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ABSTRACT

System simulation is the definition, control, and implementation of algorithinic models

that replicate a system’s real world behavior. Developing a useful simulation model

requires a clear abstraction of the system. Software engineering suppdrts abstraction

by imposing a consistent structure on_objects. One structural feature introduced by

recent programming languages is strong [data)] typing, aiming at two benefits:
clarification of the design and enhancement of model verification. Strong typing -
clarifies the design by controlling the characteristics of an object, and enhances model
verification by revealing errors early in the design cycle. Designers have traditionally
viewed strong typing only as over-restricting the mixture of data units (e.g., meter
versus degrees), an experience which has left a bad taste in many mouths. However,
strong typing is a multifaceted tool which can apply to a broad range of software
design problems. Simulation model designers can use Ada types to define, control, and
implement models yielding:

(1) requirements consistency and traceability,
(2) interface definition/control,
(3) maintfainability,
- (4) reusability, and
(5) portability.

Because designers imagine and implement complex systems in parallel, projects can
suffer from the fracturing effect of multiple visions of the final product. Strong typing
can unify the system design, however, strong typing is ofly a tool -- the availability of
which does not ensure its correct application. The challenge is to successfully imple-
ment it. This paper examines the successful use of Ada types for the design of simula-
tion models, and points out the pitfalls of extreme approaches such as no-typing and
over-typing. It presents Ada iypes as a scheme for enforcing a single system structure
and as a foundation for generic simulation models. Finally, the paper discusses how
types impact the software’s lifecycle.

BACKGROUND

It comes as no surprise that designers implement
the majority of a training device’s simulation (as
opposed to emulation) in sofiware. Software is
flexible, adaptable, and can simulate systems
which have never existed. On the other hand,
software has traditionally been a source of intro-
duced errors and frustration  for the system
designers. The Iincreased use of software for
training simulation has pushed the state of the ast
in systems simulation.

‘System  simnlation is  the discipline which
attempts to construct useful models of real-world

systems. - The term "model” evokes images of

stick and clay figures, or perhaps the plastic air-

plane models that children glue together; and this

is precisely what we mean. A model is a
representation of the system of interest, instan-

tiated in a different medium and with insignificant

differencés from the "real” system. We construct
the model to study some relevant aspect of the

system such as ity appearance, size, speed, range,

mass, etc. Obviously, the model must be cheaper

and easier to build than the real system, or we

would use the real thing. The model should give

us the ability to try experiments we canfdt try
with the real system, limiting our risk and
expense.



It is a large intuitive leap from plastic toys to a
multi-million line (and no doubt, multi-million
dollar) software model of a weapon system.
Nevertheless, the principles involved are the
same. The primary difference is that the "map”
from the model to the real system is substaniially
more esoteric than the map from a toy car to the
family car. Building a software model creates a
tension between the real system’s physics and the

simulation software’s syniax; both of which exist )

only as images in the developer’s mind. Model-
ing is a very creative act. The process by which

a simulation maps an aircraft in flight to a“”

software model, and then to ones and zeroes, has
traditionally been the domain of arcane special-
ists. Particularly intimidating to -the eventual
user, this process generally requires three groups
- of "experts” (e.g., software, aerodynamic, and
systems engineers) who do not even understand
each other!  This is not the kind of well-defined,
disciplined process that inspires confidence in the
resulting product.

The clarity of the model’s map to the real system
is the basic facter for determining the software’s
understandability, and in effect our confidence in
the model. This "map" is formally called the
simulation’s system abstraction. Our confidence
in the simulation is driven by how well we grasp
and comprehend this abstraction. Therefore, the
critical issues in system simulation development
involve developing abstractions. How do we
create an abstraction? How can we control the
abstraction while the code is evolving? How can
we build an abstraction that supports shifting
requirements? How can we build an abstraction
that communicates well with other parts of our
team? Successful answers to these questions will
result in production of high quality simulation
models.

Fortuitously, the software engineering discipline,
aimed at defining and refining the software pro-
¢ess, has risen to prominence as a system simula-
tion tool. In fact, one of the primary concems of
software engineering is ‘applying abstraction to
software projects. One important development of

the software engineering effort is the Ada pro- -

gramming language. The Department of Defense
sponsored the development of -Ada specifically to
address the goals of software enginecering (ie.,
modifiability, efficiency, understandability, and
reliability). They intended for Ada to reach these
goals by emploving software engineering tech-
nigues such as abstraction, information hiding,
modunlarity, uniformity, completeness, - and
confirmability. A brief investigation  of the
Janguage will reveal that the rich "typing" feature

is a primary means by which the language .

designers intended to include these qualities. Of
course, it is by no means clear that they suc-
ceeded, or that the Ada types by themselves are
sufficient for high quality system simulation. The
following sections present a detailed discussion of

modeling techniques as implemented in Ada via _

types. We begin with a brief infroduction to Ada

types. We follow with a discussion of software -

modeling. Finally, we present a look at unple-
menting modeling via Ada types.

ADA TYPING

Although this is not a tutorial on syntax or
semantics of Ada types, a brief digression into
the nature of typing in the Ada language is in

order. Almost every language (including assem- -

bly languages) provides for some kind of data
typing. Typing provides the programmer with

the capability of implicitly classifying data. All
‘data is represented in the computer by an under-

lying set of bits, but the type of the data provides
an implicit definition for intérpreting the informa-
tion. For example, the bit pattern "01000001"
could be interpreted as the integer 65 or the

~ ASCII character "A". FORTRAN 77 supports a
fairly typical set of types including integer, real,

logical, complex, and character, along with arrays
of any of these types. The programmer "declares”
that he desires a variable of some type, and gen-

erally can specify the amount of memory allo- .

cated to that variable (bit, byte, word, etc).

Ada provides for the fundamental types men-
tioned above, as well as extending the concept.
Although other languages introduced many of
these concepts, Ada collected all of them and
expanded their power in a language intended for
common use. Most of the additional type
features provide the capability to extend the
inherent types available in the language. The

-exception is that Ada provides two real types,

fixed point and floating point. Figure 1 illustrates
the structure of Ada types.

The extension. to typmg with Ada provxdes

powerful and expressive .capabilities to. the

modeler. Ada controls access to data, even while

it 'is being used, through of the “private" (and

limited private) type extension. The private type’
permits procedures to perform limited operations
on a data structure without gaining read/write
access to the data. Ada also extends the concept
of typing to intertask communication. The task
type permits a Ada task to create and communi-
cate with executing entities in the computer sys-
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tem. Ada includes an access type which gives
the programmer direct access to memory loca-
tions. Ada provides a subtle extension to the
array type providing for unconstrained arrays,

permitting the programmer to design an operation -

on an array of unknown length. The extension
for record types permits the free association of
data from mixed sources and types into a single
"envelope™ for manipulation. Variant records
provide the capability to build a single record
structure which can be tailored at declaration to
support different, though similar entities (e.g.; air-
planes and trucks). The most pervasive extension
beyond the fundamental types is the “enumera-
tion” type. In an enumeration type, the program-
mer can specify the exact values permitted a vari-
able of the new type. Figure 2 illustrates a new
enumeration type declaration and declaration of
two variables of that type.

type Colors is-(Red, Yellow, Blue, Black, Grey);

Sky_Tone : Colots;
Sun_Tone : Colors range Hed..Yellow;

Figure 2

Ada provides a set of operations for types that
improve the programmer’s ability to manipulate
the data. Ada provides derived types to distin-
guish between data with similar appearance
which should not mix (i.e., distance and tempera-
ture).. Ada provides subtypes to further constrain
an existing type (i.e., summer months from
months in the year) while permitting ready
conversion. The most powerful typing feature
Ada provides is the rich set of type attributes.
The language defines attributes over every
discrete type such as *first, ’last, "succ, and ’pred
which provide visibility into the type without
coding the explicit value. Further, the special
image and ‘value attributes = automatically
translate between discrete type values and text

Fixed
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repregentations. Ada provides every type with
attributes such as ’address, ’size, ’constrained,
and so forth. One might worry about converting
between all these types, but Ada provides for
casting between scalar types for conversion as
well as unchecked conversion for any type.
Finally, the programmer can specify the bit pat--
tern for any type’s representation, which provides
access to the raw machine.

MODELING

A simulation model is a system, that is, a set of
interrelated entities working together to achieve a
common purpose. Obviously, the purpose of a
simulation model is to mimic the behavior of the
real system within a set of characteristics. These .
significant characteristics are the “state” variables
of the simulation, because their value at any
given point describes the state or condition of the

- 8ystemn -- in s0 far as the simulation user cares.

The decomposition methodology employed for
the model defines the set of model entities. In a
classic functional decomposition, these are the
functions of the real system: flight dynamics,
weapons, electronic warfare, etc. In an object-
oriented approach, the entities are the major
object classes of the real system: terrain, culture,
platforms, projectiles, etc. The capabilities of the
user must drive the selection of methodologies.
In our experience, we have found that most users
relate well to an entity breakdown by objects,
because they understand the notion of "laying my
hand on it". Notice that this is really the issue of
"how clear is your map" revisited.

Simulation software defines the interrelationships
between entities by the data stmctures used to
communicate between them. There are three gen-
eral approaches to this problem: (1) common glo-
bal data, (2) parameter lists, and (3) message
passing. To build well-accepted simulations, we



must levy constraints on these data structures.
There are three desirable constraints for the data
tructures which define the interrelation between
entities: (1) access, (2) quantitative, and (3) quali-
tative. The model must prevent access to data by
- entities which should not have it (e.g. threats
should not know the "real” position of the target).
The model must control the allowable ranges for
data values {e.g., prevent the switch from exceed-
ing the number of positions). Finally, the model
must restrict time-oriented changes in the data
(e.g., platforms should progress smoothly through
space),

Software System Engineering

If the simulation model is a system, then it has a
definite life cycle, with full development, produc-
tion, and operation phases. Figure 3 illustrates
the lifecycle for any system. The central motiva-
tion for adopting a systems engineering approach
to design is that almost all designs over-
- emphasize the development phase at the expense
of production and operation. This is just as true
of software designs. Model designs must support
trainer integration (production). We need to
develop models that support changes concurrently
- with the real system (operation),

sume  real-time computatiorial resources; but
implicit defensive practices are largely a function
of compile time checks. We can go even further
by removing the implicit run-time checks after
the code is throughly tested, by setting a single
compiler option.

Ada types provide support for specific modeling
problems. In most languages, we model discrete
states by assigning integers for each state; 1 for
orbit, 2 for flyout, 3 for rendezvous, 4 for refuel-
ing, etc. The corresponding Ada type would be
"type Tanker_State is (Orbit, Flyout, Rendezvous,
Refueling);". Ada allows us to make this map
explicit and to restrict the variables that contain
the state to the appropriate values. Furthermore,
Ada provides a way (via type modifiers) to expli-
citly state the range, interval size, and digits of
precision for types, and variables within a type.
This has the potential to eliminate, with a single
declaration, thousands of "IF" statements scat-
tered throughout the simulation which intend to

“protect data, each coded slightly differently.

Through subtypes.and derived types, Ada allows
the programmer to directly model subtle
differences between data. Via unconstrained
types Ada allows the programmer to delay the

“decision of the final ‘data size until it is available -
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How do Ada types support model development?
The answer is that they shift the defensive pro-
gramming burden from the error-prone program-
mer to the compiler. The compiler has the
advantage of repeatability -- it yields the same
answer every time., Smart programmers code to
protect their interests; checking for list overflows,
illegal values, nonsense equations. But in Ada,
this explicit -defensive programming is shifted
from the back of the programmer to #mplicit
defensive programuming in types.enforced by the
compiler. Real-time applications gain an addi-
tional benefit. Explicit defensive practices con-
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-- if it ever is. Again, this eliminates the need
for explicit defensive programming i7 thousands
of dispersed locations, each coded ever so
slightly different. Finally, access types provide
for data structures which dynamically grow and
shrink according to need during the simulation,
This stops the practice of always claiming the
maximum memory and maintaining a pointer to
the "last" used spot.

How do Ada types support model production?
Software production is mostly an integration

“effort of code developed by widely dispersed -




groups. Ada supports integration in development
through types. Correctly designed Ada projects
use a tightly coupled and conirolled set of types
packages. These “project type" packages define
the initial baseline for the software. Every compi-

lation must use the baseline set of types. Every .

time the developer recompiles his code, he must
resolve his changes against the baseline. Essen-
tially, these packages provide a virtual representa-
tion for:the rest of the software.

Of course, the specific modeling benefits derived
in model development spill over to help the rest
of the software life cycle. The major production
advantage is that the types have become an
extension to Ada, precisely tailored to support the
current ‘project.. Much of the exhaustive hand
checking of data structures fs replaced by com-
pleting a successful compilation. Our experience
is that integration times for Ada systems have
been sliced by an order of magnitude over com-
parable FORTRAN projects. -

How do Ada types support model operation?

Operation in the context of software systems =

involve the discovery of delivered bugs and capa-
bility upgrades. As mentioned, the user can turn

type checking on or off to support problem inves-.
tigation and solution testing, “Our analysis has —~

shown that more than 80% of Ada types in actual
use are not fundamental types (real, integer, etc.).
In fact most models depend heavily on the use of
enumeration types. Since the algorithms for
manipulation of these data structures need not
depend on explicit knowledge of the underlying
types, many -capability changes simply involve
changing the options in an enumeration list, and
recompiling.

Design Clarity

The most difficult contrast to understand between
hardware and software engineering is that for
software, the design "is" the product. The impli-
cation of this is that the design’s clarity is much
more a driver of the product’s quality than is the
case for hardware. Software engineers sometimes
state this idea as "the software is read many more

times than it is written".

Given this, we can begin to see how important
strong typing can be to improving programmer
productivity.,  Which design is clearer, a set of
variables all of type "REAL", or the same set
with types "Temperature_In_Centigrade”,
"Alrspeed_In_Knots", and "Power_In_Watts"?
The multiple type set is clearer because it
presents a higher fidelity map from the real sys-
tem to the simulation; it reduces the mental bur-
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den to understand the design. Obviously, it is
easier for a new programmer to. understand the
high fidelity map, and thereby make real contri--
butions to the effort. Likewise, the high fidelity
map is easier for the user to understand, increas-
ing the: chance that he will believe in the product.

Model Verification

Model verification is concertied with the effort to
establish that the software is operational. The
most simplistic verification is compiling the code.
Clearly, the effectiveness of this verification is
determined by the throughness of the compiler.
The typical compilation only investigates the code
for syntax errors. On the other hand, types
empower the Ada -compiler to investigate the
semantics of the code. The Ada compiler will
inspect every procedure call and every equation

- for types correlation. Perhaps the best part is that

the programmer determines the degree of detail in_
this investigation by his choice: of types (fe.,
derived versus subtypes).

A number of more involved techniques are avail-
able for verification: modular design, peer review,
traces, sample runs, animation, and data analysis.
Private and generic types support a maodular
design by giving the code only the access needed
to do the job. Ada types support peer Teviews
because the code is more expressive of the model
-- the names and options for types generally are
defined by the model’s requirements document.
The remaining techniques are supported by the
software development environment,

Model Validity

Model validation is concerned with the effort to

establish that the model accurately represents the

real system. The critical validation criteria is that-
decisions based on the simnlation should be the
same as decisions based on the real system (if
available). There is no such thing as an abso-

lutely walid model, therefore we can validate it

only for a given set of conditions. For example,

a cockpit procedures trainer is not appropriate for

combat training. ) : ]

Given the expressive power of types, we can
develop a model with a high face validity. The
names of types, the options within types, the data
ranges, and so forth come verbatim out of the
model requirements document. - The strongsst
advantage is that the entire data requirement is
captured in a single types declaration. The
reviewer Is not forced to track down every use of
a piece of data to see that the local code that



enforces the constraints on the:information. This
has the helpful effect of reducing the medel’s
complexity for the validation process.

Model Credibility

A credible model is one accepted and used by the
customer. Credibility is often overlooked by the
developer -- he simply assumes the user will love
it! On the other hand, users will occasionally
take a non-verified -and non-validated- model as
credible. Developers (who plan to stay in busi-
ness) must sirive to make their models credible.
Models which conform to expert opinions, obser-
vaticns, and existing theory about the system tend
to be highly credible. However, no one is going
to take your word for it that your model
possesses these qualities. The user desires to see
for himself, and see it in. your code.  Once
again, the expressive power of Ada types directly
impacts the ability of non-experts to accept the
model, increasing the model’s credibility, The
very syntax of types contribuie to the model’s
credibility because their language and phrasing
can exactly match the real system’s self-
description. Finally, the model with Ada types
gains credibility from the discovery of many
errors at compilation, meaning that fewer errors
survive to be seen by the user.

IMPLEMENTATION

Implementation is the translation of a model from

concept to reality. Types are the primary vehicle

- for implementing the model in Ada. Careful use

of types results in software with desirable quali-
ties such as requirements traceability, interface
control, maintainability, reusability, and portabil-

ity. We know these are desirable qualities .

because they result from applying the goals and
techniques of software engineering. Ada types
can be the tools we use to achieve the goals of
software engineering.

Requirements Consistency and Traceability

One of the most crucial parts of model design is
the ability .to show consistent and traceable
" requirements. The only way to make the assess-
ment of whether the simulation is a sofficient
model is to be able to view and test the design
requirements in’ the simulation itself.. In the past,
requirements were often overlooked or lost in the
heat of the code and integration phases. Until the
requirements become an integral part of the code,
the implementation will diverge from the require-
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ments, This divergence has historically been a
problem because the resulting design fdils to

. achieve its common goal: a systern which fulfills

the set of design requirements. Simulations that
fulfill their entire design requirements are rare
and simulations that have any direct traceability
to these requirements in the code are rarer still.

And lest we forget, traditional after-the-fact docu-

mentation is not requirements traceability. Tradi-
tional documentation is only dreams of what
should have been in the code. True documenta-
tion is based exclusively on the code (not the
comments). True documentation reveals the
actual requirements implemented in the code.

Design requirements are 4 broad expression of

what should and should not be done in a sysiem.
Types are the vehicle to express these require-
ments in code. . The single greatest advantage of
enforcing requirements through types is that we
create compilable requirements. This gives us an
objective test as to whether the design has imple-
mented the requirements. This forces a system
mindset from the beginning of the program.
Compilable requirements require extended effort

in analysis and design. But, they reduce prob-. -
lems and inefficiencies later in the program. By

using types for requirements consistency and tra-
ceability, we are able to promote uniformity and
confirmability in the simulation. Types can be a
readable description of the system. Types can
document the source of driving requirements.
Types can also restrict object interaction in a way
that is reflective of the real world. Types can
police the simulation and training constraints. A

types package can function as a central location

for all system unique features.

Ada provides a number of typing features to -

encapsulate the requirements. analysis in compil-
able code of which the most important is the

~ enumeration type. - Enumeration types provide the -

ability to really express requirements- in code
instead of hiding them with "magic numbers”.
Other types that are of use are (1) subtypes to
restrict ranges without restricting interaction, (2)
derived types to restrict interaction, (3) private
types to restrict visibility, and (4) generic types to
share algorithms among different instances of
objects. The effect of all of this is to provide
automatic universal data constraints, precisely as
required, and with a large degree of visibility.-

In- general, requirements arise from three sources: -

intrinsic requiréments of the implementaiion,

design criteéria, and systern analysis. - Require-

ments intrinsic to the implementation are captured
by any language -- they are only required because



of it! The requirements traceability we have in
mind addresses those arising from the design cri-
teria and system analysis. The expressive power
of Ada types provides a way to capture these
requirements directly in the code in the natural
language for the problem. A code example of the
use of enumeration types fo express a require-
ment rising from design criteria is found in Fig-
ure 4.

-- DOT Contract FA-75WA-3650
-- Programmable Test on Wind Shear

type FAA_Approved Wind_Shear_Profiles is
{Neutral_Logarithmic, Frontal 2_lLogan,
Thunderstorm_2_Philadelphia, Thunderstrom_3,
Thunderstorm_4, Thunderstorm_§,
Thunderstorm_6_JFK, Frontal 3,
Thunderstorm_FAA Mathematical);

Figure 4

What about a design reguirement arising from
system analysis? Figure 5 shows a drawing from
a system specification and the resuliing type
declaration. The requirement states the need to
determine the detonation of a weapon on the air-
craft classified by one of fificen zones on the
body. This is to alert the affected systems of the
need to consider the possibility of damage to

MAIN ROTOR .

their systems. The illustrated type implements
this directly. A separate requirement to state the
severity of the damage would be implemented by
wrapping this type inte a record with an addi-
tional field for severity.

Interface Definition/Control

- In the real world, a system’s interfaces arg of

paramount importance. How the subsystems
plug, wire, bolt, or connect together is most of
the design problem. With this in mind, it is
astonishing that system simulation has done such
a poor job of modeling interfacing. Part of the
problemn is that the simulation’s decomposition
has not represented the real world system.
Designs based on functional decompesition do
not lend themselves to comparison with the real
world interfaces. The increasing prominence of
an object-orieniation is bringing interface model-
ing into focus. Another problem with interfacing
has been the water bucket approach; throw all the.

" interfaces into a bucket which anyone can access.

This common global data approach has been a
large source of error in most simulations that use:
them. For a simulation to become functional
without extensive wasted effort, the interface

within the simulation must be both defined and _

controlled. The simulation software itself must
directly support tree interface definition/control.

TAIL ROTOR

STARBOARD

PORT
FUSELAGE TAIL
{LANDING GEAR SHOWN RETRACTED)
type Damage_Location is (Main_Rotor, Tail Rotor, Landing_Gear,

Low_Nose Port,

Low_Tail_Port, Low_Tail_Starboeard,

Low_Nose_Starboard, 7
Low _Fuselage Port, Low_Fuselage Starboard, High Fuselage Port, High Fuselage_Starboard,
High_Tail_Port,

High_Nose_Porf, -

High_Nose_Star_tjE:a_rd,

High_Tail_Starboard);

Figure 5 _
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Ada types provide for interface definition and
control via compilable interfaces. This. directly
parallels the real world practice of interface
definition. - Any type can be an -interface, but
records are especially useful. Record types are a
collection of basic types, directly modeling the
interrelationship of diverse data concerned with a
commeon subject. This collection captures in code
the interface between system components. These
interface types form the parameter lists of subpro-
gram specifications. When compiled,  these
specifications form an interface comtract betweén
the subprogram and its user. The interface types
result. from a dataflow analysis and become the
compilable program design language (PDL). Ada

types provide direct support for designing the

interface model.

Ancther. concept in interface definition/control is
the understandability of the interface.. When we
look at an electrical plug, we understand the
types of its interfaces, i.e., neutral, ground, and
hot. We also understand to what it would inter-
face. The same must be true of simulation
software.. Via Ada types, we can describe the
interface, its units, its purpose, or even its origin.
Notice that use of interface types in software sup-
ports - the direct production of the interface
definition ~ document (IDD). The IDD derives
from the code -- not some extraneous piece of
documentation. An example of a compilable
interface is shown in Figure 6.

type Moving_Model_State is record
Posltion . : Gaming_Area_Position.Compaonents;
Orientation : Angular_Position_Components;

Velocity  : Gaming_Area_Velocity Companents;
Rotatlon : Angular_Velocity_ COmponents; -
-end record;

‘procedure Update_Position {
Model : in out Moving_Maodel_State});

Figure &

Maintainability

Maintainability is the degree of difficalty in con-

tinuing to use the software in the face of chang- -

ing equipment, requirements, and personnel over
the life of the project. We desire maintainability
because the operational cost of software can be
significantly greater than the development cost.

If a simulation is not maintainable, the cost of”
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changes will be excessive throughout its life.
Notice that typically just twenty percent of the
software’s lifecycle cost is expended in the
development phase. Further, we desire maintai-
nability because the design engineers change over
the lifecycle of a simulation. New - design
engineers require maintainable code to be produc-
tive. Unmaintainable software introduces a sub-
stantial leaming curve resuliing from the design
decisions and requirements lost at the time of

departure of the original designer. Finally, we

desire maintainable code to improve the software
documentation, which determines how well our
design is understood. We can not depend on
traditional documentation; in most cases it does
not reflect the actual code or decisions behind the
code. Maintainable code is a step toward self-

. documenting code.

How can we build maintainability ‘intdo our
design? There are four steps to implementing a
design change:

1. understand all explicit and 1mp11c1t design

decisions,

2. design around present structure,

3. prove no error propagation, and

4, validate new feature. )
Ada types directly support each step. We can
make it easy to visualize a current design by
expressing the design through Ada’s rich variety
of types. Autematic exception checking can pro-

tect the original design from introduced errors.

And, types obviously provide the same validation
support to new design that they did to the origi-
nal design. A good example is the enumeration
type discussed earlier. If we add a new coloer, its

- location and its effect on the rest of the system is
~evident. The visibility into the  implementation

provided by Ada types is the basis for maintaina-
bility. A second powerful application of types
for maintainability is variant records. With vari-

ant records, we can define a new entity in the

simulation as similar to, or an extension of an.
existing entity. Obviously, the portions that the
new and existing entities share have already been

validated, which reduces the workload for the

change.

Portability

__ Portability is the ability to transport software
- between computers, pe0ple projects, -and com- -

paniss. Portable code is a goal of simulation that
is often only considered late in the lifecycle. But
early consideration of portability has a number of
advantages. - Portable code enables convenient
platform changes. Portable code increases pro-



grammer productivity because the effort is con-
centrated on modeling the system instead of
clever coding for the machine. Portable code
reduces life cycle cost. Software costs are typi-
cally significantly higher after a simulation is
fielded because of design changes (see maintaina-
bility) and equipment changes. Designs that
depend on the nuances of particular machines or
compilers or support tecls do not hold up well
over their lifespan. Also, non-portable code

reduces the competitive position of an organiza- - -

tion, which is in the position of continually
redeveloping the wheel.

Ada  significantly supports portability - simply
through its charter. Ada is a controlled, standard-
ized language. This one fact has done a lot for
portable software. Ada provides two specific
type features for portability; user defined types
and the extensive use of self-derived types.
Through user defined types, Ada allows a pro-
grammer to define his own types’ basis. This
allows an engineer io remove his dependence on
compiler - implementation. The second charac-
teristic of Ada dealing with portability is the huge
set of new types we can introduce into the
language. Enumerations, records, tasks, etc., are
just a few of the examples of different types that
we can use to model the simulation. With this
proliferation of types, a simulation is not tied to a
few machine dependent types to express its
model. This volume of possible types is an
advantage when producing portable code. The
capability to derive and define our own set of
types thus limits our risk exposure to the
machine.

However, Ada has not removed all dangers.
Different compiler vendors are allowed to imple-

ment fundamental subtypes under differerit names

and sizes. Figure 7 shows an example of the
names two different compiler vendors used for
the various integer subtypes available. Clearly,
code depending on these types would have its
meaning changed as it moved between systems

Predefined Type Name
Integer Width
Compiler A Compiler B
32 Bit Long_Integer Integer
18 Bit Integer Short_Integer
8 Bit - Short_Integer Tiny_Integer

Figure 7

and might not even compile. We can avoid this
loss of portability by defining our own fundamen-
tal types for infeger and real numbers, and using

“extensive subtyping,

Reusability

Reusability is defined simply as the ability to use
software again in new applications. Reusability
requires portability. The potential for savings and
increased profit from reusable code has provoked
many studies. The benefits of reusability are not
in question nor-do they warrant listing. But, reu-
sability is not as simple as it sounds. For exam-

ple, restricting code to a single function does not .
always result in reusable code ~-- nor is_just being
generic enough:. Reusable code possesses certain

essential attrlbutes such as definition of both pur-

pose and interface. "It must not be based on

magic numbers. A reusable design must separate

the control and the physics of a problem.

. One of the most obvious ways in which Ada sup-

‘ports reusable code in through generics. Generics
(based on types) provide the capability to develop
a single algorithm for use in a Wwide variety of _
situations. One example is a user menu, which
builds a mernu, prompts the user, and guarantees a
valid response -- one procedure for any enumera-
tion type. Enumerations by themselves increase
programmer productivity because they reduce the
understandability load (trying to remember what
the value 1 means here -- is it color or sw1tch,

position?). T

The use of attributes_is perhaps the best way Ada
types address reusability. When a simulation is -
written based on the attributes of a type, it is
driven by .requiremnents, not by parameters. The
implementation algorithms can work based on the
atiributes of types instead of an explicit value.
An example of this is aerodynamic lift parame-
ters. Given an enumeration type defining the lift
surfaces  on an aircraft, then the
"Compute_Lift_Characteristics”" algorithm can
compuie lift for each surface in the type, rather
than a local valve, If the code is to be reused,
the only change required is a modification to the
list of surfaces in the type (and the database
prescribing the characteristics of the surface).
Any part of the implementation that considers the

-control surfaces is unchanged:. See Figure 8 fora

code example.



type Control_Surfaces is
(Left Flaperon,
Left_Horizontal_Stablizer,
- Left_leading_Edge_Flap,
Left_Speedbrake,
Right_Flaperon,
Right_Leading_Edge_Flap,
Right_Speedbrake,
Rudcder,
Nosegear,
Main_Gear});

Figure 8

We can further support reusability by controlling
the strengeh of our types. Ada supports strong
(very restrictive) and weak (non-restrictive) typ-
ing. Strong typing can insulate the data structure
completely, but the misuse of sirong typing can
cause far more problems than it solves. We can
use subtyping to express the requirement without
unnecessarily - interfering with data transfer in
equations. Consider an equation for converting
indicated airspeed into true airspeed. The equa-
tion will probably involve constants, a pressure
measure, and a temperature measure. If the pres-
sure or temperature has been created as "new’
types (versus "sub"-types), Ada will not permit
direct conversion. This kind of overly strong
typing can cause the designer to commit all
manner of bad design to work around his mis-
take. Properly understood, types packages are
tailored extensions to the language. . -Anyone
needing the type should have it, and the controls
should be at the level of additions or revisions to

the types. The rule of thumb is "all the v151b111ty )

needed and no more".

Pitfalls

Ada types are not a panacea for software design.
A type based implementation still requires careful
design. There are a number of pitfalls that can
occur with mindless typing.

1, Optimizing individual parts of a system
will not result in an optimized system as
a whole. We must keep the big picture
in mind.

2. There is a tendency to misuse feafures to
define complex or unusual data stroc-
tures merely to facilitate a “clever. cod-
ing” technique. We must avoid coding
artistry but apply sound software
engineering.
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3. A haphazard use of types has a’ direct
affect on the maintainability of software.
We must avoid duplicating names or
applications.

4. The abuse of strong typing can cause
inefficient, unreadable, and unmaintain-
able software. Strong typing is strong
medicine; we must néed its power before
employing it.

5. Reliance on system fundamental types is

both name and representation between
compiler manufacturers.

6. Many times, extremely similar types will
creep into the design as the software
develops. This will reduce the design
clarity.

7. Common global data and message pass-
ing represent exiremes -approaches to
interface control. We should seek the
balance and clarity of - design . which
parameter lists yield.

Developers can misuse types. But we already
know that we must design software to achieve
our goals. Too often in the past, engineers have

~given lip service to design and have then pro--
ceaded to hack out a simulation.. Design is not ~
~ doing things the way they have always been

done. It is not making the same decisions over
and over again because it worked years ago; It is

employing a systems viewpoint and transforming -

requirements into a verified, valid, and credible

‘model. Clearly, Ada types can play an 1mportant

role in this process.
A Typing Scheme

Given the richness of the Ada typing features, we
desire a _consistent and unified approached to
implementing types in a simulator.

1. Define your own fundamental types from
the intrinsic values --
"type Integer_32_Bit is new Integer
- range (-2¥*31).L((2**31)-1);".

2. Derive all of the subtypes from your new
fundamental type --
"subtype Integer _16_Bitis
Integer_32_Bit range -32_ 768..32 76 ;"

unportable. Predefined types change in
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10.

1L

12,

13.

14.

15.

Subtype -wherever possible io . avoid
overly strong typing -- - -
"subtype Moving_Model_Number is

Integer_8_Bit;"

Define the interface between every object
as a single type containing all of the
needed information.

You need more enumerations than you
think you do.

All two alternative events are not boolean
(True, False) -
use enumerates as appropriate (On, Off).

Type names should be complete and
expressive of the information --

"type Landing_Gear_State is

{ Locked_Up, Up, Retracting,

Extending, Down, Locked_Down );".

Use a single package for the global simu-
lator types at the top of the design.

Package the types defining the interfaces
between components at a given tier in’ a
single package one tier above the com-
ponents.

The purpose of types is to map the
design to the real world.

The types should express their driving
requirements (as applicable), design cri-
teria, program specification, etc.

Begin a project’s code by prototyping the
types. On the other hand, expect the
types to evolve with the program.

There must be an owner of each types
packaoe to police additions. and revi-
sions.

Write code which depends on attributes
instead of explicit values. Such code
supports design changes simply through
changing the types rather than requiring
changes throughout the code.

Types packages, unlike other packages in
the system, should be "withed" and
"used" for direct access. The types are
not data but a tajlored extension of the
language, a fundamental resource for the
design.
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The underlying responsibility of the types’ creator
is to express the. design and map the simulation
to the real world. Types provide a powerful
smulauon modeimg tool, but carry a responsibil-
ity. Whereas under-typing cannot hope to fulfill
the design goals, over-typing can obscure the
design. A well-controlled approach to typing can
produce the desired balance. However, this con-
trol depends on goodwill and agreement between
team members about the typing scheme.

CONCLUSICN

In the course of our experience with Ada, we
have seen that  designs, utilizing Ada types,
correctly implemented, exhibit certain desirable
qualities. Ada types can provide the glue which
holds ithe model together. But such results are by
no means a forgone conclusion. The availability
of Ada types does not relieve the software
engineer of the responsibility to design the pro-
duct. Quality software is not the result of hap-
penchance or black magic; it is the result of an
applied software engineering approach.
developer must create z model for a set of
defined goals, and then implement it with a well-
defined process in order to achieve these goals.
The types selected for the implementation can
encapsulate the system requirements and design,
Application of Ada types can be a long step
toward achieving the stated goals for a sininlation
model. Strong inherent language features like
these are a requirement for the large complex
training systems being constructed today.
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