IS OBJECT-ORIENTED DESIGN SOUND
SIMULATOR SOFTWARE ENGINEERING?

David C. Gross and Lynn D. Stuckey, Jr.
Boeing Defense & Space Group
Huntsville, Alabama

ABSTRACT

Every advance of software technology has led to the discovery of new barriers. The introduction of a
new software technology expands the dornain of solvable problems while revealing an undiscovered
country of. unsolvable problems. Generally, the advances have been. revolutions which changed the
paradigms defining common practice. Each revolution has threatened the existing order while it offered
new power. The effect of this phenomenon has shaped the histary of software technology inte a series
of searches for a "magic bullet”.. What is the new approach which will break the latest barrier down?
There are problems with such a mind-set. One is that we come to expect paradigm shifts based on the
. calendar, and not necessarily on real progress. How do we decide if a technique is a real advance or a
passing fancy? Another is that we used to integrate new philosophies into our paradigms, where now
we adopt complete new paradigms, and discard what has gone before. -

The current candidate for the holy grail is object-orientation. Since simulation is a software technology
consumer, we view the possibilities of object-orientation with interest and concern. What problems will
an object-orientation approach help us resolve and how? This paper presents a software engineering -
- examination of the effect of object-orientation on simulation software. We review the fundamentals of an -
object-orientation. We expand on this understanding by discussing a contrived example of simulation
soitware. Having defined the object-oriented methodology, we review the goals and principles which
define software engineering, as a basis for our evaluation. Finally, we analyze the effects of an object- -
orientation for simulation software and draw conciusions about its utility.

ABOUT THE AUTHORS

David C. Gross is a software systems. engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has worked in all phases of simulation and training systems from require-
ments development through delivery. He is currently involved in basic research for software engineering
and applied research for system simulation. Mr. Gross has a Bachelor of Science in Computer
Science/Engineering from Auburn University and is working toward a Master of Operations Research at
the University of Alabama at Huntsville. His thesis investigates the utility of high level languages such
as C++ and Ada for simulation. '

. Lynn D. Stuckey, Jr. is a software systems engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has been responsible for software design, code, test, and integration on
several Boeing simulation.projects. He is currently invoived in research and development activities deal-
ing with software development for weapon and threat simulators. Mr. Stuckey holds a Bachelor of Sci-
ence degree in Electrical Engineering from the University of Alabama, in Huntsville and helds a Master
of Systems Engineering from the University of Alabama, in Huntsville.: His thesis presents a systems
engineering approach to software development.

©1992. The Boging Company. All rights reserved.

404

IS OBJECT-ORIENTED DESIGN SOUND
SIMULATOR SOFTWARE ENGINEERING?

By David C. Gross and Lynn D. Stuckey, Jr.
Boeing Defense & Space Group
Hunisville, Alabama

INTRODUCTION

Object-Oriented is one of the hotiest topics
in software because it is touted as the latest solu-
tion to the "software crisis”. We all know that we

are in a crisis because of the flood of articles tel-

ling us so. The difficulty, like many of our
country’s social ills, is that while there is much
consternation about the crisis and no shortage of
- proposed ideas, there is very litfle progress
toward implementing a solution. On the cther
hand, companies and individuals are getting rich
selling silver bullets to slay the beast. In the
case of software, specialists are rushing count-
less papers, books, and products to take advan-
tage of this heavy interest. Bhaskar has
- observed that the phrase object-oriented, "has
been bandied about with carefree abandon with

much the same reverence accorded ’mother- .

hood', 'apple pie’, and ’structured program-
ming’™.[1] The presumed motivation for the rush
to object-oriented is improved productivity. How-
ever, little of the discussion has revealed the sup-
posed improvements, arguing that methodology is
good simply because it is object-oriented, and
any methodology change is good.

A methodology is a collection of cooperating
methods, guided by a philoscphy. A method is a

disciplined process for producing products. Many -

. of the so-called software ‘methodoiogies, bandied
about in the marketplace of ideas, are not metho-
dologies at all. They either (1) do not contain
recommendations about how to actually do things
or (2) they are o0 detailed 10 be ussful. A
methodology should spell out general steps to fol-
low. It should be specific enough to give gui-
"~ dance but be general enough to apply to most
software applications. It should not to be taken
as a step-by-step way io develop entire systems.
All-encompassing recipes for how to get the work
done simply do not exist

405

" Object-Criented Design (OOD),

The software industry has long concentrated
on the evaluation of code as the only key 1o qual-
ity. However, the other industries have learned at
the hands of the Japanese that you can not
"inspect-in quality”, you must "build-in quality”.
By definition, we have o understand the process
by which a product is made before we can
improve it. We give lip service 1o understanding,
and then improving, software methodologies. -
Why? The problem is that introduction of a real
methodology into the production of software
would make it a controlled engineering process
instead of a glorious dark room hack. The focus
needs to shift to evaluating the software-process,
not just the sofiware product. It is not clear that
object-orientation is the methodology improve-
ment to achieve this end. We must evaluate it
against identified measures of effectiveness. L

- Software - engineering provides the meas-
ures of effectiveness we - require to evaluate
methodologies. 1t is an appropriate basis for
evaluation since it is an atfitude toward - software
technology, not a specific technique.

REVIEW OF OBJECT-ORIENTATION

Object-orientation is. an attitude (or mindset)w '
to large scale software development. Object-

oriented methods exist for every phase of the

software development lifecycle, hence the interre-
lated terms of Object-Oriented Analysis (OOA),
and Object-
Oriented Programming {(O0F). Adding to the
general confusion, OOD . is often used to mean
the entire scope of objectoriented methods.
Despite the breadth of scope for objeci-oriented
methods, there are a set of concepts and tech-
niques that define object-oriented. It is applica-
tion of these techniques that makes a thing
object-oriented, not the use of particular
languages or tools.

Even so, the discussion will occasionally
require: examples which we will provide in the
C++ programming language. Ca++ is particularly
relevant to training system simulation for three
reasons. First, the increasing popularity of G+
has provoked the United States Air Force into
studying the lifecycle effects of C++ versus Ada.
.Second, some military simulation customers are
considering requiring G++ for a project’s program-
ming language. Finally, the object orientation of
C++ is an overlay of an existing language,
namely C. The infroduction of object orientation
into Ada will be much the same in Ada 9X.

‘Objects

The term object means just what it always
has -- something intelligible or perceptible by the
mind. As such, in a piece of sofiware, an object
‘will be the focus of attention, thought, feeling, and
efiort. The items designated as objects in the

software should have some clear relationship to-

the "real” world, that is, they should be the items
which an expert in the field (but not necessarily a
software expert) would expect to find. For exam-
ple, if the software is to model an eigphant, we
would choose the first layer of objects as legs,
ears, nose, tongue, skin, etc. This is in contrast
{o the classical design approach based only on
functional requirements. :
Nevertheless, the fundamental implementa-
tion of each object will be procedural; an object-
orientation does not spare us the burden of telling
the computer how and what to do. Algorithms in
object-oriented design do not look much different
than other designs. Much of the change is in
selection of names, and the way functions are
used. Historical work in computer science has
addressed this fundamental problem — how do
we get the computer {0 do what we want? Itis

the success of these efforts which has led to a_

new problem, not how to tell the computer what
to do, but how to coerdinate the different pieces
of software to make a unified whole?

Techniques

Object-oriented designs employ certain
techniques. - Unfortunately, there is no definitive
set of techniques. The set discussed here are
generally accepted. Object-oriented techniques

4086

- fall into two groups; (1) the fundamental definition
‘of objects and (2) the manipulation of those

objects. Object definition applies the technique of
encapsulation. Objects are manipulated through
the techniques of inheritance, message passing,
and dynamic binding.

The first technique, encapsufafion is the

- concept that the details of an implementation are

hidden from its users. Borrowing from our
elephant example again, although we suspect
that its infernal processes are extremely compli-
cated we do not understand them, nor do we
need to. Monitoring and -controlling its ‘internal
processes are the elephant's problem -- unless of
course we are the 200 keeper. Encapsulation
separates users from owners, ensuring that users
will interface with the object only at the intended
interface points. Figure 1 illustrates the concept
of encapsulation. In this figure, the shaded area
within the object represents hidden (encapsu-

- lated) details which are isolated from external

access. Manipulation of the object is possible
only through the external members which are
represented by the unshaded area of the object.

Object A

ObjectB

Figure 1

Technique: Encapsulation

The second technique, inherifance, exists to
better support reusability. The netion of inheri-
tance is that there is no such thing as an abso-
lutely new start. Most new programs are really
expansions or developments based on existing
implementations. Again, if we are attempting to
develop an elephant, and we already have built a

- generic mammal, would not this be a good place

to begin? The subsystems that an elephant
shares with all mammals are already designed,
built, and tested, and therefore all we need to
build is the. elephant unique subsystems. Multiple
inheritance is a special kind of inheritance, which
permits selection of which attributes and opera-
tions the new object wishes 10 inherit.

There is some debate as to what features
constitute "real” inheritance. This is to some
extent a conflict between the motivation of inheri-
tance (to avoid redeveloping the wheel) and its
implementation. Coad levies the following
requirements for real inheritance: (1) share data
structures (and instances of them) above, (2)
share methods (and static instances of them)
above, (3) ability to add new data structures, (4}
add, extend, or override methods.[3] Figure 2
ilfustrates the concept of inheritance. Objects B,
C, and D have.inherited operation I. Cbject D
can inherit either operation II-A (from object B) or
operation lI-B (from object C}.

T

Object A

Object B

EITHER
II-A orl-B

‘Object D

Figure 2

. Technique: Inheritance
The third technique, message passing,
addresses the problem of communication
between - objects. In a pure object-oriented
approach, the message - is. a selection of one of
the manipulations that an object knows how fo
perform. - Less pure implementations, such as.

407

C++, permit variable data passed to objects as
parameters. The thrust of this is that objects are
independent actors, which do not depend on the
state information of other objects. Figure 3 illus-
frates message passing. -

User

Object

Figure 3
Technique: Message Passing

[+ 1]
=
et
[n
-
o0
L
<
<
[+]
3
[=]
74
L]
o

Cbject C

- Figure 4
‘Technique: Dyhamic Binding

Figure 4 illustrates the final technique,
dynamic binding. It is sometimes cailed the most
powerful feature of object-oriented programming.
Dynamic binding delays the resolution of calls 1o

- specific names until run-time. The opposite stra-
tegy, static binding, is demonstrated in languages
such as Ada which resolve everything possible at
compilation. Dynamic binding permits the design
of polymorphic objects.. Objects are polymorphic
when calls to a single member method resuits in
different operations based on the class of the
caller. The dark shading on Figure 4 indicates an
object member which fulfills the user's require-
ment -- however, the actual object that fulfills the
requirement is resolved at runtime.

CONTRIVED EXAMPLE

At this point, the concepts of object-
. orientation may seem overwhelming. A walk-

through a brief example should ifluminate the

difierences and similarities between an object-

grientation and a more classical design approach. -
. The example is rather simplistic, but a discussion’

of the development of this software in terms of an
object-ariented approach should be beneficial.

The example chosen is the generation of
random variants. Simulations frequently model
effects according to random processes. Most
simulations require the capability to easily gen-
erate random numbers. [n addition, the models
may require a variety of probabilily distributions
(such as the uniform, the normal, and the
exponential distributions). Our contrived example
is the design of a collection of software fo provide
this capability for random efiects modeling.

How would an object-oriented approach
differ from the classic approach? The fundamen-
tal algorithms for computing the specific random
variate will not differ at all; the differences arise in
the partitioning of the design into components.

An object-oriented approach proceeds from
a different mindset. The first step is 1o identify the
objects involved in the system. Object
identification is not a trivial task. Most textbaok
examples deal with systems with a fairly obvious

set of objects such as traffic (cars, pedesirians,

roads, lights, etc) or graphics (pixels, circles,
polygons, etc). -But what are the objects in a sys-
tem of random variates? Random numbers dao
riot have correlations in the real world; we can not
feel, taste; or hear them. When this is the case
{(and it is in & surprising number of cases), it may

408

be helpful to imagine fictional machines which are
fulfilling the system requirement. In our contrived
example then, we can imagine a room of
machines, each generating a different random
variate.. Next, we identify the information each
machine must maintain to do its job, such as the
random number generator seed, the last variate,
and so forth. In addition, we must identify the
processes the machine must. do to perform its
job. In the pure object-oriented approach, we
must- treat the machine as an individual - actor,
capable of receiving and carrying out an assign-
ment without assistance. Just as in the classic
approach, we may identify parts of the machines
that can be grouped intio a new machine. The
information required by the machine will become -
the data members of the object. The processes
performed by the machine will become the
member functions of the object. And finally, the
machines used in common will become the inher-
ited classes of the object.

_ Figure 5 provides a graphical representation
of the "uniformVariate” class, which ilustrates the
class members available. Not explicit on this

uniformVariate | = randStream
l
nextUniform = |jnextRandom
|
currentSeed A
|
setSeed | B
|
+ Public *Private/Protectad
Members] Members
Figure 5

Class Definition in Contrived Example
drawing is the fact the uniformVariate inherits its

members from a more fundamental class,
"randStream”. The double box indicates
members which are inherited. The figure

distinguishes between: public' members, with
- external access, and private/protecied members.
Public class members may be publically inherited;
protecied members must be at most protected.
There is. a private member of the base class
randStream, namely the data member stream,
however it has no visibility at the class level illus-
trated. . Even so, the visible members of
randStream may access the private members of
randStream. The remainder of the class
definitions and elaborations fo meet the require-
ments of our contrived example are not shown,
but continue in a like manner. '

REVIEW OF SOFTWARE ENGINEERING

Goals

The first step in evaluating software is o
defineg the goals we seek 10 achieve. In our
evaluation, we have adopted the four goals of
software engineering, that have become the
standard for software: evaluation. These are
maintainability, efficiency, reliability, and under-
standability. Each of the goals is important, and
there is- a tension that exists between them.
. Gomplete victory for one goal frequently defeats
another. The goals ¢can only: be accommplished
through good design. They cannct be efiiciently
- added later.

Maintainability is measured in two ways: (1)
the degree of difficulty in continuing to use the
software in the face of changing equipment,
requirements, and personnel over the life of the
project, and (2} the ability to implement a con-
trolled change in the sofiware without adversely
affecting the rest of the system. Maintainable
software is desirable because the operational cost
of software can be significantly greater than the
development cost.

Efficiency is defined as the fact or quality of
being efficient; competency in performancs; the
ratio of work done or energy developed by a
machine or engine, efc., fo the energy supplied fo
it. In the software world, efficiency breaks down
intc two basic concepts: execution speed and
. memory usage.

Reliability is the probability that a system
will perform in a satisfactory manner for a given
period of time under specified operating

409

conditions. In software, religbiliiy means o
operate in a manner that satisfies the window of
normal operation without intervention. This satis-
faction includes the. ability to handle degraded
operation and a graceful handling of error condi-
tions. '

Understandability as a software goal is one
of the easiest to implement, but is most often
ignored. It is the quality of the map from the
software’s model of reality 1o the real werld. The
software is a diagram of the requirements, design
and implementation.

Principles

The principles of software engineering are
qualitative characteristics within the software that
help measure progress toward the goals. Just as
the goals, the principles matter in every phase of
the lifecycle. Abstraction deals with how one
views the system. The essence of abstraction is
fo extract essential properfies while omitling
nonessential details. Information Hiding is the
characteristic in software that certain details that
should not affect other paris of a system are
made inaccessible. Information hiding therefore
conceals how an object or operation is imple-
mented. Modularity is purposeful structuring of
the physical architecture of the software systen,
Modularity deals with how the structure of an
object can make the attainment of some purpose
easier. Localization helps to create modules that
are loosely coupied 1o the outside world and
cohesively strong internally.. It is concerned with
physical proximity of software components. Uni- -
formity simply means that the software utilizes a .
consistent notation and is free of any unneces-
sary differences. Confirmability implies that the
system is designed so that it_can be readily
tested. It increases the credibility of the design
by building validation into the code.

Evaluating Methodologies

Software has long been the darkside of
engineering. It required gurus and wizards to
develop software that worked. This was accept-
able_when the bulk of software was written in
assembly language and relegated fo small
micraprocessors in an insignificant part of a sys- -
tem. However, as software languages and

computers advanced, our software methodologies
have not. A methodology must be judged as to
its ability to infuse the software engineering princi-
ples into the software process and the resulting
software product. The evaluation must be
focused on the big picture. The lack of an overall
systems mindset has been a failing in methodolo-
gies from the onset of software development.

EVALUATION

Once object-orientation is understood and
the criteria for evaluation are defined, it is now
time to evaluate if object-oriented design is sound
simulator software engineering. Our experience
with software engineering techniques derives from
our work in various real-time systems, ranging
from flight crew trainers to desktop scenario simu-
lators to- embedded weapon computer systems.
The evaluation following arises from our experi-
mentation with Ada and C++ in these environ-
ments; The discussion raises the most general
effect of .an object-oriented approach, and briefly
touches on specifics in Cu-+.

. Before we launch into the structured evaiua-
tion, there is one general point that needs to be
made. The most important driver of the quality of
simulation software is the quality of the simulation
"map" to the real world. In fact, system simula-
tion is simply the construction of useful models of
real-world systems. These models cannot be
usefut if the map between them and reality is
obtuse or non-intuitive. The ability of non-
sofiware specialists to grasp and comprehend the
map determines the level of credibility of the

- simulation. As such,. an object-orientation would
seem to be the ideal approach for design of simu-
lation software. After all, the model’s map is the
transformation of real-world objects into software
objects. And this is in fact true, at least in the
case of the underlying philosophy of the object-
orientation” approach: However, some of the
techriques are less useful.

Software Engineering Principlas

Figure 6 illustrates how the object-oriented
techniques encourage application of the varicus
stated software engineering principles. -

Ohfect
Orlented

Technigque
TS e
ac® o AN

Software %0\5\1 ’ﬁ-‘ﬁ&e' A \c/
- Enginesering o 053%9 e

Principle 2 WO AN o

Abstraction X X

Information Hidin X

Modularity X X

Localizatlon X

Uniformity X

Confirmability x X

Figure 6

Principles Versus Techniques

The encapsulation technique is strongly
aligned with the software engineering: principles.
In G++, for example, each class member (data or
function) can be declared at three layers of
access: - private, protected, or public. Private
items are limited within the class, protected
members are visible within the class and inheri-
fors of the. class, and public members are visible
within the class, to inheritors, and o declarers of
objects of the class. This directly promotes the
principles of abstraction and information hiding.
The presence of encapsulation provides a vehicle
for implementing the modularity principle’s call for
varying cohesion within the software architecture.
Encapsulation fends 1o promote standalone

. testable units for confirmability.

Inheritance is something of a mixed bag.
Inheritance addresses the call of abstraction for
decomposition in levels, by building a defined
hierarchy of objects. An object which inherits

. depends on another, simpler object. However,

languages such as C++ provide “escape

- clauses”, such as G++'s "friend". It permits non-

410

members 1 access private and protected
members across class boundaries. This is a
direct violation of the abstraction, modularity, and
information hiding principles. In its favor, inheri-
tance promotes comfirmability when a class inher-
its a previously proved and tested simpler class.
However, ~ it can - dramatically increase
confirmability problems when unwanted functions
are inherited. All public members of the subclass
are inherited and accessible, even if the super-
¢lass is unaware they exist. This is patticularly
worrisome in the case of virtual functions (see
discussion. of dynamic binding below). The

linking calle to procedures at runtime.

capability for mulliple inheritance (inheritance

from multiple subclasses) further complicates the

problem of tracking unforeseen inheritance.
Message passing promotes a fully uniform

approach to object interface. By definition, it will -

also - promote loose coupling between object
layers in a hierarchy which works “toward modu-
larity. Message passing enforces the central
object-oriented assumption that objects are
independent actors, capable of completing any
assignment. " In its purest form, message passing
discourages the transmission of data in a mes-
sage simply relays an assignment to the object.
However, simulation cbjects ernulate a world of
tremendous complexity and interaction. In fact,
analysis of object interaction is frequently the
point of the simulation. Message passing

discourages cbject interaction. At low levels in-

the architecture, objects require access to large
amounts of data created by other objects (if they
are 1o incorporate a single design decision). At
high levels, the number of different assignments
which an object might perform can make the pos-
sible messages grow exponentially, if they must
be unique.

Dynamic ' binding delays ‘decisions” about

object-oriented articles feature it so prominently
that you might think that it will also write the code
for you. This (unfortunately) is not the case. in
C++, dynamic binding is implemented through the
inheritance of virtual functions. The notion is that

many functions at different levels in the class

Some .

hierarchy have the same conceptual purpose but -

different detailed implementations. For example,

if you know how to move a stick is it not obvious -

how to move a table (which inherits stick)? The
answer is no; although if the stick’s move function
is virtual, the table class will think it does know.

This kind of blind inheritance violates modularity

and information hiding. In truth, dynamic binding
sidesteps all the software engineering principles.

Software Engineering Goals

Encapsulation is a step toward the goals of
software engineering. ' It improves the quality of

the simulation’s map to reality, making software -

more maintainable. The ability to define the

members - of objects, and compare them against-

411

the real world increases understandability. Clever
use of encapsulation works to mitigate some of
the less desirable effects of other techniques.
inheritance can make the creation of new
software quick, particularly with small changes to
existing class hierarchies. However, inheritance

-increases the difficulty of controlling changes and

error propagation. Implicit inheritance decreases
the understandability of the software to a
engineer new to a class hierarchy. The inability
in some object-oriented languages 1o disinherit
means that classes will provide unwanted access
o members. T -

Pure message passing (no data) is not a
particularly eficient way to communicate between
low level objects. Low level objects generally
interchange data in order to reduce redundancy.
Message: passing ‘becomes more practical for
object interfacing as we move up the object
hierarchy. - However, it can be extremely
inefficient as the power and scope of high level
objects expands. Languages such as C++, which
support parameter passing.into member functiors
do not over-restrict object interfacing but neither
do they support pure message passing. Message
passing is a very reliable method for communica-
tion while it is ineficient.

Dynamic binding can result in unmaintain-
able, unreliable, un-understandable, and inefficient’
code. Blind inheritance of subclass virtual func-
tions can permit an object fo perform undesired
operations. - Delaying link decisions to runtime
can be grossly inefficient in execution time. After
all, the code to implement the operation had to
exist at some compile time, or it would not link at
run time either. The argument is made that
dynamic binding reduces the need io recompile
objects while editing code. On the -other hand,
languages like Ada attempt 10 encourage error
correction early in the lifecycle, when they are
cheap to fix. The tools to find and fix bugs are
almost always better at development workstations
than on simulator piatforms. The cost of test time
is always lower on a workstation than using a
multi-million dollar simulation to test code. And
the later an error is discovered, the more likely it

- is that the product will ship with the error because

there "was no tme or money io comrect it
Dynamic binding flies:in the face of these

- controller.

arguments. Dynamic binding is a cute feature
laoking for a problem that needs it.

- Pittalls

Some object-ariented implementations make
messages simpiy requests for action by indepen-
dent actor objects. However, many simulation
objects need to communicate their internal states
to other obiects or to some central information

missile site. If all it has is message passing for
inter-object communication, how will it alert other
objects (which it may not know exist) that it has
activated its radar? This creates the problem of
communicaiing state information between objects.
One way to get around this problem would be a
global common area -- which involves a well-
known loss of control. Another is for each object

Consider a model of a surface-to-air

to independently create the information it requires -

-- which is inefficient in terms of execution time
and space. The only acceptable solution is
parameter passing.

The unseen problem of message passing is
that it hides the control of objects inside every
object within the system that has visibility to the
object's messages. How then can a object con-
trol objects in a system when it does not know
they exist? A better approach is to separate the
physics, interfaces, and controis of each object --
an approach which suggests parameter interfaces
. and a hierarchy of cbjects.

The typical instantiation of an object creates
fresh copies of every member object - in¢luding
functions! GC++ permiis declaration of a siatic

member functions 1o avoid this problem. Care- -

less definition of object classes in a dynamic
environment, such as weapon system simulation,
can lead io.the creation of thousands of new
copies of objects. Notice that creation of an
object creates all of its explicit members, and iis
implicit members through inheritance.

Software engineers using languages which
support packages are used to seeing subprogram
hierarchies captured in code. However, these
higrarchies are a special subset of all possible
hierarchies, in that they resemble "trees”. Each
rtode in such- a hierarchy is the father of some set
of children, which can in turn be fathers of new
nodes. The child can not be the father of its

412

rAdvanced”

definition) - hidden.

father. In addition, such software engineers are
used to dealing with hierarchies at the "root”
(small end). Both of these rules of thumb are
turned on their head in pure object-oriented
designs. While package-oriented languages tend
to grow “fop down”, class hierarchies tend to
grow "bottom up”. Through forward declarstion
of objects, virtual objects, multiple inheritance,
and polymorphism, child nodes may in fact be the
father of their father! This can have the efiect of
leading to a new kind of spaghetti code. Classic
spaghetti code resulted from reckless jumping
around within a code segment (goto).
inheritance - fealures provide the
opportunity 1o jump aimlessly around class hierar-
chies. Is polymorphism the "goto" of object
oriented programming?

The implementation of object details is (by
While this generally imple-
ments a principle of software engineering, the
application of other object-oriented technigues
can led to inter-object thrashing. The principle of
message passing requires that threads of control
pass to objects to complete the tasks. The object

to which control is passed must complete the

operation before returning control. The possibility
of blind multiple inheritance may result in the ori-
ginal and the new object waiting for each other to
compleie a task. Depending on the architecture

implementation, this can lead o a rapid exhaus-

tion of the stack, or resource deadiock.

The pure object-oriented approach calls for -
objects to be independent, equal actors. How-
ever, this assumes that some object in the sys-
tem has the ability to request operations from

other objects, and_to continue to do so for the

duration of the simulation. Clearly, this is some

implementation of an “exscutive” object. Coad

[3] solves this by the creation of four different exe-

cutives: problem domain, human interaction, task

management, and data management. Given the

intense nature of the typical simulation model, we

would suggest a . further subdivision of the prob--
lem domain component intc "managers”. An

example would be a platform/projectiie manager,

an environment manager, a command manager,

and a scenario manager. Notice that extension of
this concept begins to look very much like the top

down architecture well supporied in Ada.

CONCLUSION

Of alf the monsters. that fill the nightmares of our
folklore, none lerrify more than werewolves,

because they transform unexpectedly from the

famifiar into horrars. For these, one seeks builets
of silver that can magically lay them to rest.{2]

Object-orientation is a specific way to
decompose a system design, and it is radically
disjoint with other approaches such as functional
decomposition, daia flow, etc. However, system

oriented languages to be purely virtual. But what
is the benefit of dynamic binding? 1t delays reso-
lution of names until run-time, which may reduce
some design effort at the cost of substantial run-
time penalties. Some claims. for dynamic binding
imply that it will generate code for you, but this is
not the case. The central issue is design
engineering versus ad hoc hacking.

Despite protestation to the contrary, object-

- orientafion applies many techniques developed

decomposition is just one phase of the system:

lifecycle. The real measure of any methodology
is its utility and effect throughout the lifecycle.
Many object-oriented authors tout it as
significantly reducing develcpment time in the
lifecycle. Perhaps, although this presupposes
access and willingness by designers to use cbject
hierarchies. We suspect the willingness is almost
certainly lacking, given the readily apparent reluc-
tance of software designers to paricipate in
cooperative. methods (structured programming,
Ada, ...). Even if the designers come around, the
real cost problem with software is not develop-

: ment, but system maintenance.. Software mainte-

nance gonsumes approximately eighty percent of
the sofiware system cosi. -As we. have seen,
there are real maintainability concerns with
object-oriented methods.

The dificulties with object-orientation arise
not so much from the motivation of the tech-
nigues as the specific implementation of them.
We have seen this occur in languages before, for
example with Ada tasking. The motivation for
Ada tasking was noble, but the impiementation
did not support-the determinism reguirement for
embedded applications. Likewise, the motivations
behind the object-oriented techniques are noble,
even if their implementation does not directly sup-
port embedded software’s requirements.

The philosophy of object-orientation is valu-

. able, but frequently covered up with an implemen-

tation. The best example of this is dynamic bind-
ing. This has become the holy grail of object-
oriented languages, t0 the point where some
references deny that a language, fool, or design
can have value without it. Some cbject-oriented
experis - are pushing to require pure object

earlier such as structured - programming, con-

tolled interfaces, procedure cortrol, and algo-
rithmic modeling. - Object-orientation actually
attempts to define a philosophical framework for

_the application of these techniques to program- -

413

ming large problems. . The object-orientation ¢om-
munity has contrived a dichotomy between the
"object-orientation” - and "conventional”
approaches. This presumes that either of these
options are weli-defined and widely practiced.
(Object-orientation has {0 be integrated into
Software process and not taken as a silver-bullet
that is used fo the exclusion of all other methods
and without regard to past experiences and les-
sons leaned. Object-orientation has to be
tailored. In the experience of the authors, this
tailoring results in an object-focused approach.
Object-focused means: that the object-oriented
philosophies are integrated info the software
development process but not necessarily all the
implementation/paradigm rules. Object-
orientation becomes an integral enhancement to
the software methodology, not a replacement.

REFERENCES

1] G. Baoch, Object-Oriented Design: with Appli-
cations, Benjamin/Cummings, 1991. '
[2] F. Brooks, "Moo Silver Bullet”, IEEE COM-
PUTER, April 1987, p. 10.

3] P. Coad, E. Yourdon, Obfect-Oriented Design,
Yourdon Press, 1991.

[4] D. Harel, "Biting the Silver Bullei: Toward a
Brighter Future for System Development’, IEEE
COMPUTER, January 1992, p. 8.

