DEALING WITH A VARIETY OF RESOURCES IN DIS IMPLEMENTATIONS

John Q"Reilly
Reflectone, Inc,
Tampa, Florida

ABSTRACT

Teday’s simulators involve many varied computational systems. Interoperating these devices is a key strategy for
extending the life of current simulators. The Distributed Interactive Simulation (DiS) protocols solve the maze of interoperability.

These siatements are weli—known to the simulation industry, but the stark reality of the situation is thot varied
systemns produce varied implementations of DIS. The full garnut of DIS involves the varied processors, varied operating systems,

varied programming languages ond struciures, varied interface hardware, varied coordinate system implementations, and varied..

data base formetis. Reclizing these six arecs simultaneously is a particularly demanding chere. This peper attempts to show
how one implementor went about producing code for DIS, seeking {o provide reusable code in the process. The lessons learned
{rom this venture are discussed. -

Using ¢ PC-based roder simulation system as the boselme the paper discusses the research and development of
BIS in this varied environment. Aithough ¢ radar appears to be o "receive—only" entity on a DIS network, in order to locelly test

such o system, test veclors (or PDUs in the DIS parlance) must be genercied. Thus, the baseline requires some woy lo

construct test vectors, such os through semi-aulomated forces {SAFOR) or Computer Generated Forces (CGF} qenerators A
limited CGF for the required purposes is described in the poper.

Other steps in the implementation-include actually preducing, transmitting, receiving, and displaying the CGF slate

vectors. Production involves coordinate conversion schemes, PDU receive and transmit functions become as dissimilar_as their

associoted processors, cnd display techniques require limitations in the scope of what can be displayed. So, the paper surveys -
network I/O techniques and selects the correct one for the radar simulation. The lost stage (displaying) requires o filter of the

vectors since all processors {and especially the PC in question) have limits in terms of computing power.

Intermediate steps in the full implementation of g DIS system invoive determination of correct protocols sent from
the CGF ond the use of terrain ond feature data bases. Both of these areas are also discussed mcludmg lhe fleids of ne{work
anglyzers, DMA maps, and Project 2851 SIF.

The paper points out that, aithough redlizing a DIS interoperation can be straightforwardly done, care must be taken
to understend that there is more to the “varied" problem thon just the obvious processor incompatibiliies.

BIOGRAPHICAL SKETCH

John has worked in the simulation industry for 25 years beginning in the CAE world of circuit simulation ysing SCEPTRE
and SPICE. He has been in the employ of Reflectone for ten years working variously as a controls engineer, compuier systems

manager, acoustic simulation engineer, radar system engineer, and R&D investigator. Research interests and experience mclude

artificial intelligence, radar simulations, data base design, and DIS.

John holds a BSEE and MSEE from the University of South Florida in Tampa and has done posi—graduate work in
multi-disciplinary simulation.

855

DEALING WITH A VARIETY OF RESOURCES IN DIS IMPLEMENTATIONS

John ('Reilly
Reflectone, Inc.
Tampa, Florida

INTRODUCTICON

Inferoperability is both the blessing and the curse
of the Distributed Interactive Simulation (DIS) implementor.
Allowing us, by definition, to communicate seamlessly
between networkabie computers using pseudo-real-time
protocols provides many coding advantages:

~ Drop—in code — We con develop code once for
many platforms (although this is not necessarily
accurate, as we will seej,

~ A functional separation of decomposition is =~ 7

readily availoble,

~ Information hiding design -meihodoioqiés fit in

well from processor-to-processor, and

~ Slondard protocols are essier to debug,
assuming a network analyzer is available.

~ A system with the DIS interoperability capability

is an "easy sell' in the compelitive simulafion

industry.

But DIS has ifs disadvaniages, too. We will discuss
these problems aregs with an example.

The 1992 1/ITSEC conference's state—of-the—art
theme involved o demonstrotion of DIS. Over iwenty
corporctions were involved in defining, discussing,
implementing, and demonstrating the use of DIS protocols

during the three-day affair. This was the first major

exhibition of DIS’s capabilities in a public forum - q vast
undertaking in its own right ~ and the first undertaking by
this researcher of any coordinated network simulation.
Reflectone chose lo put a “listen—only" Digita! Radar
Landmoss Simulation (DRLMS) in the demonstration
network. Although this listener was only expected to receive

network packels, the basic process of appearing on the

network was found to be equivalent to performing g full-
scale interoperability simulation. This concept will become
more apperent as we discuss the implementation ond its
aliendent problem resolutions.

In order to place a radar simeletion system on the

I/ITSEC network, o full set of DIS Protoce! Data Unit (PDU)

software wos required. Entity State, Fire, Detonation, ond
Collision PDUs would have to be sensed from the nelwork,
decoded accurately, and converted to the pre-existing
radar simulation's coordinate system. The radar simulation

856

was_hosted on o PC-compatible machine running the
standard one megabyte operating system. No prior
experience on this use cf networking protocols, especially

" UDP/IP {User Datogram Protocol/Internet Protocol, as

defined by the DIS Standords), was_available for the host
computer. As an odditional sidelight, the I/ITSEC
demanstration made the Project 2851 Simulation System
Dotabase Interchange Format (SIF) formst dalabose the

~ standard. This aspect added more compiexity {o the DIS

Inereperability Demonsiralion problem, although SIF is
completely distinet from DIS in principle.

The scope of the DIS slandards were somewhat
reduced by populor opinion (e.g., limited set of PDUs.
allowed on-lne, simplified coordinate system, and
broadcast-only packets employed), but the mainstays of
DIS were left in place {i.e., Tull entity state PDUs, UDP/IP
prolocols, dead-reckening algorithms, geocentric
coordinate system).

Having inroduced the scope of the problem (DIS
Interoperabilily Demosiration wusing o DRLMS), the
remainder of this report will discuss the implementation of
the DIS and DRLMS requirements.

VARIED RESOURCES ARE NEEDED TO MEET REQUREMENTS

" The Institute for Simulafion ond Training (15T, {he

organization tasked with both putting together the DIS
Standards ond the 1992 I/ITSEC Interoperchility”
Demonstration) realized thol some means of testing DIS
syslems wos necessory. Thus, IST generated o test
procedures document which ¢l participonts in the
demonstration were required to pass before being certified
{o interoperate on the I/ITSEC netwerk. The document also
provided processes by which IST would verify passage of
the lest procedures. However, this document and its ~
processes were not ovoiloble ecrly enough in the
development cycle to provide any testing methodology by
the participants. Thus was born the "FLY" program.

FLY is o semi-automoted forces generctor (SAFOR)
specifically designed to produce accurate and (for testing
purposes) repeatable DIS PDUs. It was decided thot it
would be nice to host the FLY routing on a processor

~unlike the target radar processor, so FLY was generically

designed and implemented in C to operate on both a VAX
system and a Motorola UNIX system. The choice of the
processors wos foremostly made becouse of availability,
but secondarily made to locate and understand how DIS
should ond could be implemented for true interoperability.

The widely varying aspects of the VAX with ihe YMS
opercting system and the Motorola Delta box with its UNIX
operating system injected sorne unexpected difficulties. The
first concern was raised by the speed of dll of the
processors. Relative CPU horsepower is cerlainly a concern
for any networked design due to throughput considerations
- s the processor capable of {ransmitting and receiving
and decoding DIS PDUs in o timely fashion? It turned out
that the PC was probably the most efficient in this aspect,
beccuse of its single user operating system as oppesed to
the multi-user YMS and UNIX environments. In order for
YMS and UNIX fo be os sophisticated gs they are, they
must provide packe! trapping mechanisms well above
those of the DOS-based PC cperating system. The major
concern here was thus to reduce the effect of the
operating system on the application’s design limitotions,
The FiY and Raodar simulation applications should
implement{ the dead reckoning and coordinafe
transformation clgorithms s efficiently as possible, cutling

corners as much as possible. Assumptions of limitaticns

will be discussed more in {he next section. _

The varying host processors necessary to implement
any DIS design also have internal hardware variences. The
hardware implementation of fleoting point numbers is a
distinct problem orea. The DIS standard quotes the IEEE
Standard for Binary Floating Peist Arithmetic (IEEE 754-
1985) as the required slondard. This standard is
implemented in many processors directly {in this case, the
Motorala 880X0 and intel 80X86 processors) bul is not
implemented in others {specifically, the VAX architeclure).
The VAX floaling point format matches for single—precision
flooting point numbers, but has two double—precision
formats, neither of which follow the IEEE 754 standard.
Reformatiing of floating point values from and to the DIS
standord is not necessorily on easy transformotion, For the
VAX, a convarsion from one of the formats to the other
and @ simple multiplication af the result by four is needed.
Other processors may require some difficult bt
manipulation routines to parform the conversion.

Likewise, host processors vary widely in hardware
network interfoce capobility. The main concern here is in
regard to conversion of the network physical medium to

[EEE 8G2.3 protocols. Again, this is generally not o concern . _
since interfacés can be switched between the two (Ethernet

vs. 802.3), usually via o software protocol converter. But,
PC network interfaces are génerally Ethernet only.

Al a higher level, implementation of DIS standards can

be offected by pregromming languoges and the stondards
for progromming. For example, although the use of CASE .

lools is highly effective in code generclion, Teal~time and

“object-orienied CASE systems are not ovaileble for PC
gssembler language (in which the pre—defined radar
simulation was written). Likewise, for the case of non-
standard ficating point formats, the FORTRAN language
may not be appropriate to implement the necessary bit
manipulation for I[EEE 754 conversions. This is usually not
a major stumbling Elock, however.

Various coordinate system implementations were
expected o be involved in the demonstration, because

simuigtions “would . be_running on -varying™ hardware . _

platforms simulianeously during during the neiworked

_demonstration sessions. For example, ¢ simulotion runnin%

on one host may use a world coordinate {Loi/Lon

_positional ‘system and another processor may be

implementing a simulation using topocentric coordinates
(X, Y, 7). These voriqus implementations exist quite often’
in the flight simulation arena due to varying requirements
for each simulation: one system may require a very large
gaming greq in which a geodetic coordinate system is

- necessary, whereas another system running in g smailer

thinnet, thicknet, or AUl cable connectors. This conversion _

is relatively straightforward, although costly under some
mechanisms. Anolher network concern is the capability of
a processor to accept true "Blue Book" Ethernet versus

857

gaming area would only need o "flat earlh” topocentric

system. The DIS interfoce for these iwg exomples would
_obviously be quite different in design, although hooks could

be installed in the code to provide access to the correct
cocrdinate conversion routines dependant upon the
coordinate system locally used. So, regardless of which
coordincie system is employed in g simulation, the DIS
PDU packing/unpacking routines would convert to/from
geocentric aceording {o the requirements of the local
simulator. _ _ .

Databases, are utilized heavily in DIS implementalions.
Terrcin, features, and moving models for visual ond sensor

systems all use these databases and they will use them

differently, on differing processors, af differing levels of

detail, and for differing reasons. Visual systems need

highly detailed databose inputs; low—levei “fishing radars
need much less accyrate database information. The.
correlotion of these dotabases is required so.that, say, a

bridqe appears ot the same relative location on g visual IG . -

os it does on o Digital Radar Landmass Simulation. Also,
the correlation between the datcboses and entity positions
ond orientalions must be accurate in order to keep ground
venicles from flying above the terrain or flying enlilies

from oappearing to burrow through the ferrain. This
correlation is mainly o function of accuracy end
consistency in coordinate tronsformations. If one high—
detail system performs double-precision mathematics, s
results will appear more realistic than one using lower
precision” algorithms. In fact, coslly (in terms of CPU
horsepower) floating point algorithms provide belter
correlation to databases. The choice of ~conversion
algorithm may also affect correlation accuracy. ¥ two
hosts compute the same value differently, their position
updates to the other hosts may not be well-correlated.

IMPLEMENTATION DETAILS AND DIFFICULTIES

In order to provide some more detail to the above-
mentioned concerns, we address_some redlizations.

The FLY and radar simulations were designed to be
efficient regarding network throughput. Assumptions have
to be mede in any simulation design, s¢ thot difficult
requirements will fit within processing constraints. This
means that corners must be cut {or at least shaved) in
the design of DIS processes. Corner cutting must be
selective, of course, in order {o not reduce the realism of
any simulation. Filtering of the PDUs is the most practical
way 1o reduce both host network traffic ond hosi
resources. The filtering must be ¢ bottoms up one; that is,
the quickest and earliest filtering {or ignorance) of PDUs
is essenlial. Since all PDUs are brocdcast (in the current
implementation), nore could be ignored on network
address alone, although that would have been the earliest
filtering possible. Non=Ethernet packels could be ignored
by low-level, row interfaces, but YMS and UNIX do not
afford this direct capability. However, filtering at this level
was implemented on the PC. Also, non-UDP/IP packets fit
the same mold os those of the non-Ethernet form. The
demonstralion used o single exercise ID, so filtering could
not be performed at that level, either. Filtering finally can
be implemented in any of the varying resources at the PDU
type level. For example, the radar simulation was designed
to ignore any PDU which was nol an entily stale, and the
FLY routine ignored any PDUs not specifically designed for
the demonstration {i.e., entity state, fire, delonation. ond
collision). The next stages of filtering can be performed on
the lypes of entities provided within the PDUs. Thus, the
rador simulation would ignore "small" entities such g
dismounted infantry and fight vehicles.

The radar simulation system was written using a flat
earth topology. That is, the spherical earth was locally

flattened (via a Sanson-Flamsleed transformation) intoan ~

X=Y coordinate system. This was dictated by the host flight
simulation. Conversély, it was found to be most effective
{o design the FLY routine to operate in the geocentric

858

coordinate system. Computing the DIS required geocentric .

positions was effortless and gccurote, because flight

- models do not generate new positions, but rather qenerote,

coordinate sysiem mdependent velomtles

This varying choice of coordinate sysfem obviously
injects some correlation errors. Reflectane’s
implementation was not oo concerned with these errors,
because the radar simulation was low in delail; so the
issue remains open. Solutions remain to increase
computational accuracy (double precision flogting point

evaluatlons) and {o assure conmslency in the chome of

conversion algorithms.

- Network |/0 is much like radio transmissions: A rodio

transmitier is much easier to implement than a receiver,
because there is no need to consider noise. Likewise, o

network write command is much egsier to design than o

network read command because of alf the extra (noisy?)

packets and their asynchronicily in the receive mode.

Implementation of the send/rece:ve mechanisms depends
upan the particular processor in use. : _

In practice, the implementation of netwark 1/0 an a -
PC can be hondled in severa! ways. The most direct

method invelves propristory softwore which is compatible
with a single type of network interface card. This method
was rejected as too costly in the long run because of
being locked into a particular interface. As an dlternative,

there are public domain PC network drivers available from

Clarkson University, the clearinghouse for o large set of
consistent drivers. The consislency comes from o public
domain specification for the drivers from a company
ramed fip Software. Each interface manufacturer writes
{he driver for his card end places the driver in the public
domain. The interfoce to the drivers is assembly lanquage
~ a perfect match for the radar simulation. The packet
drivers are row drivers - the user must perform bottom-
level interfaces to the netwark’s physical layer. For a POU
transmission, the user must place the oppropriate

Ethernet, Infernet Protocol (IP), and User Datagram

Protocal (UDP) headers and trailers around the DIS PDU
ond send this whole packet to the Clarksan driver interrupt
with a "send message command. For packet recsipt, the
following extended operations must be performed:

1 Ldéote the Clorkson driver and ensure it is
installed,

2. Request device information from the driver,

3. "Access" the dnver by supplying o recelver

. routine’s address, -

4. Initiglize a packet-ready counter to zero, ,
5 On each pass through the simulation, check the

packet-ready counter,

6. If non—zero, read the raw packet, and decrement
the packet—recdy counter. If zero, ihere are no
oackets ready and continue the simulation.

7. Check the packet for correct Ethernel headers,

8. Check whether the packel is an ARP request. If
s0, request the Ethernet address of the local
interface card from the Clarkson driver, format
an ARP reply packei, send the reply, and
continue the simulation.)

9. Check the packet for IP ond UDP flags, and
check the UDP port number for correciness.

10. Check the packet for smallest IS POU length,

11. Check the exercise ID and DIS Slandard version
for correct values,

12. Accept the packet as o DIS PDU.

ARP {Address Resclution Protocol) was required by the
DIS Interoperability Demonstration. ARPinvolves a separate
hast requesting the Ethernet address of a known Internet
node. The ARP request is transmitted in broadcast mode,
is received ond decoded by the appropriate node, and
replied to by that node enly. Thus, even though it was
initially thought that the rader simulation running in the PC

was to only receive packets, it was required {o transmit an

ARF reply also.

Most other implementations (including the costly PC
version) involve direct "socket" [ibrary calls to send and
receive DIS POUs. Socket libraries handle the mojority of
the interface protocols from Ethernet, to IP, to UDP,
including broadcost addressing capabilities. Sockel send
routines packetize the PDUs and receive functions remove
{he headers and trailers from packets returning only the

PDU information. Bul, even these socket libraries require

some extensive coding in practice. Once ¢gain, the send
mode involves fewer steps than PDU receipf, but both
involve the concept of binding a sockel to ¢ particular
protocol {UDP/IP in this case) under a particuler port
number (DIS Interoperability Demenstrotion chose por
number 3000.). Within the simulation loop, a "select”
function determines if cnd when a probable POU exists in
the read buffer or when a socket is oveilable for sending
¢ PDU. We say "probeble" PDU, becouse even with this
higher level of coding at the socket librory level the
minimum PDU length, exercise 1D, ond OIS Standord
version must still be checked in the returned packet to
ensure that the packet is a PDU. Most implementations,
including the VAX and UNIX implementations mentioned
herein for the FLY routine, autematically check incoming
packets for ARPs and reply as needed. With the use of
socket libraries, however, comes a new set of obstacles.
Broadcasting is a relatively high overhead network concept.
Every broadcast packet must be received by every other
node on the local orea network. Thus each node's

throughput is decreosed because of the added packet
count. Consequently, some systems (notably UNIX System

V) d|sollow broadcost transmissions except by the "super-
. user.” Only the root user, therefore, can operate on the
DIS network. Broadcasting can clog o LAN very quickly with
what is known ¢s 0 "brogdcast storm." These storms gecur
when routers ampiify the number of broadcost packets to =
their loca! systems due to address servers re-sending ARP
requests back {o the broadcasters. This situgtion becomes
__unmanageable in wide—area networks.

Specific to the radar simulation, other design criterio
concerned the landmess databgse and the placing of
iarget relurns on the dclabose. PDU filtering “was
performed as described earlier, but with a twist. All current
entities were displayed in a menu prior to operation of the

- simulation so that an ownship entity could be selected.
This allowed the radar simulation {o togically attach {o any
entity on the network and then display other entities within

rodar range and elevation. Concerns arise from. even this

basic selection. Filtering had to be done to another level,

because the simylation allowed for only twelve targets (but

there were many more displayable entities than twelve on-
line at any given time). Adding to this complexity wos the
fact that entities tend lo come and go during any
demaonstration. That is, some nodes on the nelwork would
bring in new entities asynchronously and others would drop
.off the network, especially during testing prior to the show.
This was not taxing on the radar design, since lost entities
simply would not be displayed any more, and new entities
would be ignored. | counted a maximum of 217 enfities ot
one. point during testing which were actively fi llered with
fittle problem by the supposedly underpowered PC.

A larger problem existed when the ownship dropped
off-tine. The radar had {6 be redesigned drastically to alert
te this condiion. When the condition occurred, the
redesigned system halted the radar display and weni back
to the "ownship selection mode" where the user needed to
select a new ownship. Alsc, the olgorithm for an entity
dropping off the network remains rudimentary, because the
DIS Standard lacks a protacol to indicate loss of on entity.
This algorithm assumed that if any enfity did not updete
itself for five seconds (the maximum time during which an .
active enfity must send ¢n entity state PDU g5 defined in
_the standard), then ii_is gone. This adds quite a bit of
logic to any DIS imglementation.

~ Another well-documented concern regorded dead

_ reckoning {DR). In order to provide the most cccurate OR,
it wos found that if everyone reckoned in the same

coordinate system, less posrtrono!/ottltudmol error was
seen on displays. Not everyone on the demonstration
‘nefwork was deod reckoning in the some coordinate

system, although it was squested that geoceniric DR be
used.

The rodar's landmass database hod 1o be pre—
conditioned from SIF to one acceotable to the rador
simulation. This is basically a local requirement for any
simulation (e.g., visual vendors must pre-formet the
databagse to their specxf cations, elc.). Dotabuse pre-

conditioning is o major DIS concern, The final SIF databese

was not availoble until lote in the test sequence (Auqust 15
for a November 1 use date), but prefiminary databases
were available. So ¢ relatively minor reconditioning effort
was all that was needed to install the new dalabase. This

brought oboul the design need for ¢ general-purpose SIF

conversion routine, so that when an updated SIF tope was
delivered the routine could simply massage the data at the
user’s leisure,

SUMMARY /CONCLUSIONS

The use of scmething as conceptually simple as @
“listen~only" radar simulation on ¢ DIS network is much
more involved then one could expect. Testing of a
conceptual design is the most vifel concern, one which
requires at least one other host node to generate or
receive DIS PDUs, Other congerns invelve host capabilities
(e.q., horsepower, math formats, networking capability),
programming lonquages and design methodologies; and
the use of Project 2851 SIF or other formatled
terrain/fecture/mode! dotabases. Al of these criteria {or
feciures) must be designed into any new DIS system, and
should remain available for later use since the DIS
Standard is an evolving document.

REFERENCES

Military Standard, “Internet Protocol Specification”, MIL-
STD-1777. '

Military Standard {Final Draft), "Protocel Data Units for

Entity Information ond Entity Interaction in a Distributed
Interactive Simulction”, Institute for Simulation ond
Training, 19971,

Miliiary Stendard, "Standard Simulation Data Bose
Interchenge Format for High Detail Input/Outpu’t snd
Distribuied Processing", PRC, Inc.

Institute of Electrical And Electronic £ngineers (IEEF)
stendard, "Standard for Floating Point Numbers”, IFEE
754-1985.

860

DISCLAMERS ~
UNX is o registered trademark of AT&T.

DEC, WMS, ond VAX ore trodemorks of Digital
Equipment Corporot on.

Moterola and Delta are trcdemarks of Motorolo Inc.
Intel is q trademark of Intel Corporation.

PCisa regnstered trodemork of Internationa! Business
Machines, inc

