DIS APPLICATION PROTOCOL TESTING
USING A FORMAL DESCRIPTION TECHNIQUE

David T. Shen, Margaret L. Loper, Huat K. Ng
Institute for Simufation and Tralning
University of Central Florida
Orlando, Florida

ABSTRACT

The Distributed Interactive Simulation (DIS) Entity Information and Entity Interaction Drait Standard defines
a communication protocol to interconnect simulators in a real-time environment. This protocol focuses on the
information for describing the state of the simulated entities and iheir interactions during a batile simulation.

Many of the concepts in the DIS standard are derived from the Simulation Network (SIMNET) project. The
SIMNET program has demenstrated the feasibility of interconnecting muitiple autonomous simulators,
primarily of ground based armor vehicles, via a communication network (LAN/WAN), such that the simulators
could interact in real-time. DIS is based upon the foundations of SIMNET and will be enhanced to provide
a standard for connecting existing and future simulators. However, a formal description of the DIS standard
is yet to be developed, which would, in turn, speed its prototyping, development, and testing processes.

This paper describes the approachtaken by the Institute for Simulation and Training (IST) to develop a formal
description of DIS, to generate a prototype DIS protocol machine derived directly from the developed DIS
formal description, and to test the profotype DIS protocol. IST used an International Organization for
Standardization {1SQ) standard Formal Description Technique (FDT) called Estelle for the formatl specifica-
tion, and an FDT prototyping fool knownh as the Portable Estelle Translator - Distributed Implementation
Generator (PET-DINGQ) to generate a DIS prototype. Furthemmore IST developed a procedure io test the -
generated prototype.

The aim of this work was to develop a formal specification for DIS and to identify possible shortcomings and
inconsistencies in the DIS standard. This task identified some areas in the current standard that need to be
madified or cClarified.

ABOUT THE AUTHORS

David Shen received his master degree in Computer Engineering from UCF in 1991, He is currently an
Associate Engineer at the Institute for Simulation and Training (IST). For the past two.years, he has done
research related with computer communication protocols applied to the DIS application.

Margaret Loper received her master degree in Computer Engineering from UCF in 1991. She is currently a
Research Associate at IST. She has technical responsibility for all IST research . activities invelving
communication protocols and computer networks.

Huat Ng received his master degree in Electrical Engineeringfrom UCF in 1989. He is currently an Associaie
Engineer at IST. He has been involved in sofiware development that periains to DIS application.

636

DIS APPLICATION PROTOCOL TESTING
USING A FORMAL DESCRIPTION TECHNIQUE

David T. Shen, Margaret L. Loper, Huat K. Ng
institute for Simulation and Traihing
University of Ceniral Florida
Orlando, Florida

INTRODUCTION

The Institute for Simulation and Training, along with
the U. S. ARMY Simulation Training and Instrumen-
tation Command (STRICOM) and Defense Advance
Research Project Agency {DARPA), has been pro-
moting the interoperability of defense simulations

-through the DIS workshops. The goal of the work-

shops is to gather expertise from the simulation
community and to advance the development of a
standardto allow defense simulations fointeractthrough
networking. Thesetypesof simulations provide an envirorn-
ment for training inter-crew skills and provide an envi-
ronment for evaluation of tactics, doctrines, and new
equipment features.

The developed standard must be tested for valida-
tion. This test will create confidence inthe standard's
completeness and domain of applicability for
implementers. This validation should begin with the
initial stage of release.

The DIS draft standard is in its second year of devei-
opment. - The standard is being reviewed and is
proposediothe IEEEin 1992 1{oradoption. Currently,
the DIS standard covers only layer 7 of the Open
System Interconnection (OSI1) Reference Model [4].
Layer 7 is the Application Layer, which is the simula-
tion entity information level. It does not cover the

-network architecture or communication proiocols

below the Application Layer. Several defense pro-
curements have specified the DIS standard as the

-baseline for the interoperability requirements.

IST has experience in many areas of computer and
simulator networking. In its effort to assess the
suitability of existing OS! protocols for real-time simu-
lations, IST has developed a formal specification of
the DIS drafi standard using the Estelie Formal De-
scription Technique (FDT) and the Portable Esielle
Translator - Distributed Implementation Generator

(PET-DINGQ) compiler.

Estelle is a standard FDT developed in 1889 by the
Intemational Organization for Standardization (ISO) to
specify distributed, concurrent information processing sys-
tems using a Pascal ke language. . Estelle is not a
programming language for implementation, but simply for
specification, with its own synitax and sermnantics.

The PET-DINGO. compiler, developed by the Na-
tional Institute of Standards and Technology (NIST),
is a protocol prototyping tool that accepts an Estelle
specification and produces a runtime environment
simulating the specified protocol behavior. The PET-
DINGO was developed to familiarize the scientific
community with the Estelle specification language
and thus promote its use.

GENERAL DESCRIPTION

This section briefly describes the DIS standard, the
Estelle FDT and the PET-DINGO compiler.

Distributed Interactive Simulation

The October 30, 1891 release of the DIS standard
defines 10 types of Protocol Data Units (PDUs) to be

-used by networked simulators 1o represent the state

of the simulation entities during a battle simulation [1]

1) Eniity State

2) Service Request

3) Repair Complete

4) Repair Response
5) Resupply Oifer

68) Resupply Received
7) Resupply Cancel
8) Collision

9) Fire

10) Delonation

These 10 PDU types can support the entity behavior
during repair, resupply, fire, collision, motion and entity

- appearance update, which are the vital components

937

of a simulation environment, and they are the core of
this research task.

- The Entity State PDU isused mostoftenduring asimulation
exercise. It describes the status of #s simulated entity’s
location, velocity, accelerafion, ammunition, and ariicu-
lated parts. It is transmitted when a dead reckoning
model of an entity’s state diverges from its own high
fidelity. model by a predetermined threshold. When
an Entity State PDU is received by other simulators in
the exercise, these simulators update their state
information regarding the entity. .

The Service Request, Repair Complete and Repair
Response PDUs are used to represent a repair event
involving two simulated entiies. These PDUs carry
the necessary information to determine the types of
repair performed and the level of satisfaction of the
repair. The repair PDUs are request/response type,
meaning, some PDUs are used in response to the
receipt of other PDUs.

The Service request, Resupply Offer, Resupply Re-
ceived and Resupply Cance! are usedto representa
-resupply eventinvolvingtwo simulated entities. These
PDUs contain the necessary information to deter-
mine the type of resupply needed. The resupply
-PDUs are also request/response type, which means
-that some PDUs are used in response 1o the receipt
.of other PDUs.

The Collision PDU is used by two simulated entities
when involved in a collision. The information con-
tained in this PDU is needed for collision damage
assessment.

The Fire PDU and the Detonation PDU are.used to
inform a target entity of the weapon fire event and the
associated detonation of the fired munition. The
entity which fires a weapon models the munition’s
trajectory and informs the target of the point of impact.
It is the responsibility of the targeted entity to assess
its tlamage using the information in the Detonation PDU,

[Estelle Formal Description Technique

The problem of specifying : distributed systems is
more difficuit than that of specifying a sequential
system. The difficulties are related to the necessity of
describing various sequential components whichmay
cooperate and execute inparaliel. To attain reliability
inproduction software, a protocol development should
begin with a formal specitication.

Estelle is a language for speciiying distributed sys- -
tems with.a particular application in mind, namely that
of communication protocols and services[2,5]. The
semantics for Estelle have been formally defined and are
aimedatdescribingstructured communicating automata
{states) whose intemal actions are defined by Pascal
programming language statements (with some re-
strictions and extensions).

The benefit in using an FDT, particularly Estelle, isto
remove the ambiguities frorn the protocol description,
traditionally defined in a combinaticn of natural fan-
guage and state tables. Another benefit is the avail-
ability of tocls that use Estelle fo generate rapid
prototypes and test suites.

The three main components of the Estelle structure

“are the Module, the Interaction, and the Channel. The

correct use of these components is essential for a
specification.

The Modules have a number of input/output access

- points known as the Interaction Points. : A module will

be represented graphically as a rectangle and the
interaction points will be represented by dots on its
boundary. An active module includes in its transition
part at least one #ransition. Each active: module
specifies its own states and the rules for state transi-
tion. The collection of the states, the possible state
transitions, and the module variables is known as the
Extended State Transition Model (ESTM).

The modules canbe organized in a hierarchical {free}

‘structure, with pareni/children relationships. Each

module can have several embedded modules (chil-
dren), and these modules can, in turn, include other
embedded modules.

The Interactions are the messages sent and received

by the modules: The interactions serve as the means

of communicating inforration between modules. The
modules can send an interaction at any time, yielding
non-blockingcommunication. Aninteraction sentthrough
an interaction point that is an end-point of 2 commu-
hication link directly arrives at the other end point of
this fink and is always accepted by the receiving
module. Thus, only end-to-end communication be-
tween modules is possible.

Modules {parents or children) can establish commu-
nication with other modules using channels. Chan-
nels are defined as cne-to-one connections between
the modules through which the modules interact.
Each channel essentially connects two interaction

838

| Lol

T .

A ORIRE BRI QAT T e AL e r T mrwe T T T e e AL T T T R e e AR

IR RLLRLLL o LBl LRNT RS

| | 0 T] Ty

points. Each channel is associated with an un-

-bounded first-in-first-out queue for the incoming inter-

actions as they arrive for processing. There are

. severalrestrictionsimposed inthe way channels may

interconnect the modules. Channels also define the
types of interactions that may pass through it.

Each Estelle module definition is composed of a
heading and a body that describes its behavior. A
transition takes place in response {o an intemal or
extemal event to the module and ¥ may generate an
interaction to the connected modules. The global prop-
erties of the Estelle FDT suppott a logical specifica-
tion {modeling) of a communication protocol.

Poriable Estelie Translator & Distributed
Impiementation Generator

The PET-DINGO prototyping tool, developed by NIST,
is a twofoid compiler that generates a static model
and a dynamic model from an Estelle specification.
The PET compiler[7] takes an Estelle specification
and checks it for syntax, semantic or lexical error and
then compiles it into an object code (static mode!).
The DINGO compiler[8] takes the static model and
generates a series of C++ source files associated
with specified Estelle modules describing their be-
havior (dynamic model).

The PET-DINGO was wriften in the C++ program-
ming language. it supports network communication
using either Transmission Conirol Protocol/internet
Protocol {TCP/IP) or Remotg Procedure Cali (RPC);
as a consequence, generated processes can run on

diverse computers on a network . The PET-DINGO

isdesignedto runonaSun3orSun SPARC hardware
platform. It also supports the X-window enhvironment,

which facilitates the user’s.interaction with the speci--

fied protocol processes.

Figure 1 shows the process to build and executea

runtime instance of an Estelle specification:

1) Compile the Estelle specification using the PET
to generate an object file. At this stage, the decision
whether to run the specification in a muiti-host envi-
ronment is made.

2) Compile the PET generated object file using
DINGOto generate C++ source files and the Makefile.

3) Add user defined programs and set system
parameters.

4) Modify the Makefile as heeded by including user
defined programs.

5) Use the Makefile to generate system executables
from the C++ files, which are the Estelle modules.

6) Initialize the site-daemon (called site_setv) to man-
-age the runtime processes and the network interface.
The site-dasmon has to be in#tialized in each host if
the process is to run in a multi-host environment.

7) Call the Estelle specification top level module
namme for modules initialization,

Makefile :lnaezhpromcomm.
| %SED[run-time . [Wmdowinmfaoe

Figure 1- PET-DINGO Compilation procedure -

Each Estelle module is a process that can be ac-
cessed through a window interface. A user specifies
interactions by clicking the appropriate item of the
window. The windows display modules’ state, the
value of the variables at any given time, and the
queue of interactions associated win éach channel
connacted to the module.

The module windows can be opened by clicking the
name of the module on the root window. The embed-
ded process windows can be opened by first opening
their parent’s window. The hierarchy of the windows
follows the hierarchy ofthe specified Estelle modules.

SPECIFICATION PHASE
This section describes the approach taken to specify
the DIS standard using the Estelle FDT. The model

used for the DIS protoco! with the associated as-
sumptions and constraints is also described.

Approach

A formal specification of a protocol using the Estelle
FDT is not unique; meaning there are several valid

939

ways {o specify a particular protocol.. IST has expe-

rienced several difficulties in specifying the DIS PDU -

interactions in Esteile because of the nalure of the

information passed from host to host and the type of .

interaction specified in the DIS standard.

The approach taken by IST to specify the DIS PDU

interactions using Estelle is a model foliowing an initiator/ -

responder paradigm. This model uses a general view of

a simulation entity from a driver's perspective, mean-
ing that the model follows a hierarchical structure and

the lower modules view the upper modules as the
initiators of the processes by making the appropriate
choices as to what actions to take.

Model

The model identifies the Repair and Resupply activi-

ties as the ones having a initiator/responder type of

interaction. Other aclivities such as fire and coliision
are essentially non-replied interactions, which do not
foliow the initiator/responder scheme.

Figure 2 shows the model, which includes four basic
modules, shown in Figure 2:

DRIVER
A
-~ ——driver_upcore
CORE & — — attachment
splitter_logistic | = SPLITTER
— c 1D
c = ——splitter_fire
LOGISTIC FIRE ASSESS
F -ﬂ:e_combiner;- [B
P i GH ~_
logistic_combiner | - COMBINER assess_combiner
1™~ — attachment
- “—lowcore_network .
net_action I
) Jx driver?|
NETSWITCH NETWORK
t | core2 §

Eigure 2 - Estelle Structure of DIS Protocol

Driver Module: interfaces the user to the:protocols
specified within the Core module. The Driver Module
is responsible for starting a protocol process and
communicating appropriate decisions.

Core Module: includes 5 embedded modules, namely
the Splitter, Combiner, Logistic, Fire and Assess. It
models the DIS PDU interactions.

Network: models the physicallogical linkage be-
tween the protocols (the entities}. Itis responsible for
end-to-end transmission of protocol messages be-
tween iwo entities.

Network Switchi: allows user cotitrol of the network,
givingthe userthe ability tointermupt the message transmis-
sion, lts existence is purely for testing purposes.

Figure 2 shows the modules with their names in bold
type, the associated inferaction peoints in capital let-
ters and the channel names indicated by arrows.

Within the Core module are the independent sub-
modules of interest of this task:

Logistics Module: mode!s boththe repair andresupply
{logistic) events of DIS. ltcan act as either initiator or
responder, but not both. This module uses six types
of PDUs (2 1o 7 defined previously) fo informthe peer
entity of the action taken by the other. It incorporates
reliability features by using some of the PDUs to
acknowledge other PDUs. Such PDUs can be clas-
sified as an application level acknowledgement.

Fire Module: models the fire and defonation events.
1t uses the Fire PDU and Detonation PDU to convey
related information to peers. The Fire PDU and the
Detonation PDU do not require acknowledgement
from their intended larget.

AssessModule: responsible for updating the internal
representation of a simulation. For insiance, the As-

_sess module represents updates to an entity's ap-

pearance during a simulation exercise when it re-
ceives an Entity State PDU, and it is also responsible

for representing the fire event and damage assess-
:ment caused by a munition detonation or a coliision.
-As tar as the specification is concemed, the assess-
-ment means that the module transitions from an idle

state to a pariiculartype of assessment state andthen
back to the idle state.

840

There are two auxiliary sub-modules within the Core

module:

Splitter Module: responsible for vecioring the user

interactions {signals) to the appropriate protocols-

within peer sub-modules. The rationale is to allow a
nigher level of -abstraction for the connection be-
tween the Driver module and the Core module.
Without the Splitter module, one would have o be
concerned with the various connections from the
Driver module fo the Core sub-modules.

Combiner Module: responsible for piping the outge-

ing interactions {PDUs) from protocols within peer

sub-modules (i.e., Logistics, Fire or Assess sub-
modules) to a single channel connected to the Net-

work module. It is analogous to the Splitter module:

performing the reverse function. The rationale is to
allow a higher level of abstraction for the connection
between the Core sub-modules and the Network

module. It is also responsible for conveying state

variables among sibling modules.

Among all the referred modules, the Logistic, the
Fire and the Assess modules are the only.ones that
are mapped into the DIS PDU interaction, other
modules are intended for interface and testing pur-
poses and are not part of the DIS specification.

The extended state fransition model of the modules that
maps to the DIS PDU standard are explained beiow:

Figure 3 unifies the existing repair/resupply related
state transition models defined in the DIS standard
with the entity movement and collision activities.
The repair/resupply side from one entity responds 1o
the repair/resupply side of another entity, which
creates a reply/response type of interaction be--
tween two Logistic modules. - A clock routine returns
the system time which is used in the repair and
resupply transition models.

ServiceRequestPDU

REPAIR

RepairCompletePDU repaixr_complete signal

REQUEST
) RepairResponsePDU

repair_request_sign
Servicekequest’DU

ServiceRequestPDU
res

RESUPPLY
REQUEST

ResupplyOfferPDLUS
resupply_cancel signal
R Cancar iU

ResupplyCancelPDU

RepairCompletePDU

RESUPPLY
RECEIVING

- ResupplyReceivedPDU \

RESUPPLY

stop_signal
EntityStatePDU

collislon_signal
On

Eigure 3 - Extended State Transition Model for Logistic Module

941

Because no collision Extended State Transition Model
(ESTM) is specified in DIS, the SIMNET model is
assumed. An entity involved in a collision sends a
Collision PDU to the other entity, communicating the
collision. The receiverof the Collision PDU replies to
“the first enlity with another Collision PDU, as an
acknowledgement of the collision.

The Fire module, shown in Figure 4, is composed of
" twostates: IDLEand FIRE. Aneniitytransitionstothe

FiIRE state on the Driver's signal representing a

weapon fire-and returns to IDLE state after a delay

simulating the time required for flight and detonation
- of the fired munition.

. Because no fire ESTM is specified in DIS, the SIM-
NET model is assumed. The initialor sends a Fire
PDU immediately followed by a Detonation PDU.
These PDUs are conveyed to the Assessment mod-
ule which simulates the internal processing of the
receiving simulator.

) Dela
DetonationPDU

fire signal
FirePDU

-Figure 4 - Extended State Transition Model for Fire
Module

" ASSESS_
COLLISION

Eigure 5 - Extended State Transition Model for
Assess Module

The ASSESS module in Figure 5 represents the

- possible assessments. a simulator can perform: fire

assessment, detonation assessment, collision as-
sessment, and entity state assessment.

Because no assessment ESTM is specified in DIS,

the SIMNET modelis assumed. it servesthe purpose
of isolating the information update event from the
usual simulatich related events, allowing concurrent
processing for the specified model.

- Assumptions

E

There are several assumplions made to facilitate the
model’'s creation:

1} Therepairactivities and resupply activities (logis-
tic) do nottake place concurrently. This allows all four
state transition moedels defined inthe standard asso-
ciated with these activities to be combined in a single
transition model.

2} An entity cannot repair or resupply while in mo-

tion. This assumption allows the inclusion of collision
and movement evenis in the logistic module.

3) The logistic activities, the fire activities and the
PDU assessment activities canbe processed concur-
rently. This is represented inthe core module through
three independent sub-modules.

4) The resupply activity, once initiated, takes 15
seconds to complete.

5) The interval between consecutive Entity State
PDUs is 1 second for a moving entity.

6) The interval belween a weapon fire and the

-detonation of the fired munition is 2 seconds.

7y The assessment related activities are instanta-
neous, which is represented by the immediate transi-
tion frorn any type of assessment state to idle state in
the Assess module.

8) The IDs used by the entities for identifying the
collision events are consecutive integers starting at 1.

§) All interactions are raceived by the Assess module
except for the repair and resupply related interactions.

942

Constraints

The following constraints are imposed by the Estelle
specification:

1) There are only two entities modeled in the mod-
ule for testing purpose.

2} The module interactions do not carry variable
structure or conorete values. .

- TESTING PHASE

As mentioned earlier, the DIS Standard is in its
infancy. Efforts must be channeled toward writing a

test plan that will discover whether the DIS protocoi is
complete and valid. The DIS Siandard specifies:

procedures and formats for the exchange of informa-
tion between heterogeneous simulators. Based on
these specifications, a test plan can be written.

Protocol tests can be divided into three different
types: Valid, Inopportune, andInvalid Message Tests
[1]. Valid Tests are those where the tester sends
messages at times and in sequences that are ex-
pected or normalfor the Implementation Under Test's
(iUT's) state. Inopportune Tests are those where the

tester sends messages attimes whenthey should not.

occur or are out of sequence. Invalid Message Tests
determine if -the IUT correctly handles receipt of
messages that are incorrectly encoded, have illegal
fields, or have parameters outside their legal bounds.
Since the DIS specification in this report does not

include the actual bit structure of the PDUs, Invalid-

Message Tests are inappropriate and will not be
included in the test plan.

The DIS validation Is an interactive process. Experi-
ence - gained during the testing phase is used to
enhance the quality of the specification and testing
process. If the fest plan uncovers an ambiguity or
incompleteness in the specification, the specification
can be modified and re-tested, leading to further
refinement.

The hardware used in the IST testing environment
consists of two Sun SPARC Workstations connected

by Ethernet. The systems used Sun Open Window,

a graphical user interface based on the X-window
environment. The experiments were conducted in a
multi-host environment, and both computers shared
the files-generated by PET-DINGO.

Testing Procedure

Each test step follows this procedure: .

« Initialize the IUT and manipulate it into the
desired state.

= Apply the specified input.

= Observe and validate the output.

s Verily the new state is as expected.

There are two choices available when executing the
runtime PET-DINGC files of an Estelle specification:
continuous mode or single-step mode. Running the
DIS specification in single-step mode is the more
appropriate choice. This allows the tester io observe-
the changed states and messages passed between
modules at his or her own pace.

valid Testing - The test plan is written in a tabular
format. It consists of Valid test scripts. Four fables
describe the DIS state transitions. These are:

= Logistic/ Logistic - Resupply Service
« Logistic / Logistic - Repair Sesvice -
« Logistic/ Assess

» Fire/Assess

Each table is separated into the Initiator column and
the Responder column. Both Initiatorand Responder
are separated again into four other columns: Input,
Output, Current State and Next State. Inthis fashion,
the tables follow a natural sequence of state transi-
tions, which faciliiate the observation of the transi-
tions and messages that are conveyed between two
modules. The Logistic/Logistic - Resupply Service
used in the test plan is shown in Tatle 1.

Table1 shows the Initial transitions and the corre-
sponding responding transitions for the resupply ser-
vices available in the DIS protocol. Resupply ser-
vices may include resupplying for fuel or munitions.
Using Table 1 andfollowingthe transitions, alistofthe
Initial/Respond transifions can be- obtained and
checked against the DIS standard.

For example, an entity may request resupplies by
sending a Service Request PDU. The resupply
receiver, will change state, transitioning from Idle 1o
the Requesting State and will respond by sending a
Resupply Offer PDU. The supplier entity will .then
transition from Idle to the Offering State. This set of
transitions can be traced by observing the first row of
Table 1. Executing the DIS specification in single-
step mode allows the tester to verify the steps and
observe the messages in the queues.

843

Table 1 - Logistic / Logistic - Resupply Service

Logistic Initial Transition Respond Transition,
(Initial) / Logistic
(Respond)
input Cutput Current Next Input Cutput Current Next
State State State State
Request Service / Request Service idlie Requesting Service Resupply Idle Offering
Offer Supplies Resupply Request Request Offer PDU
PDLJ PDU
Offer Supplies / Service Resupply idle Offering Resupply - Requesting | - Receiving
Receive Offer Request Offer PDU Offer PDU
PDU
Accept Service / - Resupply | Receiving Idle Resupply - Offering Idie
Resupply Complete Received Received
PDU PDU
Reject Offer / Resupply | Resupply | Receiving Idle Resupply - Offering Idle
Resupply Cancelled Cancel | Cancel PDU Cancel FDU
(by Receiver)
Resuppiy Cancelled Resupply | Resupply Cffering Idle Resupply - Receiving idle
{by Supplier) / Cancel Cancei PDU Cancel PDU
Transfered Cancel
Repeat Request / - Service - | Requesting | Requesting Service Resupply idle Offering
Offer Supplies Request Request Offer PDU
PDU PDU]
Resupply Refuse / Resupply Resupply Idle Idle Resupply - Requesting Idle
Cancel Request Cancel Cancel PDU Cancel PDU

When the Resupply Offer PDU is transmitted by the
supplier, the resupply receiver receives the PDU and
transitions from the- Requesting State 1o Receiving
Siate. This set of transitions are described in the
second row of Table 1.

. As canbe seenfromthe above scenario, a setofinitial
and response transitions can be observed by follow-
ing the test script in Table 1.

Inopportune Testing - The inopporiune tests iden-
fify shortcomings in the protocol due to network failure
and tests the protocols response in such situations.

For the inopportune tests, IST has developed test
cases dealing with recovery from PDU loss. In all
cases, the protocol recovered by a timeout mecha-
-nism. In test cases identified, DIS would simply
discard the PDUs that do not apply to the state of the
transition model.

For example, in row 1 of Table 1, if the Service
Request PDU sent by the requester is lost, the re-
sponder remains- in- the Idle state. The requester
would repeat the request by sending a Service Re-
-quest PDU every 5 seconds until either it receives a

response for its request or it gives up the request. A
lost Service Request PDU has no greatconsequences.

. Testing Results

The iable presented in the previous section shows a
detailed testing procedure forthe DIS Protocols. The table
is amranged into an Initiator/Responder analysis. All the
initiated transitions were verified with the corresponding
responder transitions. The experience gained during the
testing phase was used o enhance the qually of the
specification and the testing process.. if an ambiguity inthe
specification was observed, the specification would be
suitably modified.

: As a resuit of the testing phase, two inconsistencies

were found in the Logistic Module. 1n the first case,
the Cancel Requesttransitioninthe resupply receiver
module did not occur. This was because no interac-
tion (Resupply Cancef PDU) originated from the sup-
plier module 1o allow the receiver’s Cancel Request
transition o take place. The specification was modi-
fied to correct this inconsistency. With the addition
made to the DIS specification, the testing procedures
were changed to reflect this modification (Resupply
Refuse transition in Figure 6.

944

oo T T TR

—— Offer Supplies
Resupply

- Refuse supply Complete
== r
Ready Resupply Offering
- State Canceled " State
| ,

s

:_ _ Resupply Canceled _ _ 1 _
by Supplier

Resupply Abandoned

Decrement
Timer 1

FEigure 8 - Original DIS Standard Resupply Supplier
State Transition Model with Corrections

Forthe second case, the Transfer Cancel transitionin
the receiver resupply module would not occur. As
with the first case, the reason was that there was no
interaction (Resupply Cancel PDU) originated from
the supplier module to allow the receiver's Transfer

Cancel transition to take place. Again, the specifica-

tion was modified (Resupply Canceled by Supplier
iransition in Figure 6) to handle this deficiency.

The Fire and Assess state transition modsais were
checked based on a number of assumptions on the
standard and no ambiguities were found.

The DIS standard has provisions for the loss of packets in
the case of the repairfresupply activities due o network

failures. Because of this, the Inopportune test has shown

those cases were handled properly. In the current DIS
standard, a timeout mechanism is incomporated and has
been verified to be adequate.

CONCLUSION

This work was successful in specifying the DIS stan-
dard within the context of a format description tech-
nique. However, because of the nature of the current
standard, several assumptions and restrictions were
imposed onthe entity responses definedinthe PDUs.
Without such assumptions and restrictions, this work
would be cumbersome and unnecessarily extensive.

The current standard is not fault tolerant, i.e., the
protocol can present misbehavior caused by network
failures. However, the protocol works well in an
environment of low network failure rate.

REFERENCES

[1] Bertine, Herbert V.; W, B. Eisner; P. K. Verma;
K.T. - Tewani, “"Cverview of Protocol Testing Pro-
grams, Methodologies, and Standards”, AT&T Tech-
nical Journal, Jan/Feb 1980

[2] Budkowski, S.; P. Dembinski, "An infroduction to
Esielle: A Specilication Language for Distributed
Systems”, Computer Networks and ISDN Systems
14, 1987

[3] Military Standard, "Protocol Data Units for Entity
Information and Entity Interaction in a Distributed
Interactive Simulation{Final Draft})', Institute for Simu-
lation and Training IST-PD-91-1, October 30,1991

[4] International Organization for Standardization,
Open Systems Interconnection Reference Mode,
1ISO7498, 1984

[5] International Organization for Standardization,

Esftelle: A Formal Description Technique Basedon an

Extended State Transition Model, 1S03047, August :
15, 1989

[6] Pope, A; R. L. Schaffer, The SIMNET Neiwork
and Profocols, BBN Systems and Technologies,
Report No. 7627, June 1991

[7] Sielmassi, R.;B. Strausser,"The Portable Estelle
Translator: An Overview and User Guide", U. S.
Depaitment of Commerce, National Institute of Stan-
dards and Technology, Technical Report NCSL/SNA-
91/1, January 91

[8] Sijeimassi, R.; B. Strausser, "The Distributed
Implementation Generator: An Overview and LUser
Guide", U. S. Department of Commerce, National
Institute of Standards and Technology, Technical
Report NCSL/SNA-91/3, January 91°

945

