A CONTACT DETECTION AND MOTION MODIFICATION
ALGORITHM FOR TELEROBOTIC TRAINING

Susan Mauzy
NASA, Johnson Space Center
Houston, Texas

Bob Martella
CAE-Link Corporation
Houston, Texas

ABSTRACT

The Space Station Training Facility (SSTF) is an environment to train astronauts for Space Station Freedom
(SSF) operations. Like most simulators, the S88TF includes an image generator (G} that visually simulates
the out-the-window scene and the closed circuit TV views of S8F. Because the displayed objects are graphic
images, they can merge and violate thelr abstraction of sclid objects. Maost 1Gs provide the capability to detect
coliisions between predefined points and/or volumes. The applicaticn program sends an object position to
the |G, the 1G determines if the object has collided with other predefined objects, reports to the application
and draws the object in its new position. The problem is in the delay associated with the G processing time
to compute the-contact position and draw the object. By the time the 1G reports the contact point to the applica-
tion, the object has already merged with another object. For most applications this slight merging of objects
is not perceivable to the student since normal viewing distances are large compared to object size-and amount
of overlap. For telerobotic training, the eyepoints can be so close that object merging can cause negative
training. One solution is to check for contact before the application sends the object's position fo the IG.
This requires precise geometric models of the end-effectors and their workpieces to reside in the host comput-
er. Additional computing resources are also required to run the contact detection algorithm. Repid prototyping
was used to verify the sclution approach and reveal limitations in the design. This paper presents the contact
detection and motion modification algorithm and discusses iis capabilities and limitations.

ABOUT THE AUTHORS

Susan Mauzy graduated from Rice University, Houston, Texas, with a BSEE in 1985 and a MEE in 1991.
She has worked for NASA since 1985, working first as a programmer on the Single Systems Trainers for the
Shuttle program and now as the Subsystem Manager for the Robotics and Environment systems for the SSTF.

Bob Martella attended the U.S. Air Force Academy and-Virginia Tech where he received a BSME in 1983.
He has worked for the CAE-Link Corporation, Houston Cperations since graduation. He began his career at
Link modeling propulsion systems for military applications and has since worked modeling avionics systems,
motion systems, and various other aircraft systemns. Heis presently a Sysiems Engineer working in the Robotics
Group for the SSTF.

904

A CONTACT DETECTION AND MOTION MODIFICATION
ALGORITHM FOR TELEROBOTIC TRAINING

Susan Mauzy
NASA, Johnson Space Center
Houston, Texas

Eob Martella
CAE-Link Corporation
Housion, Texas

Introduction

The Space Station Training Facility (SSTF) will
madel all onboard systems for the purpase of training
astronauts and mission controllers. The astronaut
training will emphasize the interaction between the op-
eration of different systems. The mission contralier
training will emphasize teamwork in the ground control
of the SSF. The SSTF will receive. uplink commands
and send simulated downlink data to the Space Station
Control Center (SSCC) to support mission controller
training.

The SSTF will model the Mobile Servicing System
{(M38). The manipulators included in the MSS are the
Mobile Transporter (MT), the Space Station Remoie
Manipulator System (SSRMS), and the Special Pur-
pose Dexterous Manipulator (SPDM). The MT will act
like a motorized flatbed rail car to transport the other
manipulators along one face of the truss. The SSBMS
is a long (fifty—four feet), strong arm with seven de-
grees of freedom (DOF). The SSRMS will move ob-
jects for assembly and maintenance, berth the Orbit-
er, and position the SPDM and astronauts., The SPDM
is an anthropomorphic telerobot with two seven DOF
arms mounted on a five DCF base and body. The
SPDM will support or replace astronauis in the per-
formance of Extra-—Vehicular Activity (EVA) mainte-
nance tasks.

The SSTF must realistically model the mechanical
interfaces between the MSS. and other SSF systemns
where the crew is responsible for controlling the con-
nections. The sole interface' mechanism for the
SSRMS is a Latching End Effector at each end. These
LEEs will attach to standard grappie fixtures. Typically,
one LEE will attach to a standard grapple fixture and
act as a base while the other LEE attaches to a stan-
dard grappie fixture on the object to be moved. The
SPDM has three mechanical interfaces. A LEE and
a standard grapple fixture on the SPDM’s base provide
alternative methods for supporting the SPDM at a
worksite. The SPDM arms each have a versatile end-
effector called the Orbital Replacement Unit (ORUY
Tool Changeout Mechanism (OTCM). This device can
grapple small, specially-shaped knobs. - The OTCM
can also manipulate and operate a variety of rotary

. power toals.

The SSF crew will control the SSRMS and SPDM
from workstations inside the pressurized volume. The
workstations will receive crew input through hand con-
trollers, a keyboard, and a panel of switches and dials.
The crew members will monitor their progress through

- CCTVs, out-the-window viewing, and digital readouts

in the control panel. Tha SSTF will pravide functionally
squivalent workstation hardware in the crew station
mockups. An image generator will provide CCTV and

out-the-window scenes. 7 e

One key aspect of realistic simulation is the re-
sponse time of the simulated systems. The SSTF is

905

required to provide responses within 150 milliseconds
of the real world SSF response time. This posas strict
time constraints on the computational activities and
necessitates innovative techniques to achieve the re-
quired performance. This paper describes one inno-
vative technique for realistically simulating the me-
chanicai interfaces of the MS3S.

Problem Statement

~An important aspect of training crew members in
robotic operations is 1o give the student accurate
fsedback on the iimitations of motion of the robots.
In many cases it is sufficient to merely give the student
a cue when a collision occurs. An example of this is
when the elbow of the SSRMS is inadvertently com-
rmanded to move into the Lab Moduls, a warning tone
sounds that cues the student that the SSEMS has col-
lided with something. For training purposes it is not
necessary to stop the motion of the SSRMS when unin-
tentional collisions. occur.

Conversely, it is necessary to stop the motion of

the robot simulation when intentional collisions ocour.
Intentional collisions include collisions between the
LEE of the SSRMS: and a PDGF, and the OTCM of the
SPDM and any of its tools or workpieces. Training for
these activities requires a more realistic simulation.
In this situation it Is necassary to constrain the motion
of these objects so that they do not pass through aach
other.

Figure 1-depicts the data flow path for command-
ing the robot arm using the contact detection capabili-
ties of the |G. The hand controller inputs come from

Hand~

Robot Robot :
controller] control > dynamics "—)T

Figure 1: Robot Data Flow Path

the student station and are sent to the robotic control
system which commands robot motion. Rcbot dy-
namics responds to these commands by computing
the new position of the robotic arm and sending it to
the IG. The IG then displays the new position and
checks for volume collisions. Finally, it sends the colli-
sion information back to the robot dynamics. A time
delay of approximately 100 milllseconds occurs from
the time robot dynamics sends the position data to the
IG to the time robot dynamics receives the collision
information from the |G. Because of this delay, vol-
umes can pass through other volumes. This sffect is
referred to as image ghosting. Robot camera proximi-
ty makes this effect very pronounced through CCTV.

Since the SSTF training focus is systems training and
not specifically Robaotics training, the intentional.inter-
actions between robot arm and workpieces have the

_highest priority. Thus while ghosting is acceptable for ~

inadvertent collisions, itis not for planned interactions
between manipulator and ORUs.

Solution
Design Approach

Onsa solutlon is to determine when contact occcurs
before the |G displays the scene. Figure 2 shows the
new data flow path with contact detection included.

Hand~ Robot Robot _
sontroller || control [] dynamics
.| Contact :
”| Detection

Figure 2: Modified Robot Data Flow Path

This routine is invoked after the robot dynamics sub-
routine is exacuted. The new algorithm checks the ge-

ormetries of the objects in question to determine when -

intersections occur. When the check finds that con-
tact has ocourred, the commanded motion is not al-
lowed to move the object. The invalid position vectors
ara not reported 1o the |G, eliminating the delays asso-
ciated with |G collision checking routine. The effect

‘is that the end effector does not respond to com-

mands that wili cause objects to ghost. This results
in positive, realistic feedback to the trainea. This solu-
tion approach was prototyped for SSTF in Ada using
object oriented concepts on 2 Silicon Graphics 220
VGX workstations.

- Data Structure

Each rigid body is considered a separate object
that is'composed of many peolyhedrons. The polyhe-
drons are structured in a tree. A polyhedron is a vari-
ant abstract data type. [t can be-either a subtree or
a leaf. If it is defined as a subtree then it has access
to two other polyhedrons: the left_child and the
right_child. If it Is defined as a leaf, then it contains
data that describes a hexahedron. Figure 3 lllustrates
this tree structure.

The hexahedron data structure consists of various
pointers (access types) that organize the vertices into
edges and faces. This structure facilitates the calcula-
tions of the line equation coefficients and the plane
equation coefficients that defins the edges and faces

906

SR REEm AT e = R

an e TIEE L e e

WETERTIY WEEE

1

e e DR e AT

SR TR

i L L LY L

subtree

¥ X

subtree subtree -

¥ X ¥ X

leaf leaf subtree leaf
leaf leaf
Figure 3:- Object Tree Structure

of the hexahedron. The line coefficients are shown
in Equation (1A}, the equations of a line in three-di-
mensional space.

=

X-X _Y-Y, _ Z-% aA)
E F G

Equation (1B) shows the parametric form of the
line equations with the parametric parameter t:

X=X +Et
Y=Y, + Fu (B)
Z=Zo+ Gt

The plans coetficients are from the general plans
equation shown in Equation 2,

AX + BY + CZ = D (2)

The hexahedron data also contain local and global
vertex positions. The local vertices are defined in the
local coordinate frame of the hexahedron. Figure 4 il-
lustrates the hexahedron and its coordinate frame.

Y

e Y i i e
e

A
‘ / faces

vertices

Figure 4: Hexahedron

The local vertices are used to calculate the position
of the vertices in the globa! coordinate frarme when the
cbject is in motion. The global vertex positions are
used to calculate the line equation. cosfficients and the
plane equation cosfficients.

All polyhedrons have a commanded position, an
actual position, a tree position, and a radius. The cam-
manded and actual position are in global coordinates.
The tree position is in the root polyhedron coordinate
frame. Ths radius of a polyhedron is defined as the
distance from the coordinate frame center of the poly-
hedron to the most distant vertex. Figure 5 contains
the Ada that defines the data structure,

Theory of Operation

A rigid body is either moving or stationary. Only
moving objects can collide with other objects. If an
object is commanded to move, that object must deter-
mine if it will collide with another object before it moves
to that space. This involves modeling the geometry
of each object of interest in three dimensions and test-
ing for intersections between moving objects and oth-
er objects. If the comimanded movemnent results in
an intersection of two polyhedrens, the commanded
motion is Ignored and the object is simply not moved
to that position. Only motion that doas not cause a
collision is allowed. If no contact is detected, the ac-
tual position of the object is set to the commanded
position, the IG is notified, and the image of the object
is seen in its new position in the visual.

Each moving object is checked to determine if it
Is. commanded to collide with another object. This.is
accomplished by a coarse check and a fine check.
The coarse check is a very fast check that determines
if there is a possibility that two objects are in contact.
if the coarse check fails any hexahedrons, the fine
check must be performed on them. The fine check
is computationally more intense. It computes the ex-
act positicns of the hexahedrons in order o calculate
the intersection (if one exists).

Algorithms

The Contact Detection Buhr diagram is shown in
Figure 6. It illustrates the interaction of the subpro-
grams inside the Contact Detection model.

Find_global_pecsition s a recursive procedure
that calculates the commanded position of each hexa-
hedron in each moving object’s tree structure, The
orientation slements (roll, pitch, yaw) of 6x1 position
vectors can not be explicitly added together. They
must be decomposed into their incremental effects on
each axis and then added. This is accomplished by
converting the commanded 6x1 position vector of the
object and the Bx1 tree position vector of the hexahe-
dron into 4x4 homogeneous transformation matrices.? -
The matrices are multiplied and the result is converted
back to 6x1 position vector. This is the commanded -
positlon of the hexahedron in the global coordinate -
frama.

207

type LINE_COEFS Is (XO, YO, ZO, E, F, G);

type PLANE_COEFS Is (A, B, C, D};

type VECTOR_3X1 is array {1..3} of REAL;
type VECTOR_6X1 is array {1..8) of REAL;

type ALL_VERTICES

type ALL_LINE

type HEXAHEDRON is

record
LOCAL_VERTICES
GLOBAL_VERTICES
EDGES
LINE_EQ_CQEFS
FACES
PLANE_EQ COEFS

end record;

type NODE_TYFE is (LEAF, SUBTREE);

record

POS_ACT _ : VECTOR_6X1 = {others => 0.0});
POS_CGM 1 VECTOR_6X1 1= (others => 0.0};
TREE_POSITION : VECTOR_GXT;
RADIUS : FLOAT 1="0.0;
case NODE_DESCRIPTION Is
] when LEAF => ST
' PATA : HEXAHEDRON;
when SUBTREE =>
LEFT_CHILD : POLYHEDRON_LIST;
RIGHT_CHILD : POLYHEDRON_LIST;)
end case; -
end record;

type LINE_COEF_TYPE is array (LINE_COEFS) of REAL:

type PLANE_COEF_TYPE is array (PLANE_COEFS) of REAL;
type VECTOR_3¥1_POINTER Is access VECTOR_3X1;

type EDGE_TYPE is array (1..2) of VECTOR_3X1_POINTER;
type FACE_TYPE Is array (1..4) of VECTOR_3X1_POINTER; ’ T
TYPE is array {1..8) of VECTOR_3X1; o

type ALL_VERTICES_POINTER Is array (1..8} of VECTOR_3X1_POINTER;

type ALL_EDGES_TYPE is array {1..12) of EDGE_TYPE;

type ALL_FACES_TYFE Is array (1..6) of FACE_TYPE;

COEFS_TYPE is array (1..12) of LINE_COEF_TYPE:

type ALL_PLANE_COEFS_TYPE Is array (1..6) of PLANE_COEF TYPE; T T

~; ALL_ VERTICES_TYPE;
: ALL_VERTICES_POINTER; -
: ALL_EDGES TYPE; Coo =
. ALL_LINE_GOEFS_TYPE; a
: ALL_FACES_TYPE; -
: ALL_PLANE COEFS_TYPE;

type POLYFAEDRON (NODE_DESCRIPTION ; NODE_TYPE := SUBTREE);
type POLYHEDRON_LIST Is access POLYHEDRON;
iype POLYHEDRON {(NODE_DESCRIPTION : NODE_TYPE := SUBTREE]) is

Figure 5: Data Structure for Contact Detection

Polyhedron_in_range is the coarse check. s

compares the sum of the radii of the two objects in-

question and the absolute distance between the object
centers. If the distance between the coordinate cen-
ters is less than the sum of the radii of the two objects,
then there is a possibility that the two objects are in
contact. The routine recursively searches the tree
structures of the objects. It returns a linked list of

moving and static object pairs that failed the radii con-.

dition. If at least one possible contact pair Is returned,
the fine chack must be performed. If there are no pos-
sible contact pairs encountered, the commanded mo-
tion is allowed.

When the contact_pair list is not empty, the fine
check is performed to determine if the two hexahe-
drons are in contact. The two procedures Calcu-

late_equations and Find_contact_points accornplish

this check.

Calcutate_equations is executed first. It modifies
the edge and plane equation coefficients of the mov-
ing hexahedrons from the present position to the com-

manded position. - This procedure transforms the

commanded position vector into a matrix. This matrix
is used by Transform_points. to update the vertices
of the hexahedron with the commanded position, The

908

i A ki SN L b Lk it~ i bt ko)i 0 e 1 1) U TR TRE L IETE

PACEAGE_CONTACT _DETECTOR

contact_check

polyhedron_in_range r right_finger

find_contact_peints

peint_in_line_sepment —I

peint_in_polygon

get_vector_sign

gripper

caution_sign

stop_sign

N
find_global_position
==

left finger

get_sign

get_transiormation

reset_simulation

e
Ao " T)

\ |transform_points | '

calculate_equations

|equation_of_plane 1

| equation_of_line T

create_visual_tree

]create_hemhedron

Figure 6: Contact Delection Buhr Diagram

Equation_of_plane procedure then calculates the co- .
sfficients for the equation of the plane that encloses
each face. The equation of the plane is shown in
Equation (2).

The coefficients A B and C are found from the nor-
mal vector to the plane. Three of the four vertices:
that define a face are used to-create two vectors. The
cross product of the two vectors resuits in a vector -
normal to the plane. The vertices and the vectors are
chosen in such a way that the normal vector has direc-
tioh away from the centroid of the hexahedron. -The
elements of the vector (X, Y, Z) are equal to the first
thres plane coefficients (A, B, C). The final plane co-
efficient is calcuiated by substituting one vertex into
the plane equation and solving for D.

The final subrouting in Calculate equations Is
Equation_of_line. It returns the coefficients of the line
that encloses each edge. The equation of the line is .
given in Equation (1). The parametric parameter t is

arbitrarily assigned a value associated with each ver-
tex that defines the edge. For the first vertex, t = 0;
for the second, t = 1. This simplifies the caiculation
for the equation of the line.?

Find_contact_points traverses the list of contact
pairs to determine if any are valid. I first solves for
the intersection (if one exists) of each line and each
plane for each hexahedron pair. It then imposes the
boundary conditions of the edge and the fage with the
routines Point_in_line_segment and Point_in_polygon

_respectively.

Point_in_line_segment determines if the point of
intersecticn is within the line segment defined by an

_edge of a hexahedron. This check is accomplished

by inputting the point of intersection into the paramet-
ric equations of the line and solving for the parametric
parameter. Since the parametric equations were de-
fined using the the two vertices of the edgs, the para-
metric parameter must be between zero and one, in-

908 Coe

clusive, for the intersection peint to be on the line seg-
meant.

Point_in_polygon determines if the point of inter-
section is within the polygon defined by a face of a
hexahedron. This is accomplished using vector cross
products -and the right hand rule. Beginning with an
arbitrary vertex, a first vector is created from the ver-
tex to the point of intersection and a second vector
is created from the vertex to the next vertex. This is
done for each vertex of the polygon inan arbitrary {CW
or CCW) direction around the perimeter of the poly-
gon. If the sign of each vector product is the same,
then the point resides within the polygon. If a change
of sign occurs beiween any of the vectors,. then the
point of intersection is not on the face of the hexahe-
dron and the particular face and edge are not in con-
tact.

The following two procedures are not executed In
real-time, they are used for setting up the simulation
" for execution.

Create_visual_tree is a constructor operator. |t

constructs the tree structure for sach object and ini-
tializes the data in each tree. It is executed only when
the simulation is started. When Create_visual_tree
builds a leaf polyhedron, it utilizes Create_hexahedron
to assign the data. This function creates the access
types, asslgns the data, and returns the hexahedron
given its length, width, and haight.

Reset_simulation is also a constructor operator.

It initiallzes the position of each object defined in the
simulation. The subprogram Init_object s called for
each tree structure. [t sets the position of each object
to its initial position, and then makes a call to Calcu-
late_equations to calculate the correct coefficients.
Reset_simulation is executed only when the simulation
is first started or when it is reset- without terminating
execution.

Limitations

' This software is the result of a rapid prototyping
effort using object criented methodologies in Ada. Re-
guirements were generated to drive the scope of the
prototyping effort. The system was designed, coded,
and tested. This process has revealed. limitations that
can be traced to the lack of good reguirement descrip-
tions and/or a desired increase in the functionality of
the system. These limitations are being addressed in
the second build of Contact Detection.

Execution time is always a priority in real-time
- simulation. This design requires memory to be allo-

cated to create the contact_pair list with each iteration
bacause the iength of the list is unknown. This dynamic
memory allocation of (and destruction of} the con-
tact_pair list is too time consuming for real-time con-

straints. T

Packaging of all objects are defined in one pack-
age. This requires that the Contact Detection package
be updated whenever new objects get created. This
reduces medularity and reusability of the software.
Further, since the moving. of the object was essentially
performed within the Contact_check procedure, any
additional objects would cause an update to not only
the body bui also the specification.

~ Selectability of objects is not available for this de-
sign. It weuld be desirable that the instructor have the
option to select or deselect individual objects for con-
tact checking. Further the Instructor may want to acti-
vate or deactivate all contact checking at once. These
features are not supported In this design.

Latching of objects is not addressed in this de-
sign. Since all objects are hard coded into the contact
detection package, there is no fagility to latch objects -
together other than hard code-a latch to particular ob-
jects. This is inefficient and dangerous.

‘Dynamics associated with bumping an object or
pushing an ebject is not addressed with this design.
This effect would require a higher fidelity routine with
force calculations for each link at 2 minimum. Examin-
ing the case of attempting to push an object with the
end effector, some joints may not have sufficient
torgue to move while others do, resulting in uncom-

manded motions. If the object is in motion it may also .

backdrive the joints in the arm. -
Current activities

Contact Detection is currently going through a
second buiid process. The first build of the contact
detection algorithm has revealed the above limitations

-‘which might not have been foraseen in a standard wa-

terfall development process. The results of the proto-
typing activity have fuelled this incremental build de-
sign philosophy. The results are evident. Working
software is developed early in the program life cycle,
performance capabilities become very evident, and
risky areas are addressed, all before integration oc-

-Curs.

.Execution time

A major goal of the second build is reducing the
execution time. The intermediate step of creating a
contact_pair list will be deleted. When a possibie con-
tact pair is encountered the algorithm will immediately

910

determine if contact has really occurred before it con-
tinues to look for the next possible collision pair. As
a result execution time will not be wasted with dynamic
memory allocation required for the linked list.

Packaging

The packaging for Contact Detection will be rede-
signed in the:second build. The first build design had
all contact objects existing within the packages Con-
tact_dsetection. The second build will allow anyone to
create and use a contact object wherever he choosses.
The package Contact_object will contain the attributes
of any contact object and the functions that can be
performed on it. Users will construct objects from that
template and use them in accordance to their defined
functionality. The construction process includes a
registration routine. This routine registers each object
with the Object_manager. The Contact_manager will
manage the list of Contact_objects and provide ac-
cass to the objects upon request.

Selectability

The second build- is aiso adding a selectability
function for one or all of the objects. This feature will
allow the instructor to turn the Contact Detection func-

tion an or off without affecting the rest of the simula- .

tion. The instructor will also have the capability to se-
lectively change the objects that are being checked
for collisions without stopping or freezing the simula-
tion.

Latching

Contact Objects will have an additional function of
latching. This function will allow a object the capability
to move another object that it is latched to. Thus ob-
jects can be passive or both passive and active.

Dynamics

- Moedelling the dynamics of object collisions re-
quires the modelling of the forces imparted between
the objects. This is not currently & priority in the con-
tact detection design since the robotic simulation in
the SSTF does not have the requirement to model to
this fidelity. There is the possibility that this capability
will be added to the SSTF in the fuiure. For this reason
the contact detection model is being developed with
maintainability, modularity, and . upgradeability in
mind. -

an

Summary

The prototyping effort discussed in this paper de-
scribes one solution to the problem of having one
image pass through another in a visual display. The
1G itself can not prevent this quickly enough to be un-
detectable to the human eye, so the computer calcu-
lating the movement of the object must perform this
function. The-algorithm already developed and tested
does have some limitations, but. we are working to
overcome these to provide a viable method for con-
tact detection and motion-modification in a real-time
simulation using object oriented techniques. The rou-
tines developed here are general enough to be appli-
cable in a variety of problems where an image genera-
tor separate from the simulation host is used to display

- objects that can collide with each other.

Acronyms

CCTV Closed Circuit Television

DOF Degree Of Freedom

EVA Extra—Vehicular Activity

L€} Image Generator

LEE Latching End Effector

MSS Mobile Servicing System.

MT . Mobile Transporter

ORU Orbital Replaceable Unit

OTCM QORU/Tool Changeout Mechanism

PDGF Power/Data Grapple Fixture

SPDM Special Purpose Dexterous Manipula-

tor
SSCC Space Station Control Center
- 8SF Space Station Freedom
SSRMS Space Station Remote Manipulator
System

SSTF Space Station Training Facility
References

1 Paul, R.P. lat th

B_ngg_m_m._ammrﬁ The MlT Press, Cam-~
bridge, Massachusetts, 1981.

2 Swokowski, E.W., Calgulus with Analytic Geom-
gtry, Prindle, Weber & Schmidt, Inc., Boston, Mas-
sachusetts, 1975.

