SOFTWARE TEAM MANAGEMENT
IN THE FACE OF DECLINING BUDGETS

Lynn D. Stuckey Jr. and David C. Gross
Boeing Defense & Space Group
Huntsville, Alabama

ABSTRACT

- One of the results of the decreasing defense budget is that competition and value returned are not just

hot topics, they are cold facts. Critics have long contended that defense programs were not managed
eficiently: because these programs were not driven by the laws of the market place. But even if this is
only partially true, the perception of a diminished threat (and the resulting diminishing defense budget) is
forcing a re-evaluation of the way we manage simulator software projects. The government wants more
for less. In the software arena there are a number of advances in both technology and in philosophy
that may allow us to do our jobs faster and cheaper.. However, as Dr. Deming says, one obstacle to
progress is the supposition that automation, gadgets, problem solving, and new machinery will transform
industry.

Competition is forcing us to really address software project management. The paper presents an
approach to solving the pertinent issues of software project management. How many people are really
required to do the job? What kind of people should they be? Who should be the system architect and
what kind of person should he be? What are the underlying productivity drivers? Which tools are cost
effective for our team, and which are simply neat toys? In which direction should we drive team com-
munication and structure? The issues involved sound so familiar as to be old-hat -- a complacency
which blocks productivity enhancement. We can not afford this attitude because only the most produc-
five organizations will survive. '

ABOUT THE AUTHORS

Lynn D. Stuckey, Jr. is a software systems engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has been responsible for software design, code, test, and integration on
several Boeing simulation projects. He is currently involved in research and development activities deal-
ing with software development for weapon and threat simulators. Mr. Stuckey holds a Bachelor of Sci-
ence degree in Electrical Engineering from the University of Alabama, in Hunisville and holds a Master
of Systems Engineering from the University of Alabama, in Huntsville. His thesis. presents a systems
enginesring approach to software development.

David C. Gross is a software systems engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has worked in all phases of simulation and training systems from require-
ments development through delivery. He is currently involved in basic research for sofiware engineering
and applied research for system simulaton. Mr. Gross has a Bachelor of Science in Computer
Science/Engineering from Auburn University and is working toward a Master of Operations Research at
the University of Alabama at Huntsville. His thesis investigates the utility of high level languages such
as C++ and Ada for simulation.

©1992. The Boeing Company. All rights reserved. 138

SOFTWARE TEAM MANAGEMENT
IN THE FACE OF DECLINING BUDGETS

By Lynn D. Stuckey Jr. and David C. Gross
Boeing Defense & Space Group
Huntsville, Alabama

- INTRODUCTION

Every engineering endeavor seeks to build a pro-
duct. As these' endeavors - grow in
size/complexity, technical management of them
becomes more critical. There are significant

- management challenges to overcome in addition

to the technical obstacles.. The management
challenges change as the technology on which

“the product depends matures (see Figure 1), We

number of techniques that will yield some suc-
cess. It is at this point that the marketplace for
the product of the endeavor grows exponentially,
because customers begin to identify the product
as a potential solution to their problems. The
management task in the second stage is simply
to maximize production.

It is the third stage which presents a real chal-
lenge. At the same time that customers begin

- Limited Cost
Number :l'echnology ; - Pressure
of
Acceptable :
Solutions e : o
- Stagel ; Stagell ; Stage llI
5 Time
Figure 1

The Stages of Technology Management

find it convenient to divide the process of technol-
ogy mafturation maturation into three stages. In

the first stage, the technology is not widely-known

or repeatable. Frequently, there is only a single
method or technique which can succeed. The
management task here is simply o identify the
technical geniuses who bring the necessary
knowledge with them. in the second stage, the

“technology is more widely known and there are a

to gain a real sophistication in a product, they
have slaked their immediate driving thirst for the
product, which made it so desirable earlier. - In

" the case of hardware manufacturers, this is

sometimes called the problem of "installed base”.
Everyone needs my computer, but how many
really need my upgrade? The design and

- delivery of simulator software has entered the
- third stage, through the gradua! maturing of

139

software technologies and the pressure of declin-
ing budgets.

The third stage is characterized by the elimination
of less productive processes. The customers
new position in stage three gives him a com-
manding posture in negotiations. His advantages
mean that he is no longer required to deal with
organizations that do not produce quality work -
gither consuming too much or failing io satisfy.
The result is that organizations employing inferior
processes simply go out of business. The coun-
terpart is also true, namely, productive organiza-
tions prosper. Productivity is - classically defined
as the amount (or rate) of resgurces consumed to
produce a unit. Productivity is a measure of the
efficiency of a process.. However, productivity
alone does not sufficiently reflect the commanding
position that the customer holds in stage three
technologies. Productivity does not measure the
efiectiveness of a method in meeting the
customer's desires.

We define quality as the joint measure of a
method's efficiency and effectiveness. - High qual-
ity software . will be made with a minimum of
resources (manpower, computer-power, schedule,
...} and fulfii the customer's expectations. We
care about quality because the only way we can
stay in businass is to make high quality software.
But what exactly is guality software, and how do
we get it?

The foundational work on improving the guality of

goods arises from the work of W. Edwards Dem-
ing. Dr. Deming's central assertion is that while
common wisdom suggests the workers cause
poor quality, in actual fact, quality is a -manage-
ment problem. He calls current management
practices refroactive management, excessively
focused on the end product rather than the pro-
duction process.]2] Notice that such manage-
ment methods can be successful in stage two
technological processes but have obvious failings
in stage three. He suggests that the correct
management approach is team-oriented, in which
averyone shares responsibility and authority for
guality.

140

Team-crientéd strategies have important potential
for improving software quality. . We have seen the
success of such methods on software-intensive
programs such ag the Ada Simulator Validation
Program, the Modular Simulator Systems, and so
forth. However, creating a team by declaration is
not sufficient (and perhaps not necessary). The
purpose of this paper is to layout how to organize

and use software teams.

TEAM IMPACT ON THE PROCESS

As we siated eariier, quality is based on the pro-
cess not the product. In order to define the pro--
cess it must be measured. One way to objec-.
fively measure the software development process
of an organization is the Software Engineering
Institute’s (SEl) process maturity model.f3] The
central notion of the process maturity model is
that all software organizations are nof created
equal -- some get better results than others! SEl

contends that there are discernible characteristics
that can serve as "leading indicators™ of end pro-
duct guality. The SEl model divides the universe
of software processes into five levels as illus-
trated in Figure 2. According to SEl's definition of
the levels, and the audits of organizations they
have performed, most organizations are at level L.

There may be an argument over the details of
SElI's model, however, in its broad strokes few
would disagree with it. Most organizations agree
generally that & is the ladder of quality improve-
ment that must be climbed. While discussions
about how to get from level IV to level V may be
interesting, they are of little utility to most of us.
The question for most organizations is how fo
bootstrap from level 1 o level Il. And this is
where team management can play an important
role. One characteristic of level | organizations is
their tendency to look for quick fixes and easy
solutions. However, the primary problem in level
| processes is cuffural, not-fechnical Level |
organizations are very individual oriented whereas
level |l organizations have succeeded in forming
a foundation cooperation and group interest
between the software engineers.

Optimzed
Continuous Quality
Improvement

Managed
Qualitative
Metrics

Defined
Formal Process
Model

Repeatable
Statistical
Process Cantrol

Initial
Informal,
Ad hoc

Figure 2
SEl Process Maturity Levels

Good software team management can empower
individuals and organizations. But it is absolutely
necessary to understand that this will require a
fundamental change in the perspecfive of most
software engineers! This is a most difficult chal-
lenge, after all, managing software people has
been compared {0 herding cats. We have seen

how difficult it is to infroduce technical change into

the software development process. One example
is the resistance fo the Ada programming
ianguage. However, changing an individual's per-
‘speclive is a much.more difficult task than simply
changing a technology. It is therefore easy to

predict that software crganizations will .drag their
feet over process measurementi and improve-
ment. That is why process improvement must
begin with team management. Good software
team management will create a cultural that
enables continuous qualily improvement of the
software development process. Poor team
management will continue 1o increase the vari-
ance in software quality between individuals.

TEAM FOCUS

Obviously, simply calling a group of people a
team, does not make them one! What are the
critical differences that forge an arganization into
a team? We believe that there are three impor-
tant focuses which provide the themes and
motives for real teams.

The first focus is that every ieam membser must
have systemns rmindset At first glance, this would
seem fo suggest that every software engineer
must in fact be a systems engineer. While this is

not the case, every software designer must have ..

knowledge and respect for the project concerns
outside of his role on the software feam. Quality
software for large projects cannot be developed
by software trolls that want to be left alone to
work their magic. Training ¢an assist in develop-
ing this focus. Courses in inter-personal com-
munications ~ have proved to have some
effectiveness. Introductory courses in systems
engineering may succeed in shaking the parochial
attitude of some engineers.

The second focus for teams is on the actual pro-
duets of the software design process rather than
the deliverables required by the contract. Given

our emphasis on meeting the customer's require- -

ments, this seems contradictory. However, we
must bear in mind that the customer really wanis

- guality software, not useless paper. - Some

deliverables relate to the software design pro-
cess, while some deliverables are incidental. If

we treat the products of the software develop---

ment process as feedback on the quality of the

. process, then we can use the product to improve

141

the process. It is here we must concentrate our
investment for quality. While some may argue
that it is hard fo distinguish between meaningful
and incidental products, this is not the case. Sim-

ply decide what you wouid build and deliver if the -

contract specified no specifics!

The third focus flows directly out of the second.
A fundamentally flawed approach to quality is the
attempt to inspect it into the product, rather than
building quality. How many organizations believe
that they are building quality simply by sending
their documents through a central drawing quality
organization. The only thing drawing quality. can
give us is information -~ they can not produce
quality. It is possible to use such information 1o
improve quality but this reguires proactive
management. Management must constantly seek
the source of discovered flaws and change the
production process to correct them.

‘TEAM ORGANIZATION

Simply put, the key to software quality improve-
ment in the face of declining budgets is the

software team. To be successful, management-

must properly organize the team according to
size, membership and purpose. “All the silver bul-
lets that are introduced in-the way of tools and
enhancements will not change this basic fact.

Team Sizo

Surprisingly, to do a better job in software
development, we need to reduce the size of our
software development team. Software quality is
not directly enhanced by adding engineers.
Recall that quality is a function of the productivity
of the team and the ability of the product to
satisfy -the customer, Adding people does not
help because there is not a purely linear relation-
ship between the number of people and the time

to complete. For example, we cannct assume.

that a software project that reguires one person
nine months can equally well done by nine people
in one month. This phenomenon is occasionally
called the mythical man-month. Therefore, size is

142

a critical decision in software team management.

An all o frequent approach for determining
software team size goes something like this: we
form multiple teams o address each aspect of a
software project (usually without proper directian
or clear requirements). When design and imple-
mentation problems arise, we find that software
productivity is low. Since folklore holds that more
people can solve the problem sooner, we bury
the problem with as many - software
designers/programmers as we can afford. This
mentality results in a loosely coupled large group

- of people constantly fighting "fires” in the design

by starting new fires. In the end, cost and
schedule overruns creaie a management attitude
of "Just get something done. | don't care how."

- Many have come to the simplistic conclusion that
. software is always late and we cannot change it.

This situaticn cannot continue.

On a number recent Boeing projects, the use of
small teams was required due to either security
requirements or limited personnel resources.
When problems arcse, the smaller team was
forced to work out a solution amenable fo all
members of the team. The team: communicated
more frequently and did a better job of coordinat-
ing efforts. As . a result, software quality rose
dramatically. On one particular program an aver-
age team size of six engineers developed and
fielded a flight simulaior of 180,000 lines of code
in just 19 months. Each member cf the small
software team had to function in muliiple capaci-
tigs, giving the team a firm systems understand-
ing.- The fraditional barriers-between large staff
groups were eliminated. The team concenirated
on improving the system as whole, with resulting
improvements in the software development pro-
cess. They required less effort for fire fighting
and territorial skirmishes. The small team elim-
inated the common problerns of poor communica-
tion and lack of direction. Figure 3 iillustrates the
communication difference on a small team versus
a large team. Since each member's role was
obviously crucial to success, the team (not
management or corporaie policy) had littte toler-
ance for, or ignorance of, poor performance. A

small team environment allows software
engineers to greatly outperform a large team in
software development. -

Inter-personnel Communication

Team Members

The use of a small team adds the responsibility of
proper team membership. If the team is to be

successful, the right skills and aititudes must be

present. There are two important observations
about team members. First are the qualifications
of the general team member and second is the
special role of the software systems engineer.

Software Enginesrs. The emphasis of team

members now has to be on quality, and the

members ability to handle multiple aspects of the
simulation process. This is simply an extension
of the present situation. Simulation engineers are
already made up of many of the engineering dis-
-ciplines. Electrical, mechanical, and. industrial
engineers, as well as physicists, mathematicians,
and computer scientists are used io form the
present sofiware teams. Why? @ Simulation
requires a broader background than just computer
programming.

In addition to specific specialilies, there are three
common abilities each i¢am member must. pos-
sess. We could look at this as the individual
focuses which empower the team focus dis-
cussed previously. First, the engineers need to

have some systems engineering background. As

software development moves from. a mystic art o
engineered process, systems engineering will be
a major part of the transition. Secondly; the
engineers need to focus on continucus quality

improvement.. They have to realize that the way
the product will improve and be cheaper pro-
duce is through the improvement of our software
development processes. There are no "silver bul-
lets" that will cause dramatic leaps forward
without time, effort, or money. Thirdly, the
engineers must be trained. On the job training
simply does not necessarily result in a quality pro-
duct at a quality price. Bgth the management

- and the work force will have o be educated in the

new methods including feam work. Simply put,
the software team members on future simulations
cannot afford to depend on a "one-area special-
ist". On a smali team, members must be able to
pull their load in a variety of situations.

Software Systems Engineer. A software systems
engineer is a systems engineer who is proactively

" invelved in the design and production of the

software. In the beginning of a simulation pro-
gram, there are a group of systems: engineers
that are concerned with the system as a whole.
The hardware, software, logistics, etc. are all part
of the initial requirements analysis.” The project
needs to ftransition the software systems

- engineers from this stage of the program-into the

active participation‘in the software development.

Systems engineering has long been accepted as

- applicable to hardware systems; but in the case

143

of software development, it has been sither
ignored ar taught as inappropriate. -Others have
stated that systems engineering only applies to
the ends of a software activity; e.g., the front end
fo provide requireménts and in the back end to
integrate the system and test compliance with
requirements. However, a systems engineer is
really responsible for the entire picture. In
software this includes all phases of sofiware
development, production, and coperation. Beyond
providing a person with oversight responsibility for
the system, systems engineering can provide us
with a methodology to guide us through all
phases of the software lifecycle, and in particular
through the development phase.

Because designers imagine and implement com-
plex systems in parallel, projects can suffer from

the fracturing effect of multiple individuai visions of
the final product. The systems engineer is the
only one who has a {otal system viewpoint. The
problem in the past has been that the systems
engineering group is separate and unrelated to
the development groups responsible for design,
code, test, and integration. This separation has

“lead o poor requirements adherence and less

than optimal software solutions. This is the rea-
son that in the software world, systems engineers
need to transition through a project's phasas.
This means that the systems engineer needs o
be the requirements engineer, the designer, the
tester, and the integrator. Cf course, not all the
systems engineers can be a part of this transition,
but a portion of the systems engineers should
become software systems engineers, infimately
involved in each of the software development
phases. This allows a real implementation of the
systems engineering process.

THE TEAM IN ACTION
Software Engineering Environment (SEE)

Most software development managers would
agree that software engineering environments
impact quality. They would probably not agree
about the amount and kind of impact. The mar-
velous preducts {and their even more marvelous
sales pitches) seem to promise all measure of
increased productivity. However, the prudent
manager will recall that productivity is not
sufficient for success in the software marketplace
of today. By itself, productivity does not meet the
neerds of the customer.

What we need is sofiware development
processes which produce quality software. At
issue here is the debate between foofs for quality
versus foys for the kiddies. A classic example of
this is the personal computer {PC) invasion. The
decade of the eighties saw the introduction of
PCs into virually every office, yet the productivity
of the average office worker is essentially
unchanged. Why? The problem is not that PCs
are no good. The problem is that they were not

generally employed in a disciplined way to
enhance quality.

But what tools improve quality? There is a ten-

- ston between the surface quality of a product and

its underlying fechnical quality (see Figure 4).
The surface qualify is the degree to which the

- process is efficient and effective, in the eyes of

the customer ai product delivery. The fechnical
quality is the same measure, in the eyes of the
technologist. The customer does not really care
about technical quality at the time of delivery.
Neither does a designer who lacks a system -
mindset. What they forget is that the vast bulk of
any system's cost is incumed after product
delivery, during mainienance. The level of techni-
cal quality will drive the maintenance cost long
after anyone can do anything about it.

Figure 4
The Tension Between Qualities

This tension between kinds of product quality can

- only be resolved through teamwork. The tools

which will contribute to improved quality are those
which assist in building teams. One example is
language selection. Some languages are well-
suited for development in teams and some are
not. While the latter may be well-suited to small
projects, their impact on large projects, which
require programming teams, is obviously nega-
five. In Japan, Ada is the most popuiar general
application: language (not just for military pro-
jects)[1] This is because Ada well supports a
team approach to sofiware development. The
impact of the Japanese emphasis on teamwork to
improve processes has had an ohwvious impact on
a variely of American industries. The software
industry will be next if we do not learn how to use

144

teams. This -argument can be extended to the
selection of compilers; development machines,
target machines, and CASE tools.

A classic example of the impact of tools on team-
work is configuration management. A traditional
attitude toward configuration management is that
it exists to protect management from careless
programmmers. Therefore, . the -configuration
management software is built to prohibit ready
visibility or changes. However, programmers
require visibility to the software and the ahility to
make changes if they are to correct errors and
produce a product! In one project of our experi-
enice base, the configuration management
software was so obtuse and slow, that the
software engineers spent large ameunts of project
time just figuring out ways to get around il A
regular result was the loss of control of the
software. baseline. An obvious quality improve-

ment would be to improve - the configuration -

" management process, simultaneously taking into
account the needs of the software engineers (io
make necessary changes) and management (to
maintain a definable baseling).

Peer Reviews -

One of the most important steps in the systems
- engineering process is the practice of design
reviews. It is through thesse reviews that
members of a team’can affect the system as a
whole and improve the software development pro-
cess. The problem is that these reviews have
become so blase” that they have lost their pur-
. pose. The very name design review is indicative
of the problem. Reviews are not only to check
- design correciness. They are just as important
as avenues for sharing techmigues, discussing
interfaces, and checking compliance to develop-
ment standards.

Peer reviews can give the software team the
opportunity to fundamentally improve the software
development process. The old purpose of
reviews was the attempt to inspect out bad
software. The new purpose is to build in quality
from the beginning. ' If we treat the review as an

145

effort to continuously improve the process, rather
than anchoring on the errant details of a particular
piece of code, each review can benefit all of the
software. A secondary purpose of a review is o
promote communication. Scftware engineers (like
other people) need to fee! that they can ask ques-

tions. The review should help drive out the fear .

that many engineers have about -asking ques-
tions. Many employees are afraid to ask ques-
tions or 10 take a position, even when they do not
understand what the job is or what is right or
wrong. . People will continue to do things the

wrong way, or to not do them at all. The =
economic loss from fear is appalling. 1t is neces-

sary for better quality and productivity that people
feel secure.[2]

Onece the need and purpose of a peer review'is
established there are two other questions that
need to be addressed: {1) When do you have
reviews? and, (2} Who's in charge of the review?
In the past reviews have bheen forced to fit
someone’s schedule or imeline. Reviews should
not be based on the calendar. They should be
based on the development lifecycle. A software
system has a lifecycle just as any other system.
Reviews should be scheduled for each sofiware
object at the end of each phase. One very impor-
tant point must be made about any development
lifecycle, namely there are no crisp edges
between phases in a lifecycle. The acfual lifecy-

cle is not linear and there is continual feedback. .

This means that some software objects may be in
review for design while ancther is being reviewed
at infegration. Reviews need to be repeated if
iteration is required in upper levels of the software
hierarchy. The idea behind scheduling reviews
based of lifecycle phasing is that it provides
meaningful steps and information to be reviewed
without constantly interfering with the engineer’s
progress.

The second question of who is in charge of a
review may seem simple, but it is not. What has
been conspicucusly absent from this discussion
on reviews is the role of management. Reviews
are not primarily focused for managers. This

means that management may be in a review but

really does not need to preside over #. A lead
software engineer or perhaps the software sys-
tems :engineer needs to run the review. The deci-
sion is based on who has the authority to request

changes in the software after the review. But, -

whoever is in charge must lead in the review pro-
cess. The job -of the leader is not o tell people
what to do or punish them but {o lead.

Documentation

Documentation must be a part of any software
team management approach because it presently
requires a large level of wasted effort. Software
documentation is one of the most expensive and
least useful parts of a simulation. Let's face it,
software documentation was classically required
as a huggable surrogate for the etheral software
that really was just bits on a computer. The cus-

tomer no longer has the luxury of requesting the -

volumes of useless:paper. We need to review
the true need for documentation and only

requirefprovide - what enhances the simulation.

We need to scope software documentation to
those items that are required for the software
engineer to develop and maintain the software.
In essence, we need o develop documentation
that we would write and use even if it were not
required as a deliverable. This is the type of

- documentation that is a useful tool to the software

team and not a hindrance.

The true purposes of documentation are for an
aid to the fransition of requirements into code and
for software maintenance. In the days of assem-

bly language, a person needed something in

English to help him describe the: design and lay-
out of a software system. Today, we have
software languages that are capable of being writ-
ten in an understandable -manner so that the
explanation is not really required. - Today's
requirement for documentation must be that only
the paper required should be considered. The
government made a first step toward this when
they implemented MIL-STD-2167A. This stan-
dard allowed the developer to customize his
documentation, when the customer agreed.

146

The main tool in making self-documenting code is
to make the code understandable. Understanda-
bility. as a software goal is one of the easiest to
implement, but is most often ignored. Understan-
dability- is the map of the fransformation from
problem to solution. 1t is also the measurement
of the software’s map fo the real-world. This map
refers to the ability of the software to accurately
represent. a real-world counterpart. For example,
if the software is modeling a car, one would
expect to find components and interfaces that are
common for a car explicitly: called . out in the
model. As the complexity of software systems

‘increases so does the need for truly. understand-

able software. The need for understandable
software has been ignored because software has
been writien from the view point cf the designer
and not the reader.. However, software is written

-once and read a thousand times. The reader’s
[interpretation of the software is a good measure

of understandability. The software ought o serve
as a diagram of the requirements, design and
implementation. An elecfrical engineer under-
stands a system by looking at the circuit layout;
the same should be true with the software
engineer and his software. Understandability can
also be a basis for the egdier goal of maintainabil-
ity. Software that.is understandable is much
easier to maintain.

Understandable software is the basis for credibil-
ity. Gredibility was the purpose of all the mounds
of decumentation in the past. We can gain more
credibility, with users and maintainers, if ihe
software documentation derives from the code
itself. There are two approaches for this: {1)
self-documenting code {see above) and (2)
automatic documentation generators. Automatic
documentation generators give us the ability to
update the documents by feeding the current
code to them. In addition, we can gain a synergy
between projects, because the documentation
begins to have a uniformity thai cannot be pro-
duced by humans.

Ancther aspect of self-documenting code is that
realization that a software methodology has_to
take this requirement info account. A prime

example is interface scheme. A methodology that
espouses a common data area or an extreme
message passing scheme will resuit in code that
does not provide interface definition to the reader.
A methodclogy that reguires a parameter list type
of interface has the interface definition laid out for
the user. An Interface Definition Document can
be constructed automatically from the code with
iust the parameter lists and a corresponding types
package. This is an example of planned self-
documenting code.

CONCLUSION

Given the emphasis on software quality in order

o survive the current marketplace, management
must develop softwares teams which. have the
appropriate focus, organization, and activities.
The crux of our position is this: teams are the
primary management tool for improving software
quality. A real software is a small cohesive group
made up of multi-talented engineers with a sys-
tems mindset. Their focus must transcend the
tools that the engineers use in software develop-
ment. The peer . reviews, and documentation
must be primarily slanted toward helping the team
do a befter job. [n this world of ever evolving
technology, it is not the computers, languages, or
" methods that will make a simulation effort a suc-
cess. It is the people on the scftware team and
their focus that will be the key.

REFERENCES

[1] Richard Riehle, "Ada in Japan”", Embsd-
ded Systems Programming, August 1991,
pp. 28-33. :

[2] Mary Walton, The Deming Management
Method, Perigee Books, Putnam Publish-
ing, New York, 1986. _

[3] Edward Yourdon, Decline & Falf of the

- American Programmer, Yourdon Press,
Englewoad Cliffs, New Jersey, 1892,

147

