An Analysis of Ada, Object-Oriented Design, and Structure Model as
Implemented in a Moving Target Simulation Design

Thomas F. Flynn and Mary D. Petryszyn
CAE-Link Corporation
Binghamton, New York

ABSTRACT

Previous designs of moving target simulation modeals were developed using a single point of contro! function- -
al architecture and functional design methodology. This approach to design concentrated on identifying ail
of the specific actions that would occur within a simulation software environment and relied on a single control
point and a common data pool to provide sequence, control, and communications between all of these func-
tions. Applying this to moving targets, the approach focused strictly on the specific actions:that a unique plat- -
form must perform in order to satisfy an interface to other functions within the total environment. On the B-2
ATD program, it became apparent that designing math models representing functionality caused a number -
of problems. These problems involved: isolating control logic from system functionality; adaptability of softwara
to accommodate future requirements, such as the addition of targets or modifications to the properties {(geome-
try, weight and balance data, etc.) of targets; and taking advantage of software reusability. Also, the functional
approach, since it dealt with specific actions, did not segregate basic platform structures and properties, plat-
form functionality, and non-specific platforrm maneuvers from one another. These problems were the basic
underlying reasons to use a more state of the art methodology and supporting language, Object-Oriented Design
and Ada, to help reduce the functional approach weaknesses.

ABOUT THE AUTHORS

Thomas F. Flynn has been employed by CAE-Link Corporation for the last 18 years. During that time he
‘has worked as a software systems engineer developing aircraft systems models for U.S. and foreign C-130
.simulators, U.S. and foreign P3-C simulators, the F-4 simulator, the C-135B simulator, the initial phase 1 design
and competition for the B-1B simulator, and the B-2 simulator. Over the last five years he has been involved
in prototyping Object Oriented Design methodologies for the B-2 program and participated in the initial software
architecture and management aspects of the software life cycie for the NASA Space Station simulator program. -

Mary D. Petryszyr has been a Systems Engineer with CAE-Link Corporation for the last 6 years. She holds
a B.S. in Elactrical Enginesring. from Clarkson University and a M.S, in Computer Enginesring from Syracuse
University. Her present-work includes systems engineering in the tactics simulation area for the B-2 Aircrew
“Training Device (ATD).

414

An Analysis of Ada, Object-Oriented Design, and Structure Model as
Implemented in a Moving Target Simulation Design

Thomas F. Flynn and Mary D. Petryszyn
CAE-Link Corporation
Binghamton, New York

FUNCTIONAL DESIGN METHODOLOGY

This design approach involved the identification of
functions reprasenting major systems or sub-systems
that were based on requirements from the customer
device specification, derived analysis, or an experi-
ence base built up over years of system development.
Each function identified represented a specific action
for a specific device, system, or combination of sys-
tems to achieve some result that would be:perceived
by the student and/or instructor due to an external
stimulus provided by another function, crew action, or
instructor action. The initial product of this design
phase was a software tree of actions that would pro-
duce the desired results of system requirements. The
software tree only provided functionality (specific ac-
tions), not control or data structures relating to real-
world compeonents. The control was basically at one
lavel, - the system operating executive. The functions
- identified in the software tree were subroutines under
control of the exscutive that would be invoked based
on a master scheduling table. The executive provided
- a eyclic one-second period. The exscutive wouid up-
date at the maximum rate the system required within
that period. This method placed most, if not all, sys-
tem control and knowledge at the single executive lev-
el within the master scheduling table. This required
a very careful evaluation of when functions would be
calied within the table with respect to time, perform-
ance and other functions required to run within the
same time domain. Some of the functions identified
contained iower level control logic to account for mode
control or special processing during simulation state
changes. This control logic was embedded through-
out the real time functionality of the system. For solu-
tion of closed loop problems found in areas such as

aero, engine, and flight control functions, care had to -

be placed on where each of the subroutine calls oc-
curred in the master table in relation to each other.

415

Since all software entities in the tree reprosented ac-
tions, there was only one data structure defined within
the total environment. This data structure was at the
exacutive level and was representad as a common
data pool to all functions in which they could read and
write without any specific data consistency controls in
place. This implied, in relation to an Cbject-Oriented

- design, that only one object existed, the total simula-

tion environment.

in the case of moving target simulations, the top
level requirermnent identified the need for actions of one
or many target platforms. This requirement was
based on the need to produce data for use by visual,
radar, or environmental functions within the total simu-
lation envircnment. This top level function was then
decomposed into the specific actions for each of the
specific moving target platforms dafined in the specifi-
cation. A typical software functional tree for the mov-
ing target simulation is shown in Figure 1, Each of the

. lowest lavel nodes shown in the tree represented a

functional math model that would provide all of the re-
quired acticns for the specific platform. As each math
mods! was developed, specific and general platform
functionality and the required properties were de-

- signed into the model. This meant, for example, that

for KC—135 platform maneuvers involving taxi, takeoff,
and cruise, each contained certain common functions
or portions of functions, such as equations of motion,
in order to satisfy that functionality. . To go a step fur-
ther, any additional vehicle platforms with a set of ma-
neuvers contained the same or portions of the same

- common functionality. Specific - platform properties

such as weight and balance data were hard coded into
each of the specific functions. The control of functions
was local to the specific platform maneuver software.
A platform maneuver or group of maneuvers would be
invoked based on triggers or common data pool infor-
rnation.

Moving
Targets

4.0

' KC-135 KC-138 KC-10 KC-10
Takeoff Cruise Takeoff Cruise
4.1.1 4.1.2 4.2.1 4.2.2

ITSC_TEC

Figure 1 Functional Architecture -

‘OBJECT-ORIENTED/BASED METHODOLOGY

This methodology takes. a different initial view of
the design problem as compared to the functional ap-
proach. The major advantages ta the Object-Oriented
- approach are the reduction of complexity, rsuse of
software, reduced testing of software, and a more lo-
calized effect of modification to software. The object-
orientad methodology attempts to define smaller data
. structures that define attributes representing the state
of an entity in a static situation. This process attempts
to reduce the complexity of the data structuras down
from the single structure, which is very complex and
used in a functional approach, to structures specific
to the entities in the problem space. This means that
the problem space is evaluated for components that
possess state information about themselves, and to
isolate each occurrence of 2 component based .on
minimum dependencies between one another. Anex-
ample would be an airframe, the environment, tar-
gets, etc. In each of these examples, thers is infor-
mation that is required between each of these compo-
nents but there is not common functionality between
them. Each of these entities represent state and will
- contain operations that:will modify that state based on
extornal stimulus.

In the Object-COriented view, the actions identified
in a specification or derived through analysis are used
to define the level of fidelity of the entity’s bahavior.
In defining these components it becomes apparent
that similar occurrences of the component are found.
These similarities are identified by groups that can be
reduced down to a base class or type for the entity.
Each occurrence will contain the same static attrib-
utes representing state and will exhibit the same be-
havior required to-change it's state due to an external

stimulus., What makes each occurrence different is
its name and its unique set of properties. Given one
set of operations, ane cobject’s properties in the form
of constants or loockup tables will cause that set of

- aquations to act differently from that of another object

with a different set of properties but the same equa-
tions.

ldeally, each common. set of objects:and the re--
sulting base class will relate one-to-one to objects in

- the problem domain such as a battery, a valve, or a

pump. Some ohbjects and the resulting class represent
a very complex structure and need to be reduced sim-
ply because of the complexity or because of typical

- modifications that may occur over the life of the soft-
“ware. An example is the airframe. In reducing the

complexity, the objects and classes are more difficult
to identify since they may not relate to a physical com-

" ponent in the problem space. This situation requires:

evaluation of alt of the component’s state data in rela-
tion to dependencies on one ancther. Some of the

- more critical dependencies evaluated are time domain:

problems in which .certain. groups. of state data must
be evaluated within the same functionality. These de-
pendencies are grouped within common data struc-
tures that will relate to a single object or base class
with the required operations to change that state data.
The attempt is to isolate these dependencies into

_groups of data structures and associated bshavior

which translate into the less complex classes.

Another consideration in this evaluation, but sec-
ond to the time domain probiem, is the format in which
the data used to identify the properties of an object

or class is typically received from an airframe man-

416

ufacturer. in this case, the reduction of the data struc-
tures (objects or classes) is determined on the logical

grouping of the data used to identify the properties.
This typically will only work where it does not create
- strong dependencies between objects or classes.

Based on these points, the Object=Oriented ap-
proach clearly shows how complexity is reduced by
localizing data structures and reducing interdependen-
cies among those structures. By defining a base class
for use in creating instances of objects, the reusability
aspect becomes a strong peint in that only the base
class is developed by the software team and, the re-
sulting class or type is used to create sach instance
of the object within the environment. This featurs also
reduces lower level testing and the -amount of regres-
sion testing. For classes that contain operations with
high levels of complexity, the testing can be per-
formed on the base class with a range of properties
typical of the instances to be used in the simulation
environment. Finally, modification to software will ei-

ther involve changes to the fidelity due to new require- .

ments, or design problems, or changes 1o the proper-
ties of an instance to a class. Modifications to fidelity
can be changed and tested at the base class level.
The result with changes to operations is an automatic
change to every instance of that base class used in
the environment. [In some casas, the testing of the
change can be kept at the base class leve! and will
satisfy all instances of that class. Where the proper-
ties of an instance change, only that instances proper-

ty vaiues need changing. This eliminates the need to
modify anything in the base class, data structures or -

operations, and as a result, !ocalizes the change to
the specific instance. The one drawback of the class
or type approach to representing the template of a
group of objects is that the data structures and the
operations must represent the worst case fidelity re-
quirements in order to satisfy all instantiations of the
class.

The resulting objects developed through this anal-
ysis represent a static set of structures that require
some controlling mechanism to provide an ordetly set
of input stimulus based on events occurring in the sim-
ulation environment. The objects themselves should
not have any knowledge of events outside of their own

domain in relation to their attributes, so as to keep -

complexity down and to prevent carrying special pro-
cessing and/or interdependencies from a base class

to all instances of the class. This requires a control

mechanism to evaluate the state of the environment
based on events provided by a high leval service rou-

tine to determine when to invoke an object’s operation

and what parameters to pass it.

417

- solution.

The control mechanism also containg areas to
keep data imported from external systems and data
to be exported to external systems. The object’s be-
havior is intended to represent a real time solution in

- relation to it's state data. This behavior requires a set

of input parameters from other objects; sub—-systems,
or procedures at the system level during a real time
For non-real time, the system may be re-
quired to stabilize each of it's objects for initialization
to a pre~defined point or establish special mode con-
trol and special processing for auto test case control.
This stabilization can be designed into the base
classes as a separate procedure or can be performed
by the system controller directly on the objects’ attrib-
utes. The structure models used in the object oriented
approach show groups of systems that contain a col-

- lection of objects associated with the system. The

system controller is intended to contain all knowledge
of how that system is to be controlled through proce-
dures and invocation of it's objects’ operations. The
controller may contain proceduras that represent ac-
tions or decisions that must be passed on to it's ob-
jects due to external events in the environment.

As was shown in the functional structure, actions
were embedded into each specific function such as
KC-135 climb and KC—~135 cruise. The controller in
the object oriented structure may have general proce-
dures representing climb and cruise that work on &
standard set of inputs required by a KC-135 object.
These procedures may only provide a control -com-
mand to climb or cruise to the object. The same pro-
cedure and inputs would be used for a KC-10. Since
the cbjects contain very different properties even
though they both have identical functionality, they will
respond to the commands differently due to the prop-
erty difference,

The top level executive in the Object-Oriented
structure has no knowledge of how any system is to
be controlled. The executive only knows the sequence
and rate at which the system controller will be called
and provides the system with the environmental
parameters or events to allow it to respond relative to
the state of the environment. This is very different
from the functional structure in that the functional ex-
scutive contains all knowledge of systems and must
control the sequence and dependencies of all func-
tions within the environment as is shown in Figure 2.
it becomes apparent that the compiexity of a function- .
al executive can increase exponentially as more .
functionality is added throughout the development of
the system. The Object-Criented structure helps to

Training Device
Systemn
Control

/'Comman Data Poal

Tralning Device
.Object

System Attributes

System Propertles

System Exsecutive

Functlion Sequence
able

$—— Control

¥ ¥ ¥
KC-135 KC-10
Takeoff Takeoff
Tralning Device - v '
Function KC-135 KGC-10
Climb Climb

Figure 2 Functional Structure Moving Target Simulation

418

ITSC_ITEC

localize complexity to the system level while keeping
tha executive at a fairly constant level of complexity.

The independent system development of the Ob-

ject-Oriented structure also allows for complete inde- -

pendent testing of the system in a non-integrated
mode for all modes or states that may be encountered

in the environment. This allows a major system to be -
integrated into tha software environment incrementally -

and with a high degree of confidence that it will re-
spond as designed. Figure 3 represents an object ori-
ented system for the moving target simulation.

MOVING TARGET OBJECT-ORIENTED DESIGN

The reai-time functionality of any systermn must be
addressed at some level. By using the main objectives
of reducing complexity and developing the most effi-
cient design possible, the level at which the functional-
ity of & systermn appears varies. In this design, require~
ments included multiple moving targets performing a

variety of automatic motion maneuvers. A data struc-

ture was deveioped to define attributes .and properties
of the moving target object class. The attributes rep-
resent the object’s state, including where it is going
and what it is doing in the environment. The properties
reprasent the moving target's motion performance
characteristics.

General procedures were defined that were inde-
pandent of the target class to represent all unigue por-
tions of the desired maneuvers, such as taxi, takeoff,
and cruise, so as to remove any common or repeated
functionality that is typical of a functional architecture.
This works well because the input and output parame-
ter names defined for each maneuver remain con-
stant, only the computed value of the standard com-
manded output parameter changes. Based on the
state of the environment -as defined by external im-
ports or executive data and the object’s specific attrib-
utes, the appropriate maneuver procedures are in-
voked by the system controller. This keeps the proce-
dures isolated from any knowledge of the system or
events in the environment, constraining their visibility
to the specific input and output parameters upon which
they operate.

Figure 4 shows the above mentionsd automatic
maneauver procedures with their associated parameter
lists. - Note that the output parameter names of or-
dered position (i.e., the position the moving target
must drive to) are the same for each procedure. This
allows a standard input paramseter list for the target
equations of motion oparations in refation to mansuver
commands. This also allows additional maneuver op-

419

the system through the system importer.

erations to be developed without affecting the existing
pararmeter and data structures. - Since sach specific

rmaneuver-function contains the same named out pa-
rameter, which is passed by the controlier to the tar-
get, only the computed data contained in the parame-
tor will be different based on the specific maneuver
invoked by the controller. Only one of these proce- -
dures is invoked by the system controller for each spe-
cific moving target at any given time and: the output
parameters are then used to drive the equations of .
motion.

General proceduras for manual maneuvers were
designed to implement instructor motion and position
commands, such as commanded range and relative
bearing changes or updated altitude and velocity com-
mands on an cbject in the system. The manual ma-
neuvers allow the instructor to deviate from an auto- .

matic profile based on dynamic conditions occurring

within the training environment. These procedures
were developed to represent each unique type of

‘manual maneuver required.to satisfy the range of dy-

namic instructor controls and -are invoked by the sys-
tem controller based on instructor events passed into
As in the
automatic maneuver design, the input and output pa-
rameter names remain the same as those in the auto-
matic procedure for each of the manual manauvers
and limit the knowledge required by tha procedure to
only the attributes of the specific object necessary to
its operation.

Figure 5 shows a sample of the manual maneuvar
procedures with their associated parameter lists.
Note that the output parameters of ordered position
are the same as those shown for the automatic proce-
dures in Figure 4. . in these cases, the mode of the
moving target is manual as detsrmined by events in
the environment, which overrides the automatic mode
of a moving target until manual mode is no longer de-
sired. These manual maneuvers arg invoked by the
system controller based on a manual maneuver event
from the instructor, and a subset of the parameters
are modified that correlate to the manual commands
raceived. Other procedures shown in Figure & causs

. an instantaneous change to the state of the moving

target, and are therefore invoked by the system con-

- troller in addition to the associated automatic maneu-

ver for each specific moving target. These proce-
dures are invoked once for each separate event in the
environment, the mode remains automatic and the.
output paramsters are the current position of the mov-
ing target. In both cases the output paramsters of

/ Moving_Target \

Target
Attributes

Target
Properties

Updata_Target

‘Generic” Class
or Type Definition

ﬂutomatlc_Maneuvers\\

Specific Object

Taxi ' : Definition
L) 4

(o N\ [\
P KC—135 j KC-10
i Attributes : Attributes
KC-135 : KC-10

Object
(Update_Range .)

Instantiztion
of General
(Update_Bearing

Class or Type

’ Update_Target Update_Target
/ Manual‘_Maneuvers\ 1 By -

(Update_Altitude General Procedures for

Target Platforms...
Maneuvers and EOMs
are not Specific to a
.. Target Type

(U pdate_Velocity

[_/\

Centrol and Data

ﬁquations_Of_Motion\\ . : \I
/ Moving Target Controller

Gdeate_Headingr

(Update_AIt[tuds

AN A NP A

'(Updata_\!eioclty Executive Call (Moving_T arget_System_UpdateD
(Update_Bank

' Moving Target System |

CUpdate_Pltch Control Mecharism. . . | Moving Target Imports |

GJpdata_Latitude_Long[tude) includes External Import I Moving Target Exports I
and Export Areas

ITSC_ITEC

Figure 3 Object-Oriented Structure Moving Target Simulation

420

Procedure taxi (

taxi_profile
current_latitude
current_longitude
current_altitude
current_heading

ordered_Jatitude

: in taxi_automatic_profile;

in latitude_type;
in longitude_type;

: in altitude_type:

ordered_longitude :

ordered_altitude
ordered_heading

end taxi;

in heading_type;

in out latitude_type;
in out longitude_type;

: in out altitude_tvpe;
: in out heading_type) is

Procedure takeoff (

takeoff_profile
current_latitude
current_longitude
current_altitude
current_heading

ordered_latitude
ordered._longitude
ordered_altitude
ordered._heading

end takeoff;

-

in takeoff_automatic_profile;
in latitude_type;

in longitude_type;

in altitude_type;

in heading_type;

in out latitude_type;
in out longitude: type;

: in out altitude_type,;
: in out heading_type) is

Procedurs cruise (

cruise_profile
current_latitude
current_longitude
current_altitude
current_heading

ordered_latitude .

ordered_sltitude
ordered_heading

end cruise,;

in cruise_automatic_profile;

: in latitude_type;

in longitude_type;
in altitude_type;
in heading_type:;

: in out fatitude_type;
ordered_longitude :

.
-

in out longitude_type;
in out aftitude_type;
in out heading_type } .is

Same output parameters
for each procedure --

Different values based on.
maneuver executed

Ordered position ocutput
parameters used to drive
aquations of motion -
procedures

Figure 4 Automatic Maneuver Procedures

421

Procedure update_altitude (

manual_altitude
current_altitude

ordered_altitude :

end. update_alitude;

in altitude_type;
in altitude_type:;

in out altitude_type) is

Procedure update_velocity {

manual_velocity
current_velccity

orderad_velocity

end update_velocity;

in velocity_type;
in velocity_type;

in out velocity_type)} is

Procedure update_range
‘manual_range
current_bearing
ownship_latitude
ownship_longitude :

current_latitude
current_longitude :

end update_range;

(
in range_type;
in range_type;
in latitude_type;
in longitude_type;

out latitude_type;
out longitude_type) is

Procedure update_bearing {

manual_bearing
current_range
ownship_latitude
ownship_longitude :

current_latitude
current_longitude

end update_besaring;

in bearing_type;
in range_type;

in latitude_type;
in longitude_type;

-out latitude_type;

out longitude_type)} is

/

—-'Manual mede overrides
— Output parameters same as
automatic maneuver procedures

/N

—- Automatic mode maintained

-~ Instantaneous position changes

~= Quiput parameters same as
equations of motion procedures

\

Figure § Manual Maneuvar Procedures

422

LAl Ll

these system level functions are used as input param-
etars to drive the eguations of motion.

" Finally, the:eguations of motion math models were
designed such that they are independent of specific
platform functionality and properties, and will respond
to any of the automatic and/or manuai system lavel
functional commands since the command input pa-
ramseters are the same. As the math model for the
class was developed, the necessary specific object

properties (geometry, weight and baiance data, etc.) -
were defined as input paramsters as opposed to being :

hard coded,; thereby making the equations of motion
adaptable to the specific properties of each object and

also. eliminating repeated common functions or por--

tions of functions. By also including the cbject attrib-
ute that defines the necessary integration rate for an
object based on the state of the environment, the
equations of motion math models can respond without
having direct visibility to these events.

Example Procedure X was developed and used in
this moving target design to compute velocity and ac-

celeration, which are functions of time. It is shown-

in pseudo-code for ease of discussion and under-
standing. By utilizing the parameter passing feature
of the Ada programming language, the procedurs was
developed so as to define all moving target specific

- attributes and properties needed by the math model

as input and/or output parameters. The same named
parameter lists are passed in.and out for each specific
instance of a moving target class; however, the data
contained in the specific parameters is different be-
tween one instance and another. This allows the be-
havior of an instance of the moving iarget class 1o re-
spond uniquely based solely on the input values of the
specific properties. Thus, it is a general procedure
that can be used to compute the velocity of any of the
moving targets in this design. The integration rate is
passed as a parameter, making it possible for the con-
troller to determine the rate necessary for each partic-
vlar moving target based on events In the environ-
ment,

In contrast, Example Procedure Y represents a
typical comparison of the same: procedure for pre-
vious, functional moving target designs. This proce-
dure is specific to the moving target being simulated,
a KC-10'in this case, with the properties of this moving
target being hard-coded into the math model. Also,
since the rate at which this procedure is executsd is
constant as controlled by the top-level exec, the inte-
gration rate is constant and defined in the procedure.
Since e different and separats procedure similar to
that of Example Procedure Y would be used for each

423

spacific- moving targst, such as a KC-~135, it is easy
to see the impact of making any changes to a math
model in this type of structure. Forinstance, a change
to the integration rate would cause the same change
to be made to both procedures.

As shown in the object oriented approach, the
command and control for the moving target, which are
the maneuver functions, has been isolated from the
functionality of-the target class.. The functional ap-
proach shown in example procedure Y does not con-
tain this separation of command and control from the
target functicnality and, as a result, forces the ma-
neuver functions to be embedded into each specific
rmoving target function.

As can be seen in Figure 3, the system controlier
determines the actions and provides a corresponding
set of inpuis to the object based on the state of the
environment. The object's attributes and specific
evants indicate to the controller which mansuver pro-
cedures and equations of motion need to be invoked,
and how often. With this structure, the individual simu-

lation fidelity of each moving target can be indepen-

dently and dynamically controlied. . For instance, it is
not necessary to update a moving target.object's posi-
tion as often or with a high fidelity when it is not visually
seen. This infarmation has no affect on the actual ap-
eration of the maneuver or. equations of motion proce-
dures and is only used by the controller to make the
nacessary and proper execution decisions for an ob-
ject.

Now, looking at potential modification of the soft-
ware, it is sasy to see that a change to a mansuver .
or an equation of motion would involve only making
the change in one place due to the removal of com-
mon functionality. The affect would automatically be
imposed on every moving target cbject in the system.
Testing of the change could be performed on-an object
with properties typical to the simulation environment,
since the change is not specific to an instance of a
moving target object but is a change to the class of
moving target objects. Modification of the specific
properties of cne or more meving target objects would
not require any software modification to the maneu-
vers or equations, and would have no affect on the
other moving target objects in the system. Computer
loading can be more easily determined with this type
of structure for target or maneuver additions, since

" worst case timings are available for typical targets and

maneuvers currently simulated in this design. This
gives a more accurate estimate of change impact that
was not available with previous types of design struc-
tures.

Procedure compute_velocity _and_acceleration (

delta_time : in seconds;

K_values ‘ : in times;

performance_characteristics ¢ in characteristics;

orderad_velocity in feet_per_second;

past_velocity ;. in feet_per_second;

past_acceleration : in feet_per_second_squared;

current_velocity : in feet_per_second;

current_accelaration : in feet_per_second_squared) s
bagin

~- compute the difference between ordered and currant velocity

Ay = Vord — Vo

— compute the new current velocity

VCSVord—AVK']'F(Vc-AVKz)Ka

compute the new current acceleration

Vo = Av Kg + (Vo - Av Kz) Kg

limit the computad acceleration within performance characteristics

Ymin < Vo < Vmax

-~ racompute the new current velocity after liriting the acceleration

Ve = (Vg)n-1 + At ve

-- limit the computed velocity within performance characteristics

Vmin < Ve < Vmax

end compute. velocity_and_acceleration;

Example Procadure X

424

L

L R

pastvel
pastaccl
-currvel

curraccl

ordvel Commaon Data Pool

kc10val:

data; dtime = 0.03125
Kvalues = {K;. Kz, K3, Ks, Ks)

— compute the difference between ordered and current velocity
AvVgrd ~ Vo

-~ ordered and current values in common data pool

-= compute the new current velocity
Ve = Vord ~ Av Ky + {vg — Avip) K3

-- K values constant since dtime

-~ compute the new current acceleration

vc=AvK4+(\.rc-AvK2)K5

-~ limit the computed acceleration within performance characteristics

1000.0 < \;c < 9000.0 -- congtant performance characteristics

—— racompute the new current velocity after limiting the acceleration
Vo = (Vc}n_‘] + dtime \-fc

— past and current values in common data pool

—— limit the computed velocity within performance characteristics

100.0 < v < 8C0.0 -- constant performance characteristics

return

Example Procedurg Y

425

Take, for example, tha case of adding the require-
ment for a new type of moving target to parform auto-
matic maneuvers representing evasive actions to the
systermn shown in Figure 3. Also, assume an additional
. requirement for response of an object to instructor
manual maneuver comrmands of updated latitude and
longitude.

in Figure 6. It is easy to see here that the changes

made to the system had no impact to the maneuver:

simulation already in place. The data imported would
now also include the additional instructor manual com-
mands. The addition of a new type of moving target
object would only involve defining its specific proper-
ties, similar to ¢changing the properties of an existing
type of moving target object. The system controlier
would be the centralized point in the system to experi-
ence the main effect of the updates , since it has the
visibility to the new maneuvers in the system as well
as a connection to the new events in the environment.

Testing of the changes made would invaolve having
to tast only the new procedures, since the specific at-
tributes of an object are defined as parameters. As
in the example of changing an existing maneuver, test-
ing of the new maneuvers can be performed on an ob-
ject with typical simulation properties and attributes.
Not-only is this system highiy maintainable due to these
factors, i is also easily reusable.

Since this system structure contains its own total
systemn level functionality and system level control
mechanism, the top level executive can be isolated
from the knowladge of how the system must be con-
trolled. It is sasy to see that this system:could be re-
used by simply making the proper connection of the
system controller’'s external import and export data
structuras, and telling the top level executive the se-
. guence and rate at which to invoke the system control-
ler, and the environmental parameters and events 1o
pass it.

CONCLUSIONS OR FUTURE OUTLOOK

The Object Oriented architecture has solved a
large majority of design problems encountered with
the functional approach for the more complex training
devices in today’s market. These probiems involved
isolating the events and control of a system for both

426

This modified system structure is shown

real time and non-real time maoades from the function-
ality of objects within the system and has reduced -

-highly complex structures into smaller, well defined,

and less complex tasks. It has also taken advantage
of re~use of software products within the existing envi-
reanment and allows for that re—-use in future products.
This approach reduced lower level testing of function-
ality by allowing testing of the base class of an objact

-instead of each instance of that object. By grouping

dependencies within common data structures that re-
late to a single object or base class, higher level test- -

‘ing is reduced to testing of interfaces between ob-

jects.

One new direction to consider for improved effi-
ciency is removing the polling of avents at the system

‘contreller leve!, and pulling it up to a service routine

approach ata higher level through the simulation exec.
This should be done so as to develop a standard set
of event driven entry points into systems. This way,
systemns can be developed that are adaptable to differ-
ent simulation environments. Potential candidates for
officient use of this concept include initial condition
(IC} and reset implementations, malfunctions, and In-
structor Operator Station (10S) features that are true
events such as mode controls, weather changes, and
moving target commands.

The IC implementation:used on the B-2 ATD pro-
gram allows use of this concept in that systems can
contain contrellers to perform special processing for
an IC, that are only called by the simulation exec for
this type of event. With the IC implementation isolated
to the systam controller, the controfler can make a de-
cision to use a real-time solution to drive the system -
tc a stable state or to directly stabilize the gystem to
a. pre-defined state based on the parameters re-
ceived.

The structure model presented in this paper has
shown it’s capability to adapt to changes and ad-

~vances in the area of flight simulation. The architec-

ture represents a dynamic concept that can be

"adapted to advances in the state of the art. It embo-

dies a basic plan to take advantage of advances in
command and control techniques, real time system
functionality, interfacing techniques, and computa--
tional hardware developmaents.

f Moving_Target \

Targst
Attributes

Target
Propertles

Ubdate_Target

—— —— — — A——

“Generic” Class
or Type Definition

Automatlc_ManauverN

Speciflc Object

— RC-138 T-38
Attributes Attributes
' ' KC-135 T-38
Properties Propertles
Update_Taret Update Target

) I

/ Manual_ManeuvR

KC-10 .

CUpdate_Ranae iﬁ:l:a?.ates
Update_Beari KC-T10
(paate_usaring Oblect Properties
Instantiation
< Update_Altitude of General Update_Target

Class or Type

(Updats_ValocIty

@pdate Latitude
3 i General Proceduras for

Target Platforms...
Mansuvers and EQOMs
-are not Specitic to a

VUUUUU

Gpdate_i.ongltude

Control and Data

P Target Type \V
/Equatlons'_Of_Motlo“) :

Moving Target Controller

Glpda{e_Head[ng
‘ Update_Altltude

(Update_Velocity

Executive Call (Mo&ring_‘rarget_System_._UpdateD

(Update_Bank

[Moving Target System
: Control Mechanism...

UUUUL

(Update_Pltch l Moving Target Imports 1

@Pdéte_LatitUde,_LongItude) ncludes External import

]TVioving Target Exports 1
and Export Areas

ITSC_ITEC
Figure 6 Madified Object-Oriented Structure Moving Target Simulation

427

