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ABSTRACT

While nothing in the foreseeable future appears capable of replacing the requirement of actual aircraft
flight in developing Air Combat Maneuvering (ACM) proficiency, the technology is now available to
augment actual flight hours with meaningful training from computer-based simulations. At the Aircrew
Training Research Division of the Armstrong Laboratory we have been developing several Artificial
Intelligence (Al) based approaches to augmenting pilot training in simulation-based ACM. Because
air-to—air combat is such a fast moving, complex task, automating (through Al) such tasks as
performance measurement and assessment can provide a very important enhancement to a simulation.
In addition, using Al techniques to create "smart bogeys" can provide a real boost in the training
- capabilities of a simulation. In this paper we describe our efforts to-create three Al systems (two based
- upon rule-based production system technology and one based upon artificial neural systems technology) -
and detail their strengths and weaknesses in providing pilet training in ACM. . Particular emphasis is given
to the lessons we have learned in applying Al in this rich, fast moving, and complex task environment.
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INTRODUCTION

Air combat training has a very high priority throughout an .

- Air Force fighter pilot's career.. Major Air Force time and
expense is dedicated to ensuring that .a fighter pilot is
prepared to meet the challenges of air-to-air combat. All
invelved in air combat training realize that real air-lo-air
combat expostire can be acquired only during times of open
-~ conflict. During peacetime, Alr -Combat Maneuveting
(ACM) is usually practiced through simulations of wartime
conditions:

Two types of ACM simulation are available for pilots.. The
first type of simulation is aircraft based, and is
represented by the Air Force Air Combat Maneuvering
Instrumentation (ACMI). In ACMI training systems,
instrumented aircraft are flown against each other while
the ACMI records and displays aircraft engagements for
later replay and debrief. Sensors continuously track and
download to computers on the ground such variables as
aircraft position, altitude, and attitude, as well as Kill
probabilities for each shot. Ground-based computers
store the data for subsequent debriefing. The debrief is
usually provided on ground-based computer graphics
stations which show various views of the combat situation
as well as some form of performance measurement.

The second type of simulation is the ground-based
. simulator. These typically take the form of an aircraft
cockpit enclosed in a large domed display-screen. Aircrews
“fight” an adversary which is displayed on the surface of
the dome. The adversary aircraft is “flown” either by an
instructor at the simulator control consale, another pilot in
a networked simulator, or driven by a computer. System
computers track variables -such as aircraft positions,
states, control activity and weapons releases during a
scenario for subsequent debriefing.

Both aircraft and ground-based simulations require that
some form of feedback to pilots (usually in the farm of a
debrief) take place. One can ses that because air-to-air
combat is such a fast moving, complex. task, automated
performance assessment and feedback can be a powerful
addition o the simutator system. In fact for aver a decade,
- automated performance measurement systems have been &
required feature of many modern training simulators
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(Semple et al., 1981). However, there hava baen occasions
where they were less than bensficial due to poor design or
inconsistent application {Vreuls and Obermayer, 1085).
Never-the-less a real obligation which training and
performance technologists. have, is the obligation to
provide pilots with quick and appropriate assessments of
their performance. -

ACM PERFORMANCE ASSESSMENT IS NOT EASY

Trying to deterinine how well or how poorly a pilot is
performing air-to-air combat is not an easy task. Kelly
(1988) indicated some of the major challenges facing
performance technologists as they attempt to come up
with measures of ACM performance. - He determined that
three key factors make ACM performance measurement -
hard. These factors are; (a) no fixed profile, (b) ACM is
highly reactive in nature, and (¢} differing aircraft require
differing ACM tactics.

No Profile

According to Kelly, most empirical aircrew performance
measurement work has been conducted for instrument
flight or other specific maneuvers whers the desired fight
profile can be established rather easily before hand. In
these situations, performance can be easily described and
criteria can be established through observing deviations
from the desirad profile. In ACM, because thers is no such
thing as a fixed profile. Performance criterla are

- ambiguous and constantly shifting.

ACM is Reactive
ACM is a highly dynamic and reactive activity. Kelly states:

The dynamic relationship between the various
aircraft in an ACM engagement is constantly
changing as each pilot maneuvers in response to
ong or more other pilots. The resulting
performance is a composite of the behavior of
multiple pilots in multiple aircraft with multiple
-and often mutually exclusive objectives. It is
impossible to obtain a pure measure of the
performance of a single pilot in isolation form the
others. (p. 497)



‘Different Tactics For Different Alrcraft

Tactics -are quite different for different pairings of
aircraft. Subsequently pilot behavior will change as
different aircraft are encountered. - Often measures are
taken which compare the maneuvering performance of one
pilot's aircraft against the design capability of another’s.
However, even this technique fails to capture the essence
of ACM such as “gamesmanship” and “intimidation.”

OUR PROGRAM OBJECTIVES

At the Aircrew Training Research Division of the
Armstrong Laboratory we have been developing several
Artificial intelligence (Al) based approaches to
augmenting pilot training in simulation-based ACM.
Bacause air-to-air combat is such a fast moving, complex
task, automating (through Al) such tasks as performance
measurement and assessment can provide a very important
enhancement to a simuiation. In addition, using Al
techniques to create "smart bogeys”™ can provide a real
boost in the training capabilities of a simulation.

This program grew out of a Program Research and
Development Announcement {PRDA) which appeared in the
Commerce Business Daily of 2 January 1988. The
announcement stated “The purpose of this effort is to
develop and validate an expert model of pilot decision
making in air combat maneuvering (ACM). ... The system
shall be capable of providing ACM dacision-making training
at the transition or continuation level ..." Basically, we were
interested in answering three questions; (a) could expert
system technology be applied when monitoring pilot

- performance, (b} could an Al based model of pilot decision
making be created, and (c) could an Al based system
provide pilots with diagnostic performance feedback. In
addition we were inferested in creating tools for future
research in these three areas.

Several organizations submitted technical proposals for
our review. and evaiuation. Based upon such criteria as
technical expertise in the figld, understanding of the
problem, and soundness of the approach, several separate
proposals were selected. Three are selected for
discussion in this paper. These proposals were submitted
by Ball Systems, Merit Technology, and Vreuls Research
Corporation. Two of the projects used an expert sysiem
(rule based) approach (Vreuls & Merit), while the cther
used a neural network approach (Bali Systems).

Following is a review of each of the projects, the products
emerging from them, and an assessment of the relative
strengths and weaknessas of each product,

RULE-BASED APPROACHES TO ACM TRAINING

In the world of artificial intelligence, the term “rule” has a
more restricted meaning than it does in ordinary language.
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Here it refers to a formal way of representing
recommendations, directives, or strategies. Rules are
usually stated in the form of IF-THEN statements like
those shown below.

[1] | speed advantage of ownship over the target ship
is graater than 110
Then display “Speed not adjusted properly.”

[2] HGClis not available
and FORMATION OF THE ENEMY is “Bearing/
Echelon”
and FIRST TARGETATTACKED is #1
and CLOSEST TARGET is #1
Then set SELECTED CORRECT TARGET to true

In a rule-based expert system, the domain knowiedge is
embodied as sets of rules that are verified against an
assembly of facts or knowledge about the present
situation. When the IF portion of a rule is fulfilled by the
facts, the execution designated in the THEN segment is
performed. When this happens, the rule is said to fire or
execute.

Afmost all rule-based expert systems have an inference
engine. An inference engine contains an interpreter that
decidas how to apply the rules to infer new knowledge and
some sort of scheduler that decides the order in which the
rules should be applied (Waterman 1986). [t is the

- inference engine, in combination with the rule base which

makes the sxpert system “artificially inteligent.”

Following are two systems which use a rule-based expert
system to train ACM-skills.

OBSERVING SYSTEM FOR CRITIQUE,
ADVISE AND REVIEW

Vreuls Research Corporation (VRC) created an expert
system which would provide a critique of a pilot's decisions
about and abiiity to perform a “haseline stern conversion
intercept” (Gray & Edwards, -1991; Edwards & Hubbard,
1991). Their system, the Observing System for Critique,
Advise and Review {OSCAR) is designed to be used in a
debrief setting, after a student pilot has flown an
Intercept.

The Critiquing Approach

A usual approach to designing an expert system is to
create a program which simulates the expert's decision-
making process. [n contrast, a critiquing approach does
not atiempt o replicate an expert's decision making -
process. Instead, the system criliques it, discussing the
pros and cons of the student pilot's approach and
compares and contrasts it with alternatives which might be
reasonable or preferrad., -
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Figure 1.
Window Based Logic (adapted from Obermayer, 1991)

The inspirafion for this kind of expert system is a medical
- diagnosis system called ATTENDING (Milier, 1984).
ATTENDING instructs medical students in anesthesiology
by critiquing students’ plans for anesthetic management.
it “presents the student with a- hypothetical patient about
to undergo surgery and analyzes the management plan
devised by the student.... The critique produced by the
- gystem has the form of commentary, typically four or five
paragraphs of English text. ATTENDING was developed
at the Yale University School of Medicine and reached the
stage of a research prototype.” (Waterman, 1986 p. 274)

Obermayer (1991) holds that the following benefits can be
 obtained by such a system: (a) The approach casts the
computer in the role of the user’s helper, rather than a
possible adversary, (b) the user must think through the
problem, making him an active participant, rather than a
casual observer, {c) because there is no “right way” to
perform the task users can form their own idiosyncratic
technique, {d) nuances, which can be difficult to anticipate
and quantify, can be addressed, and (g) since the computer
is playing a secondary role, it hands over the major
- instructional obligation to the student and instructor. This
way the system merely helps the student and instructor
evaiuate and optimize the approach taken.

Performance Measurement

While it is desirable to cast the expert system as an ally to
the student it is never-the-less a fact that the system
must be able to-critique a student's proficiency. To do so
it must be able to measure and assess a student’s
performance. Consequently, the creation of OSCAR
necessitated addressing several issues cenirai o per-

84

formance measurement, including automated performance
measurement, near-real-time measurement, performance
diagnosis, and measurement of expert performance
(Vreuls and Obermayer, 1985; Obermayer, 1991). Part of
OSCAR’s performance measurement system was based
upon a bask-looking windowing approach with lagged logic.
Figure 1 shows that this technique works by buffeting a
sufficient amount of informafion into 2 window. When
sufficient data are collected a decision can be made as fo
what the student was doing. In actuality, this technique
takes two passes at the recorded data. The first pass
determines what the students actions were, the second
pass assesses the students performance.

The actual student critique is created by running the
performance data through a commercially available, rule-
based, expert system shell. A major portion of developing
OSCAR was determining the rutes (termed knowledge
engineering ) for critiquing air intercepts. Al of the
infermation used in this knowledge engineering effort was
obtained from unclassified sources such as the current air
intercept tactics manual {Department of Defense, 1989).
The rules were then reviewed by subject-matter. experts
to determine their accuracy and validity.

Performance Feedback

OSCAR uses a computer generated display to provide
feedback to students.. As seen in Figure 2 the computer
display provided guite a bit of information.. For example -
the top of Figure 2 shows that students were presented
with a radar display and aircraft variables as they
occurred -during the intercept scenario. In addition
students could view a plan-view and a horizontal-view of
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Figure 2.
OSCAR Screen Display (from Obermayer,1591)

the intercept. These are familiar views for student pilots
and they have relatively lithe problem in integrating the
information form these three displays.

The bottom of the screen presents a time-line display.
Students can replay any portion of the intercept scenatio
* by pointing (with 2 mouse) at the timeline.

The middle of the. screen presents the actual critique
information. This is found in the left box. In the middie
box students can see additional information such as
unfamiliar terms, general rules of thumb, etc. The box on
the right contains the actual rules which were used to
determine the narrative found in-the critique box.

Sirengths/Weaknesses

A preliminaty evaluation of the OSCAR system was
conducted at the 58th Tactical Training Squadron, Luke
Air Force Base, AZ. Data were collected from low time
students (students with very hittle radar or intercept
experience), high time studenis (students with a good
foundation in air intercepts and are.advancing info
multiship tactical intercepts), and instructor pilots. All
cafegories of OSCAR users fated the system very highly.
In fact the more instructor pilots used the system, the
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higher thay rated it {Obermayer, 1991). From this one can
assume that the more instructor pilots used OSCAR 1he
more they were able see how it would unburden them- and
allow students to learn on their own.

One serious drawback was the fact that OSCAR only does
its crifiquing after the intercept is performed. Students
were first required to perform an intercept on an Alr
Intercept Part-Task Trainer {Gray & Edwards, 1991;
Edwards & Hubbard, 1981).. Then they had to wait for
OSCAR o read the data and create the critique. This
waiting period could be as long as 5 to 7 minutes. Some
students felt that it was a real drawback that the system -
took as long as 7 minutes to come up with a critique. '

Another refated weakness of the system was the fact that
they had to wait at all. Some students wanted to be able
to have a critique in real time as they were flying. Others
wanted to be able to start the intercept again at the point
where an error occurred.

ACM EXPERT SYSTEM TRAIRER
Metit Technology Inc. created an expert system which

would give a.student pilot feedback during a simulated
- ACM exercise. According to Bechtel (1992) the “ACM
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Figure 3.
ACMEST Configuration (adapted from Bechtel,1992)

Expert System Trainer” (ACMEST) was designed to
provide the following components:

- a dynamic, man-in-the-loop, real-time simulation with one
pilot flight contral over realistic fighter aircraft models
and autonomous. goal-directed (computer}) control of
adversary fighter aircraft models (models to include
realistic flight equations, sensors and weapons);

- graphics simulations with displays capable -of indicating the
ralative position and gaometry of up to three aircraft
simultansously from any perspective (including cockpit
out-the-window displays with realistic head-up display
{HUD) symbology);

- a knowledge-based ACM ‘tactics planner capable of
integrating the cument situation, training cbjectives and
an expert model of offensive and detensive pilot decision
making to determins the best course of action for the
student pilot to follow at any given point in time during the
simulated mission; and

- a computer-aided instructional {CAl) subsystem capable of
comparing the pilot-selacted and “school” courses of
action, ascertaining the differences, and preparing a
training plan of en-line, scenario:replay and posi-flight
tutorial material. (p. 2)

The Coaching Approach

instead of using a debrief approach like OSCAR
{above), ACMEST is designed to provide an on-line,
interactive coach to student pilots as they learn air combat
manieuvers. It is designed to: a} coach fighter pilots to
perform hasic air combat maneuvers, b) recognize
situations in which each maneuver is appropriately applied,
and ¢) learn the critical decision process likely to be used
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during air combat. The system continuously evaluates
student pilots to determine their level of proficiency and
automatically informs them of critical departures from
expected performance.

This coaching is done by displaying textin a message bar on
the ouf-the-window view whenever student pilots’ actions
diverge from what the expert system considers to be the
*correct” actions. - All the expert coaching in ACMEST
oceurs during the simulated flight, as though an instructor
pilot is looking over the student's shoulder.

Performance Measurement and Feedback

Figure 3 describes the basic process which by which
ACMEST is “flown.” The left side of the figure
represents a fairly straightforward implementation of a
moderate fidelity, man-in-the-loop flight simulation
system. The right side shows however, that there are two -
additional components which enable ACMEST to provide
expert system based ACM coaching. - First, ACMEST
employs an expert adversary. This is a "computerized
behavioral model of of a skilled pilot” (Bechtel, 1882). In
ACMEST this expert adversary a - self-contained,
production rule-based, expert system. This adversary
model has the ability to contral a second simulated aircraft -
and can fly as an intelligent opponent to the student pilot.

Second, ACMEST incorperates an instructional-expert into
the system. ‘As Figure 3 shows, the instructional expert
receives situation updates from the student pilet through
the simulation loop. This information is fed directly to two
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expert subsystems, the ACM Expert and the Coach. The

ACM Expert is a production rule based mode! of an ACM

competence. This expert knows what to do and can
product the correst actions in any air combat situation for
which it has rules. As situation updates come to the ACM
Expert, it produces a set of recommended “correct’
actions. These are compared with the actual pilot actions

-in a difference detector.

The Coach subsystem is an expert system which can
provide training feedback to student pilots. This is done
by comparing the differences between the ACM expert,
the cumrent-model of the student, and current pilot actions.
Once actual pilot behavior has been compared with ideal
behavior {faking into account the present ability and

-understanding of the pilot as contained in the student

model) the expert coach produces instructional actions.

. These can “run the gamut form no cument action through

suspension of the simulation and presentation of tutorial
text.” Most frequently, the inskructional action selected is
the display of one ar more “hints” to the student as to the
proper course of action (Bechitel, 1992).

Strengths/Weaknesses

Perhaps the -greatest strength of this effert was in
finding that a real-time, rule-based expert system could
be implemented in a simulation setting. It has generaily
become a rule-of-thumb that production system based
inferencing can not keep up with an evolving situation such
as found in real-time ACM. -Conventional wisdom holds that
the iule base inference engine would just fall further and
further behind as the flight/fight progressed. ACMEST
however, showed that a 386 PC was able {0 support
multiple aircraft, rules of expertise, an expert coaching
system, and at the same time port graphics fo a dedicated

_graphics:machine. Given the fact that a 386 class PC was

“state-of-the-art” when this project was started, it is
exfremely encouraging to contemplate what could be
accomplished in light of loday's desktop computers.

A second positive result of this effort was the product.
Students now have a real time simulation which can coach
them through the rigors of ACM training. - They need not
be dependent on after -action reports, debriefs, or post-
mission critigues. Instead it has been shown that a
simulation can incorporate expert coaching directly into its

interface.

The above optimism needs to be tempered however, with a
few caveats. First, it should be noted that the interface
between student and expert coach does not seem optimal.
As presently implemented, the coaching system prompts
students through a text block on the simulater screen.
This can be a major drawback because reading text on the
screen requires considerable atiention and cgn draw
students' focus away from where they should be logking.
At one point ACMEST developers actually disabled the
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text critique and instead presented students with
synthesized speech instead. They found this to be even
more distracting than text but they speculated that it was
due to the poor quality of voice synthesis systems which
were commercially available at the time.

Perhaps ACMEST's greatest weakness is the fact that it
Is a rule-based expert system. While the developers were
able to successfully axtract knowledge of ACM tactics
from subject matter experts and from documentation such
as Shaw (1985), their restis are still a bit mixed.

First, it showld be recognized that extracting ACM
knowledge from fighter pllots and structuring it as a set
of if-then rules can be a daunting task. 1 requires a
thoroughness that can be nearly impossible to achieve. In
terms of ACMEST, the knowledge engineering effert paid
off with 2 usable goaching system. However, that coaching
system only scratches the surface of a real ACM experf's
knowiedge base.

Second, as the knowledge base expanded info more and
more specialized tidbits of information, it became
necessary to stretch the limits of a rule-oriented
representation technique. The developers noted that:
*oftentimes we found it necassary to write rules which
saem unnecessarily convoluted or strained.to enable some
necessary interface.” (Bechtel, 1992)

Third, rule-based. expert systems are notoriously brittle.
That is, the system is only an expert in the limited domain
for which nules have been developed. If an expert system is
given conditions for which no rules exits, it will simply fail
to function properly.  While ACMEST has been well
thought out, and the rule base is quite involved, it will alse
exhibit briltle tendencies when presented with air combat
conditions it was not explicitly programed fo address.

NEURAL NETWORK APPROACH TO ACM TRAINING

The above paragraphs point out that rule-based expert
systems nave several disadvantages which may make ACM
training less than opimal. What is needed is an more
robust technique for acquiring ACM knowledge and a way
to “program” & system which alleviates the problem of
expert system brittleness. The field of Artificial Neural
Networks, (also known as Connectionism and Artificial
Neural Systems) has shown quite a bit of promise in
overcoming. some of the more intractable elements of
simufating intelligent behavior {Gallant, 1988; Crowe,
1991). First, neural networks make it easier for knowledge
engineers to overcome the knowledge acquisition
bottleneck since they don’t need to gererate precise sels
of rules. Instead neural networks leam o copy the experts
actions and to correct their own mistakes as they “leamn.”.
Second, neural networks can be set up t0 be extremely
fault tolerant. That is, they can trained to respond with
reasonable behaviors despite having incomplete knowledge,
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or noisy data. Uniike rule-based expert systems, neural
networks are even able to respond gracefully when they are
presented with situafions which they have never seen
before. Finally, neural networks seem 1o be more suitable
for real-time simulation based systems. As Crowe (1991)
points out; “This is because, unlike the training process,
which may require many iterations of example data, a
response to input requires only a single feed-forward pass
through the network with a consistent ime requirement. *
(p. 305)

Following is a description of an ACM training system which
is based upon neural network fechriology.

ACM TRAINER EXPERT SYSTEM

Ball Systems Engineering Division created an artificial
neural system which would produce realistic one-versus-
cne air combat maneuvers under “within visual rangs”
tactical situations. This system is called the ACM Trainer
Expert System (ACMTES). According to Roorda and
Crowe (1992): .

At the implementation level, the overriding questions
is: How can neural network technology bast be
applied to bring about new solutions in the simulation
of ACM decision making? The goal of this effort was
to create a system which takes situational data as
input and combines it in the proper way to produce a
‘raasonable and realistic maneuver as output. Input
data takes the form of relative geometry and
spécilic aircraft parameters which the pilot might use
and would -have available during a real ACM
engagement. The chosen form of output contvol is
the amount of heading, pitch, and: velocity control
required -throughout the flight envelope. The
resulting system provides a working framework for
the evaluation of neural networks which simulate air
combat maneuvering and allows for the extension of
these results to other simulations of expertise and
training environments. {p. 3}

ARTIFICIAL
NEURAL
NETWORK

RESPONSE ‘APPROPRIATE
FEATURE MANEUVER
* VECTOR

Figure 4.
ACMTES Approach to Neural Network Modefing (adapted from Crows, 1991)
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The Neural Network Approach
Figure 4 shows the basic approach by which ACMTES was

. created. As shown in the figure, the neural network

“earns® to associate a tactical situation io a set of
appropriate .maneuvers. This learning process is
accomplished by showing the neural network the tactical
situation by means of an input database. The neural
network then defines a set of outputs which it deems
appropriate for the situation. The network is then given
the correct solution to the problem and is instructed to
modify its underlying structure so that its output will
malch the correct solution. This process of seleclive
approximations continues until the neural network arrives
ata solution which closely matches the optimal solution.

The underlying network is constructed as a hierarchy of
layers. Each layer contains a number of simulated neurons,
known as processing elements (PEs). Figure & shows the
structure of a typical three-layer network. The network
“learns” by changing the weights between connected PEs.
From this one can see that the neural network is not
programmed conventionally. Rather, experfise is arrived
at by the weighted connections of the network's PEs.

in the case of ACMTES, the initial training data was
obtained from a series-of scenarios flownt on the Simulator
for Air-to-Air Combat {SAAC) at Luke AFB. All the
scenarios were flown by active-duty Air Force Pilots
against the same adversary in F-16 versus F-16
engagements. In order to obtain enough training data, long
scenarios were selected over short ones. (This fact will
become important when the systems strengths and
weaknesses are discussed below.)

TRAINING WITH ACMTES
Once the ACMTES neural net is trained on F-16 ACM

- maneuvers it can be used as a training tool itself. Figure 6
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shows a representation of the computer display of
ACMTES when it is-used in training. As can be seen; the
computer disptays important parameters of the own and
. adversary aircraft in both alphanumerical and graphic
formats. The graphic portion of the display shows several
views of an unfolding ACM engagement.: In Figurs 6 the
computer is showing a situation in which two aircraft have
been in a turning, descending fight. The engagement
begins with each:aircraft separated by two nautical miles

with an altitude of 15,000 feet, flying straight toward
each other at. 500 knots. Upon passing each other both -

~aircraft tum east and start to engage in what appears to
be a diving-rolling scissors factic. Both aircraft exchange
an altitude advantage while descending toward the ground
and terminate the engagement at about 500 feet in order
to avoid hitting with the ground.

Students can use the computer keyhoard or joystick to fly
one of the aircraft against the neural network for practice
in leaming to predict what a "smart bogey” will do. They
c¢an also It both aircraft be controlled by neural nets and
leam from the ensuing engagement what are {and what are
not) appropriate maneuvers.

Strengths/Weaknesses

Evaluation of the ACMTES system showed not only that a

- neural net could leam: ko perform air combat maneuvers but

- that it could learn o generalize to the point where it could
perform well even under novel tactical situations.
ACMTES neural networks have shown some unique
capabitities to overcome some of the more difficult aspects
of knowiedge engineering. It has shown that it can produce
robust, generalized solutions even under novel
circumstances.

- By capluring and simulating- the knowledge and skill of
human pilots in a neural network, students are fumished
with expert training devices which have the look and feel of

-real air-fo-air combat (Crowe, 1981). In short, it seems

Cutput 2
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Structure of a Typical Three Layer Network

that neural network based: approaches show a great
amount of promise in the area of AGM training.

Still, there are some weaknesses of the system which
should be addressed. First, it should be noted that
ACMTES is “flown™ from.the keyboard of a 386 class
personal computer. In addition, as Figure & shows, the
ACMTES screen displays are all from a perspective
extrinsic from the ownship. This makes “flying™ ACMTES
extremely difficuit. it needs to be incorporated into a
flight simulation package which is more ergonomically
designed.

Second and more importantly, ACMTES shows that it is
crucial to give the correct training data to neural networks
(both artificial and human). Recall that most of the SAAC

. fraining data upon which ACMTES is based came from long

scenarios as opposed fo short ones. The developers
wanted to get the most data possible so that ACMTES

. could be trained in a wide variety of tactical situations.

However, the developers may not have realized, (or

-perhaps realized too late) that long scenarios are
- qualitatively different from shorter ones. Leng scenarios
tend to tumn info stalemaies where neither side wins. -

Short engagements ustsally show a clear victor very quickly.
Because ACMTES was trained with stalemate type
engagemenis it exhibits the tendency to opt for
stalemates itselfl Under current training, it seems to be a
very benign fighter.

Actually, ACMTES seems to exhibit another training
problem. It seems that the SAAC data contained no
engagements where the opponent is not maneuvering. in all
scenarios, both aircraft engaged in very drastic, high
speed, high - g, combat maneuvers. Because ACMTES
never “saw” nonmaneuvering targets: during training, it
does not exhibit a capability to. deal them in the simulation.
Instead, if. an opposing aircraft does not make an

. aggressive move against ACMTES first, then ACMTES
-will not respond. 1t seems that a major character trait of
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ACMTES Display (adapted from Roorda & Crowe, 1992)

the most successful combat pilots, “aggressiveness,” has
been trained out of ACMTES.

A third weakness of ACMTES is that fact that neural
networks are “black boxes.” Unlike conventional expert
systems, where one can examine the *rules” and-determine
what the expert system is “thinking,” a neural network is
not readily open to examination. if one werg to examine the
“insides” of a neural network all one would see arg numbers
representing weights to other numbers representing PEs.
Thus ACMTES does not lend itself to examining the critical
decision making geing on just under the surface of an
expert system. In certain training situations, it can be
advantageous to see what an ACM expert is thinking or how
it is arriving at a given determination. -With ACMTES this
is not easily achieved.

SUMMARY

While nothing in the foraseeable future appears capabie of
replacing the requirement of actual afrcraft flight in
developing ACM proficiency, the technology is now available
to augment actual flight hours with meaningfut training
from compuier-based simulations. At the Aircrew

- Training Research Division of the Armstrong Laboratory
wsg have been developing several Arfificial Intelligence (Al)
based approaches to augmenting pilot training in
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simulation-based ACM. Because air-to—air combatis such
a fast moving, complex task, automating (frough Al) such
tasks as performance measurement and assessment can
provide a very important enhancement to a simulation. In
addition, using Al techniques to create "smart bogeys™ can
provide a real boost in the training capabilities of a
simuiation.
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