (assembly instructions) may
seem to be significant, however, recall that the

Ada version required the duplication of routines

in the two and three dimensional case.- The
results of the interpolation module sizes are sum-
marized in Table 3. _

Object Module (. Executable | Assembly
Size Code(*} Instrucrions |
C Version . 1764 bytes 1466 bytes 367
Ada Version 75916 bvies

5538 bytes 970
(*) Excluding data space : :

Table 3. Interpolation Routines Module Size Results.

Serial YO Driver

The following information represents the relative
execution speeds for the serial driver routines for
a total of 1000 writes. This application involved
communication with a serial device, a display ter-
minal, according. to the following specification.
The communication process.included the channel

initialization, a transmission of 29 data bytes, and

the channel shutdown. The channel’s transmis-
sion rate was 9600 BAUD (bits per second), util-
izing 1 stop bit, 8 data bits, and no parity.

210

For the serial driver application, the Ada imple-
mentation required 30.93 seconds, or approxi--
mately 31 milliseconds per data transmission.
The C implementation requiréd 30.316 seconds,
or approximately 30 milliseconds per data
transmission. These results are shown in Figure
6. Although these execution speeds are extremely
close, this could be a result of the hardware limi-
tations of the serial port or the BAUD rate rather
than differences in software, If this is the case, it
is interesting to note, that the Ada does not
appear to limit the hardware significantly more
than the C.

33_
© 82
30_
28 -
26
24
22 ~

20216

Seconds Per 1000 Writes

Ada c

Figure 6. Seérial Driver Routines Speed Resulis.

The following information represents the relative
memory sizes of the serial driver routines. These
sizes consists of the same two numbers as before,
object module size and the size of the actual rou-
tines excluding space for data. The results are
shown in Table 4. The compiled C routines had
a total size of 4742 bytes. The actual executable
code required 2174 bytes which disassembled
into 560 lines of assembly language instructions.
The compiled Ada routine had a total size of
62835 bytes. The actual executable code required
2330 bytes, which disassernbled into 554 lines of
assembly language instructions. The obvious size
difference in the total object module represents
the Ada overhead discussed previously. Again,
notice that the differences in the actual non-error
programn paths is insignificant. '

i
3
|
5

R o

mgy'sT s

RVEA Y.

1L

E
E
4
{

L a0

Object Module | Executable | Assembly
Size Code(®) Instmetions
C Version 4742 bytes 2174 bytes 560 . _
Ada Version 62835 bytes | 2380 bytes | 354

(*) Excluding data space

Table 4. Serial Driver Routines Module Size Results.

In general, the results from both test cases show
that the use.of Ada does not significantly reduce
the speed efficiency of the application. The prob-
lems with array slicing in Ada are specific to the
application and the design approach. The greatest
drawback in the use of Ada is probably the large
amount of memory required for overhead. This
drawback could be a concem for applications
with very-limited memory.

GENERAL OBSERVATIONS

It should be noted that the routines in question -

were not designed with a complete emphasis on
efficiency. The models were considered to be
-designed and coded in a manner consistent with
good practices for the respective langnage.
Software ‘models in Ada and in C can be
designed and coded similarly if not to look
exactly alike. However, this would not produce
representative code. The code yielded informa-
tion for several other general points. Besides
efficiency, the models were evaluated in terms of
-structure, language feature usage, maintainability,
and portability. Ada is a very structured
language. Ii is meant to encourage design:and
penalize poor structere. C is meant to allow
quick and efficient code. C prides itself on its
non-structure and its ability to "hack” a working
design without regard to the quality of the layout.
That is not to say that C code is not designed,
but rather that it does not require or encourage
sound software engineering. The main purpose
of this paper was not to evaluate the software
models across the entire spectrum of software
engineering principles. Thus, the general obser-
vations are just that, general.

Structure and Language Usage

Several general observations were made regarding
each of the languages used in this analysis.
These observations had a direct effect on the
methods and structures used. The most prom-
inent ones are listed here. -

211

[1] C does not allow . multi-dimensional vari-
able length arrays. Variable arrays are
used in the Ada version of the interpola-
tion routines to_ reduce the number of
different sized array types needed. The C
version required a different array for every
case. Another possible method was fo

declare an array type based on some max- -

imum size.

[2] C does not support multi-variable returns
from procedures, This is due to the fact
that everything in C is a function. The
solution was to declare-a structure which
contained a wvariable location for the
desired return wvalues. This approach
creates hidden data. The Ada version was
more direct. The desired ontput values are
listed in the procedure parameter list.

[3] The use of some. (. language constructs
make the code less readable, for example,
corditional assignment statements, exten-
sive use of pointers "*’, overloading sym- -
bels for various types, mixed type compu-
tations, and computed assignments in "if-
then” -statements. Such constructs are fre-
quently used by experienced C program-
mers, however, - usually only the person
who wrote the code can easily understand
what they do.

[4] Ada does not support the efficient use of

array . sliciig.” Nor does Ada supporf”

access types to malti-dimensional uncon-
strained arrays. C’s ability to use pointers
made array slicing simpler,

[5] Ada types packages were used to collect
all commonly used iypes in the code.
This feature can. be very effective on large
programs with many hundreds of types. C
does provide a method of packaging
through header files. However these are
not always used efficiently.

[6] Both languages can be written to support
readable and understandable code. These
benefits .can be enforced through coding

standards. . However, programmers have

used mnemonic names for so long that
they think mnémonics must be used for
good code. This was the case with the
serial driver. The C version used many
mnemonics while the Ada version did not.
. The differences in readability were very

obvious. -

171 Ada packages were also used to collect
like funciions and help provide leveling
and abstraction, The C routines seemed to
mix the functions randomly or according
to cailing sequence.

{8] The Ada routines could have used
representation - specifications and
unchecked conversion to force a form of
array slicing. This was considered more
complex and generally “ugly’ software
engineering for Ada and thus was not
employeed.

Maintainability

The true cost of a simulation is only realized dur-
ing the full life cycle of the software. The initial
cost of development, including hardware, is
minor when compared to the cost of maintaining
the software. Maintainability is measured by the
ease of affecting a controlled change to existing

software. For these test cases, the issue of main-~

tainability was significant for the developers of
the new models. Even though the original code
was less than a year old, the C serial driver had
inadequate documentation and the code was
almost -impossible to interpret. As a result,
requirements analysis for the new design of the
corresponding Ada model was delayed. C code
s best suited for software that is not meant to be
maintained. The development effort of the Ada
model was not significantly shortened by the use
of the C routines. It should be made clear that
the C code for the serial driver was not poorly
written. It was a good working set of code that
satisfied the requirements. Bui, the C did not
encourage the design of long term maintainable
code: A different story was encountered with the
interpolation routines. The Ada routines pro-
vided an understandable set of requirements. The
C interpolation routines, as a consequence, were
simply a matter of programmer speed to develop.

Portability

Portability is the . ability to transport . software
between computers, people, projects, and com- -
panies. Some sources refer to only the first qual-
ity as portability, and label the last three aspects
"transportability’. In the context of these tests, the
edge in portability must be given to Ada. Ada is
a standardized language, which .in itself provides
a large portion of portability that C cannét. Ada
is the same from machine to machine and com-
piler to compiler by design. This is a problem in

212

C, where the language might be 'normal’ C,
ANSI C, or even object-oriented C++. C.com-

_pilers are inherently optimized for the machine on

which they is hosted. This is not a bad trait for
certain software products that are developed for
use only on a specific machine. But in the simu-
lation and training arena, software must be able
to be adapted as the program life cycle evolves.
This means that it must be able to withstand
software upgrades as well as hardware upgrades.
C traditionally has not directly addressed these
_concems.

CONCLUSIONS _
BOTH versions of the compared routines per-
formed their required task. There were no under-
lying problems with language choice = that
degraded the operation of the routines. The C
routines were on the average more efficient. This
is not that surprising since C was designed with
the Motorola 68000 family of processors in mind,
which was the target processor in this analysis.
The interesting observation is that the C routines
were not significanily more efficient, except in the
case of the three dimensional interpolation rou-
tines. The Ada routines provided some side
benefits along the line of maintainability, portabil-
ity, and readability. This is to be expected since
this was a design goal of the language and a
design criteria with Boeing Ada development.

To the question of whether or not Ada needs C,
the answer must be 'not really’. The C code was
more efficient, but not so much as to warrant the
problems of requesting a language waiver, having
proficient. programmers (developers and main-
tainers) in two languages, and the added cost of
two compilers and development tools. In an
environment where Ada is not a mandate, then
there are surely applications that would benefit
from the usage of C. But if Ada is required, as it
now is with all DOD programs, then these results
show that the program can be nnplemented in:
that Jangnage alone and will not require a "more
efficient” language (C or Assembly Language) in
order to meet requirements. :

The gap in efficiency is shrinking more and more
as the Ada market and programming capability
matures. Ada is still relatively new in terms of _
comparison to FORTRAN or even C. An exam-
ple of new innovation has recently - been
developed by Tartan, Inc. Tartan has developed

“an Ada compiler optimized for the TI 320C30

digital signal processor. Although this is a spe-
cialized processor, Tartan was able -to
significantly reduce the size and: execution speed

of the object code compared to the C version for
this processor. The results of this effort produced

Ada code that was anywhere from 22% to 336% -

faster and with a 20% reduction in module
memory size. Simdilar work to improve the
efficiency of Ada is being done with the Intel
80960 processor which promises to improve Ada
execution rates even more. These trends will
help move Ada away from the stereotype of an
inefficient high level software langunage.

REFERENCES

(1) G. Booch, Software -Engineering with Ada,
Second Edition, Benjamin/Cummings, - Memnlo
Park, California, 1987, p. 31.

(2} Ann 8. Eustice, "Tracking the Practical at
TRI-Ada", Ada Information = Clearinghouse
Newsletter, Vol. IX, No. 1, March 1991, p. 12-
16.

(3) Brian W. Kennighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Englewood Cliffs, New Jersey, Prentice Hall,
1988.

(4) Daniel A. Syiek and Daniel Burton, "Optimi-
zation Delivers Fast, Compact Ada Code for the
TI 320C30 Digitai Signal Processor”, Tartan
Laboratories, Inc., Monroe Pennsylvania.

(3) Tartan, Inc., "Tartan Ada Qutperforms Latest -

C Compiler on the TI 320C30 DSP", (News
Release)}, December 5, 1990,

(6) VERDIX Ada Development System VADS-
Works, Version 5.5, for Sun-3 UNIX to Motorola
68000 family, Reference Manual, Verdix Cotp.,
1988.

ABOUT THE AUTHORS

- Marc L. Howell is a software systems engineer

“with Boeing . Defense and Space Group in the
Missiles and Space Division. He has been
responsible for software design and analysis on
the Space Station program and several other Boe-

- ing projects. He is currently working on research

and development studies for improving existing
software implementations by using Ada scftware
development methodologies and techniques. Mr.
Howell has a Bachelor of Science degree in .
Electrical Engineering from the University of

Alabama in Huntsville. .

Lynn D. Stuckey, Jr. is a software systenis
engineer with Boeing Defense and Space Group -
in the Missiles and Space Division. He has been

responsible for. software design, code, test, and

integration on several Boeing simulation projects
including the Ada Simulator Validation Program
and the Modular Simulator System. He is
currently involved in research and development
activities dealing with software development for
~weapon and threat simulators. Mr. Stuckey holds
a Bachelor of Science degree in Electrical
Engineering from the University of Alabama in
Huntsville.

VxWorks is a trademark of Wind River Systems, Inc. o .

VERDIX and VADS e registered trademarks of VERDIX Corpdration,

UNIX is a trademark of Bell Laborataries. . B

Sun, Sun-3/260, and SunOS are registered trademarks of
Sun Microsystems, Inc.

