SOFTWARE REUSE: A COMPANY VISION

Paul E. McMahon
Staff Scientist, CAE-Link Corporation, Binghamton, New York
Adjunct Faculty, Computer Science Dept., Binghamton University

ABSTRACT

Today, many exciting inftiatives are underway within the software industry.
Structure Modelling technology is growing rapidly through efforts at the Software
Engineering Institute {SEl} and ongoing projects. Megaprogramming challenges are
being faced on the ARPA STARS project. Open standards inciuding POSIX, X-Win-
dows, and Motif are becoming realities as key software vendors position themselves
to support these initiatives.

Reuse library tools and guidelines are also being developed through efforts at the
SEl, the Software Productivity Consortium (SPC), and on the STARS project. At the
same time, software contractors are moving forward with serious strategies to im-
prove their company software processes in response to industry initiatives including
the 1SO 9000 requirements and the SEl Process Maturity Model.

All these initiatives share the common objective of cost reduction and most are
locking to one form or another of software reuse to achieve this goal.

This paper examines the multi-faceted issues of reuse and the role these current
industry initiatives play within reuse technology. lssues discussed include analyzing
existing software for reuse, techniques to design for reuse, reusable software archi-
tectures, managing variant versions of software, and managing a corporate reuse [i-
brary. Technical and management issues are presented.

The paper focuses on lessons learned from efforts at CAE-Link to infuse soft-
ware reuse techniques inte the corporate culture. Practical techniques being applied
today to meet reuse challenges are discussed. The key roles of reuse criteria, met-
rics, company software standardization, project-company interaction, management
mandates and training and education are discussed.

Experiences and examples are provided from the B-2 ATD project, Independent
Research and Development, and a corporate software Process Action Team that was
instrumental in providing the focus necessary to move the company forward with an
effective and practical reuse initiative.

ABOUT THE AUTHOR

Paul E. McMahon is a Staff Scientist at the Binghamton Operations of CAE-Link
Corporation and an Adjunct Facuity member of the Computer Science Department at
Binghamton University. Mr. McMahon has been with Link since 1973, holding vari-
ous technical and management positions within the company. WMr. McMahon has
published numerous papers on Ada and software engineering including a paper enti-
tled "Lessons Learned on the Fringe of Ada", which was nominated for best paper at
the 1889 Interservice/Industry Training Systems Conference and a paper entitled
"Software Metrics, Ada, and the B-2 ATD", which was awarded best paper at the
1991 Interservice/Industry Training Systems and Education Conference. Mr. McMa-
hon teaches Software Engineering at Binghamton University.

336



SOFTWARE REUSE: A COMPANY VISION

Paul E. McMahon
Staff Scientist, CAE-Link Corporation, Binghamton, New York
Adjunct Faculty, Computer Science Dept., Binghamton University

INTRODUCTION
What is Software Reuse?

To many, software reuse means code.
Reuse, however, is multi-faceted. In fact, its
greatest potential for cost reduction may be
found in other software forms such as re-
quirements, design, documentation, and the
development process itself. Most software
striving for
See

industry initiatives today are
one gr more of these forms of reuse.
Table 1.

ja5E

Q0A, CASE Toals,
Workstations

Requirements

QO0D, Structure
Modelling, Megapro-
gramming, CASE
Tools, Workstations,
Reuse Library

Design and
Documentation

Code QQP, Variants, Reuse
Library, Autogenera-
tion

Test Cases CASE Tools,

Regression Testing

Development
Process .

SEl Maturity Model,
SO 2000

Table 1 Forms of Reuse

Tools and Techniques

Object Oriented tools and techniques
are popular today largely due to their poten-
tial to provide more reusable products.
CASE tools provide the potential for stan-
dard representations resulting in reusable
requirements, designs and documentation.
Reuse tools can aid organizations as they
transition to software processes with more
of a focus on reuse.

Software Architectures

Structure Modelling and Megapro-
gramming initiatives esach provide forms of
software architecture reuse. Structure
Modelling focuses on reuse through design

337

" "Megamodules are

_this fashion.

commonality. Once common design ele-
ments are identified, reuse can be enforced
through the use of structure model tem-
plates.

Megaprogramming focuses on reusing
complete software infrastructures.
independently main-
tained software systems managed by a
community with its own terminology, goals,
knowledge, and programming traditions.”

Distributed Interactive Simulation {DIS)

is a form of Megaprogramming that reuses .
complete training devices to face new’
training needs despite the fact that these
devices were never envisioned to operate in

through standardized protocols are key
attributes within this emerging technology.

Open Standards and Process Improvement

Efforts geared toward industry open
standards and company process improve-
ments provide other forms of reuse. - o

QOpen standards means software is re-
usable across vendor platforms. )

Company process improvement efforts
provide standardization and repeatability of
software processes across company pro-
jects. This resuits in reuse of procedures,
tools, training and even corporate knowl-
edge.

Software Development efforts of the
past relied heavily on the knowledge and
opinion of subject matter experts to keep
projects on course. Today, company initia-
tives are moving away from reliance on in-
dividuals toward defined and managed
processes that are repeatable, cost-effec-
tive, and independent of the skills of
particular individuals.

Why is Software Reuse Important?

_The primary reason software reuse is
key today is the need to improve cost-ef-
fectiveness. Finding better ways to reuse
software to meet our needs means that we
can do more for less. This translates into

Communication and control



reduced development cost, reduced risk and
increased reliability and maintainability.

REUSE TECHNIQUES

Due to the many forms of reuse, there
are also a number of implementation tech-
niques.

We have identified
techniques at Link.

six key reuse
. Analyzing Existing Software
Designing For Reuse

Structure Modelling

Variants

o AW

. The Corporate Reuse Library
6. Management Support and Mandate
Analyzing Existing Software

The fact that software exists does not
imply its suitability for reuse. - Existing
software must be analyzed against estab-
lished criteria to determine its reuse poten-
tial. This analysis includes answering the
following key questions:

1. What do we want to reuse (design,
documentation, test cases, code)?

2. s the design compatible with the
planned software architecture?

3. Do we want to reuse only the
algorithmic design or more?

It is currently believed that the most
valuable reusable software products may be
analysis and desigh. In many cases, math
meodels may be reusable, but coded modules
may not be compatible with modern soft-
ware architectures. Reuse analysis is nec-
essary to answer these questions.

Designing For Reuse

Designing software to be reusable may
cost more. This is because our develop-
ment model and techniques change when
we are designing for reuse. This is an in-
vestment that will begin to pay off as the
reuse library is populated. The reuse library
is discussed later in the paper.

We have identified four key factors in
designing reusable software. It is recom-
mended that these factors be employed as a
review criteria for determining acceptability
of software for the reuse library.

338

1. Reuse Existing Software First

When designing reusable software, our
development model changes. The first step
is to look to reusable components to meet
needs. Our goal is to build solutions from
existing library components rather than
reinvent new solutions. Technical trade-offs
may be necessary.

This may mean early discussions with
the customer refining requirements to sup-
port maximum reuse to reduce overall cost.
Custorers will need to be. aware of these
changes in contractor reuse processes. -

2. Follow Standards

Follow company software standards to
ensure new software meets reuse criteria.
In a reuse development environment key

standards include software naming conven-

tions, standard software packages, and es-

tablished architecture guidelines. oL T

3. Isolate Device Specifics -

Device specific data must be isolated
minimizing the effort required to adapt
reusable software to changing requirements.
The management of modified reusable
software i5 discussed further in the section
on variants.

4. Use Object Oriented Techniques

Current studies and our experience to
date indicate object oriented techniques
result in more reusable and maintainable
software than traditional methods.

Structure Modeling

Work at the SEl and experiences on the
B-2 ATD indicate that structure modeling
techniques are effective at enforcing reus-
able common designs, simplifying training,
and reducing schedule and computational
resource risks.

Engineering productivity may also be
enhanced through autogeneration of struc-
ture model components. CASE tools may
be used to enforce common design deci-
sioris supporting the structure model.

Variants

The Variant aids in the management of
reuse during software maodifications. A
variant is a software component with a
special relationship to a "parent” software
component. Both the parent and the variant



are independently managed and tracked, but
the variant reuses a significant amount of
the parent software.

There are similarities between the con- - -

cept of variant and the concept of inheri-
tance. found within object oriented lan-
guages. Inheritance provides a form of
reuse, but mmay include a run-time penalty.

Variants, on the other hand, are
managed through an off-line configuration
rmanagement system eliminating run-time
overhead. The off-line system manages the
relationships between "parent” units and
variant offspring tracking and measuring
variant reuse.

Variants provide a powerful mechanism
to manage large collections of reusable
software components across many similar,
but functionally modified systems.

Corporate Reuse Library

A corporate reuse library is critical to
the success of a company-wide reuse ef-
fort. However, equally important to its
functional capabilities, the library processes
and procedurss must be integrated with
company ‘existing software processes and
tools. This includes approvals, reviews and
change notifications.

While many large companies do not vyet
have reuse technology as part of their soft-
ware process model, they may have well-
established software configuration man-
agement tools and procedures. The infu-
sion of reuse technology into the company
must minimize redundant engineering effort.
In particular, reuse processes and tools
should be .integrated closely with existing
software configuration management proc-
esses, ensuring that identification, status-
ing, approvals, and notifications are proc-
essed as efficiently as possible,

Management Support and Mandate

Changing a company’s software process
model to effectively support reuse requires
more than a reuse library and a technical
understanding of the issues. Software engi-
neers frequently prefer to reinvent rather
than reuse unless clear direction to do oth-
erwise is provided.

For reuse technology to effectively take
hold in a corporation, it is essential to edu-
cate all levels of software management in

339

the latest reuse principles and strongly sup-
port the company reuse effort. A manage-
ment mandate to follow the principles of
reuse must be glear to all involved in soft-
ware production. To manage ‘this effort
successfully, reuse objectives shouid be
established. A reuse program should include
metrics and feedback of results, taking cor-
rective action where necessary. Through the
reuse library, integrated closely with a dis-
ciplined configuration management system
and strong management backing, the ca-
pabilities exist to measure, manage, and
succeed with reuse technology.

Past attempts at Corporate level reuse
have failed largely for four reasons. First,
criteria, control, and approval were unclear,
This resulted in product changes initiated at
the project level that were inconsistent with
the company vision. Second, adequate re-
sources were not supplied to support the
company perspective.  Third, mativation
from the organization continued to be the
project rather than the company. Fourth,
the notion of reuse as code only was a bar-
rier. Change in each of these areas is es-
sential to the success of a corporate reuse
effort. N )

CAE-LINK INITIATIVES BACKGROUND

In the first half of 1992, an outside
consulting organization was placed under
contract by CAE-Link to facilitate Company-
Wide process improvements, A software
process ‘action team (PAT) consisting of
CAE-Link senior engineers and software
consultants was formed. The objective of
the team was to study current software
policies and processes at Link and imple-
ment improvements. necessary to reduce
software life-cycle cost.

One and one-half years earlier an effort
was initiated to export the B-2 ATD Ada

software process and tool-set, making it

available for other CAE-Link projects. Since
that time, enhancements to both the tools
and the software process have continued on
the B-2 project and through Independent
Research and Development at Link. The
information presented
based on these activities.

Software Process Action Team (PAT) les-
sons Learmed

The Software Process Action Team
(PAT} conducted interviews throughout the

in this section is



Company with both junior and senior soft-
ware engineers and software managers to
identify key areas for potential improve-
ment. Seven target areas for improvement
were identified as a result of this activity.
These include:

1. Eliminate process redundancies and
non-value added work.

2. Do not release {put under formal
configuration control} software until
fuliy tested.

3. Improve the off-line test
environment and tools.

Focus on early error detection.
Improve software training.

Establish campany level standard
metrics.

7. Establish a Corporate software reuse

‘sentor technical engineers frequently pro-
vided the focus for discussions.

“As a result, action plans were estab-
lished and carried out. The company Soft-
ware Standards and Procedures Manual was
madified addressing targeted areas for im-
provement.

Formal company software training
classes were prepared and conducted in
support of these initiatives. This tramning
included:

1. Object Oriented Techniques
2. Criteria for:

a. Releasing software
b. Design level of detail
c. Risk assessment

3. Standard company design
representation

library with defined procedures for 4. Standard company Structure Model
reviews, approvals, and reuse ) . ) .
criteria. 5. Standard company software metrics
Process Action Team Results 6. Standard company software process
In parallel with the interviews, the PAT 7. Software management _techniques
members and the consultants met periodi- {i.e., algorithmic cost estimating}.
cally to brainstorm ~potential improvement See Figure 1.
strategies. Presentations from experienced
initiatives
Object Metrics Traini Reuse CASE
Criented raining Tools
Techniques — l !
Reuse Open
Library Standards
| } R St
Process Product ‘AS':SIE’QS]]‘S Code Test Data
Project Structure Dogu- .
Standard Specific Standard Model Classes mentation Variants Common
Objects

Figure 1 Process Improvement Initiatives

340



Reuse Through Process Improvement

Making the process repeatable is an-
other form of software reuse. The SEI Ca-
pability Maturity Model defines five process
levels. See Table 2.

1 Ad Hoc

Process not repeatable

2 Repeatable |Repeatable, but
dependent on people
3 Defined Procedures and

Process Training

4 Managed

5 Seli-
improving

Metrics collected

Metrics feedback for
improvement

Table 2 SEIl Process Maturity Madel

Our objective is te reuse training, tools,
procedures, and standards company wide.
However, it is critical that any methods
reused company wide be as cost-effective
as possible. This implies that the company
standard method must be self-improving.
Repeatable and defined is the first step.
However, a self-improving process must be
our uitimate objective (SEl Level 5).

To achieve level five, metrics are neces-
sary. Selecting the "right” set of standard
metrics for your organization is a key to
success. The right set for one organization
may nat be right for another. The metrics
chosen must add real value to each organi-
zation's own process, while, at the same
time, adding minimum burden to the soft-
ware engineer.

Our software processes at Link are
based on a combination of modern software
engineering principles, and experiences and
lessons learned from real-world projects.
Metrics provide an example of this blend of
real-world experience and textbook theory.

METRICS

To ensure our reusable processes, pro-
cedures, and tools are as efficient as possi-
ble we must measure. In establishing our

company approach to metrics, we listened -

to the people from our ongoing projects.

We found from our experience in apply-
ing metrics on the B-2 ATD project that
there are two distinct kinds of metrics nec-

347

essary to support real process improvement.
We refer to these two types as Standard
and Non-Standard metrics.

Standard Metrics History

Standard metrics are those that are ap-
plicable to all software developed at Link.
Standard metrics are collected periodically
and are used as feedback for process im-
provement.

As part of our PAT interviews, we
asked managers and engineers for feedback
on the effectiveness of standard metrics.
These interviews provided us with some key
insights.

First, we found that standard metrics
were not being collected consistently across
all projects. Second, we found that the
lower one moved into the organization, the
less value was reported with the use of
these metrics. Metrics were not being col-
lected consistently because the “engineers
and their immediate supervisors found
minimal value in this data.

Project engineers, however, reported
that software metric reports were found to
be useful. Project engineers used metrics to
identify trends and potential problem areas
early.

Standard Metrics Lesson Learned

Engineers and first level managers tend
to be close to the problems on a daily basis.
As a result, the value of metrics as a man-
agement aid at this level is low. Metrics are
trend indicators. The higher one's perspec-
tive or span of accountability, the more
valuable they become.

We found that metrics are particularly
valuable to those concerned with multiple
projects. Metrics can provide a common
ground for comparison leading to better
understanding of the root cause of prob-
lems.

The Process Action Team established a
company set of standard software metrlcs,
and initiated training of all perscnnel includ-
ing engineers and managers in why it is im-
portant to collect this data accurately from a
company perspective.

We found that people respond positively

_to initiatives when they comprehend the



motivation. This means education. Metrics
is becoming an integral part of our training
program as well as cur company software
vision. -

CAE-Link Standard Metrics

1. Cost
2. Schedule
3. Manpower
4. Execution Time
5. Memory
6. Complexity
7. Source Lines of Code (SLOCS)
8. Stability {Rate of Change)

9. Problem Category.
Non-Standard Metrics

The value of metrics rests in process
improvement. Optimum process improve-
ments can only take place if the "right" in-
formation is available to -detect process
weaknesses. This may at times require
collection of "non-standard” metrics.

Non-Standard Metrics can include any
data necessary to understand a perceived
problem. They can include such measures
as the length of time for an engineer to.
complete. or learn a sequence of process
steps perceived to be inefficient. Non-Stan-
dard metrics are only gathered for the pe-
ricd of time necessary to isolate a problem,
and implement a solution. ~ Once resolved,
for efficiency, collecting of non-standard
metrics should cease.

On the B-2 ATD, in response to a prob-

lem report on the build process efficiency, —

the following non-standard metrics were
collected over a period of several months
and analyzed weekly:

1. Elapsed wall ¢clock time of each load

2. Number of changed software units
per load

3. Number of lines compiled
4. Number of tasks linked

5. Number of load build process
problems

6. Categories of build process
problems

7. Elapsed time of segments of buiid
process.

As a result of this analysis, a process
improvement plan was initiated. Lessons,

rules, and guidelines resuiting from this ac-

© tivity were communicated to the company
Process Action Team for approval and in-_ _

corporation into the company standard
process. It was the collection of specific
non-standard metrics on a project that pro-
vided the needed insight leading to key
process improvements for the company.

SOFTWARE CONFIGURATION
MANAGEMENT

Earlier in this. paper key areas targeted
by the Company Process Action Team werg
identified. One area identified was Configu-
ration Management. .

Interviews with engineers indicated that
certain projects may have applied toc much
control too scon resulting in unnecessary
process inefficiency. As a result, the Proc-

_ ess Action Team collected data, examining

a sampling of systems across multiple pro-
grams. We found that certain systems had
been placed under configuration control
prematurely and some programs were re-
quiring too high a level of change approval
too early. Releasing software before it was
adequately tested was found to be the re-
sult of inadequate education and trajning
concerning the relative cost impact of de-
tecting errors prior to {versus after) release.

The Cost To Detect and Fix Errors

The cost to detect and fix errors during
integration is significantly greater than the_

cost to detect these etrors prior 1o release.

When design errors are not detected
until integration, the impact is great for the
following reasons:

1. Load build time is extended. This
affects many engineers. '

2. The rigor of the change process
{approvals, etc.) is more costly.

3. Having software in the load that has
not bheen  fully tested can cause

testing rework to interfacing
systems.
4, Possibly the most significant,

frustration caused by all of the
above leads to low engineering
morale. .

Company Action Plan

The Process Action Team determined
that the root cause of ~eported inefficiencies



was not the company software configura-
tion management policy or procedures, but
rather a misapplication of the process and
inadequate training and education in the
consequences of premature
excessive early controls. This education
became a key part of our formal software
engineering training program.

It was the key feedback from metrics
that inittated the actions leading to these
key improvements in our process.

PROJECT AND CORPORATE INTERACTION

Project feedback to a company focal
point is critical to effective company level
process improvement and reuse.

As a result, a corporate level Software
Engineering Process Group ({(SEPG) was
permanently established at Link. The SEPG
listens to project concerns and lessons, ap-

proving, where appropriate, Company soft- -

ware process changes. Any changes to the
Company standard software process and
supparting tool-set must be approved by the
SEPG. See Figure 2.

Process
Pre}ects

IR&D

Figure 2 Project and Corporate Interaction

Policies,
Precadures,

Gorporate )
Ubrary
-~ ueery .

SEPG decisions are based on the com-
pany software vision. Software process
changes or tool modifications are approved
only if the change is in the best interest and
consistent with the Company software
principles and vision.

In the past, individual projects have
modified software tools and processes
based on shortsighted project issues. This
resulted in overall increased software devel-
opment and training costs.

Each directorate within CAE-Link with
software responsibility has a representative
on the company SEPG. it is through this
vehicle that we are affecting the changes
necessary to make reuse technology integral
to our software development process.

WHERE ARE WE GOING?

Today we are recognizing the needs of
the full life-cycle of software. We are using
front-end analysis and design tools and oh-

release and

343

ject oriented techniques to better communi-
cate with our customers and ourselves.
These techniques and tools also provide
more reusable software.

Reuse _technigues, methods, and tools
are certain to play a key role in reducing
future software costs, allowing us to do
more for less. We envision a reuse library
integrated with configuration management
systems providing disciplined and efficient
software processes supported by metrics
and feedback leading to continual process
improvement.

We are positioning ourselves to grow
through open standards and commercial off- -
the-shelf software products. We are moving
toward improved off-line test environments
supporting earlier less costly error detection.

Today, all the tools required to support
our vision are not vet commercially avail-
able. We plan to support our company
process with the necessary tools developed
and managed through the corporate hbrary
and the SEPG.

As improved products become com-
mercially available we intend to maximize
our use of commercial products supporting

cpen standards.

BALANCING STANDARDIZATION AND
GROWTH

Companies that fail to change will not
survive. At the same time, too much
change or change of the wrong kind can be
equally detrimental to the success of a
software organization.

Each company must establish its own
vision of the future with clear software ob-
jectives and change guided by its own ob-
jectives.

CONCLUSIONS

Early reuse programs will not be capable
of addressing all associated issues. Compa-
nies seeking to institute reuse programs
must [ook closely at their own process and
products to determine where the greatest
gains are to be made and how to best inte-
grate reuse technology into current soft-
ware cultures.

Successful reuse initiafives today de-
mand a selective and focused strategy cou-
pled with management mandates, training,
and education.



Software reuse is not limited to our
products. Perhaps the greatest potential for
cost savings is found in the reuse of effi-
cient processes. The path to better proc-
esses and methods is through metrics.

Without measurement, we tend to work
bottom-up with decisions being based on
nearsighted perceptions. It is frequently
these decisions that produce the products
that are difficult to reuse and maintain.

Effective reuse programs must be inte-
grated with process improvement continu-
ally providing feedback through metrics.
Process metrics should be viewed from the
company perspective. We need to change
to survive, but change must be consistent
with our principles and our vision.

344

REFERENCES

1. Wiederhold, Gio, & Wegner, Peter &
Ceri, Stefano {(Nov. 1992). Toward
Megaprogramming. Communications of the
ACM. '






