DARTS:
A DOMAIN ARCHITECTURE FOR REUSE IN TRAINING SYSTEMS

Robert G. Crispen, Brett W. Freemon, K, C. King, and William V., Tucker
Boeing Defense & Space Group
Huntsville, Alabama

ABSTRACT

The dynamics invoived in the training system markeliplace of today are dictating the need for major
changes in the way organizations specify, develop, and maintain training systems. One of the key areas
affected by these changes is the system and software architecture of fraining systems. This is evidenced
by the increased attention that has been placed on architectures by recent initiatives (e.g. Structural
Madel, Mod Sim, STARS, DIS, ARPA DSSA, etc.). There are many reasons for this emphasis, not the
least of which is a desire to produce training systems at the least possible cost while providing faster time
to market and higher quality. An architecture for training systems can be a framework to enable cost
reduction, reusability, and standardization.

We derive a set of attributes which we believe characterize a "good" software architecture. We discuss
an architecture developed by Boeing Defense & Space Group, the Domain Architecture for Reuse in
Training Systems (DARTS) and evaluate DARTS against these criteria. We also discuss the role of
DARTS in megaprogramming, part of the ARPA STARS initiative, and suggest that DARTS is a suitable
architecture for achieving the STARS vision of process-driven reuse.

ABOUT THE AUTHORS

Robert G. Crispen is a Systems Analyst with the Missiles & Space Division of the Boeing
Defense & Space Group. He worked on the Modular Simulator Program, the Ada Simulation Validation
Program, and is currently a researcher in an R&D program at Boeing. Before joining Boeing, he was a
Senior Systems Design Enginesr on commercial flight simulators at GMI in Tulsa, OK. He holds a
Bachelor of Arts degree from the Johns Hopkins University in Liberal Arts/Psychology.

Brett W. Freemon is a Senior Scoftware Engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has worked on all areas of the life ¢ycle of simulation and fraining systems
from proposal through delivery and installation. He is currently working on a research and development
program centering on software reuse technelogy. He holds a Bachelor of Science degree from the
Georgia Institute of Technology in Applied Physics.

K. C. King is manager of the ARPA STARS demonstration with the Boeing Defense & Space
Group. This demonstration entails using STARS and megapregramming technologies to develop an
operational flight instrument trainer for the Navy T-34C aircraft. Prior to joining the STARS program, he
developed architectures for a number of large-scale DoD information systems. He holds a Bachelor of
Arts degree from the University of Michigan in Political Science. }

William V. Tucker is the R&D Manager for Boeing Defense & Space Group, Simulation and
Training Systems organization. He has managed various trainer programs, including US, UK, and RSAF
E-3, KG-135 and the Modular Simulater Design Program. He is a member of a functional oversight
committee for the ARPA/Navy T-34 FIT STARS demonstration projeci. He hotds a Bache[or of Science
degree from Wichita State University in Electrical Engineering.

DARTS:
A DOMAIN ARCHITECTURE FOR REUSE IN TRAINING SYSTEMS

Robert G. Crispen, Breit W. Freemoen, K. C. King, and William V. Tucker
Boeing Defense & Space Group
Huntsville, Alabama

WHAT IS AN ARCHITECTURE?

An architecture, as we intend to use the term,
gonsists of (a) a_pariitioning strategy and (b} a
goordinaticn strategy. The partitioning strategy
leads to dividing the entire system into discrete,
non-overlapping parts or components. The
coordination sirategy leads. to explicitly defined
interfaces between those parts.

These two strategies provide an engineering
approach to bridging the gap between the system -
as a whole {as represented by its specification)
and the design (the plan to build the product from
primitive parts, such as computer instructions,
metal struts, and switches).

The reach of an architecture can extend from_a
single system {(an architecture that solves a unique
product problem) to an entire family or product line
of systems. In the latter case, once the
partitioning methods and coordination rules are
determined, multiple products can be generated
using the same methods and rules.

By the definition we are offering, the Software
Engineering Institute’'s (SEl's) Air Vehicle
Structural Model (AVSM}'2 and the . HAVE
MODULE Modular Simulator (Mod Slm)3 fit into our
discussion of architectures.

Because the architecture will determine both the
list of parts for a particular product and the
coordination between those parts (their size and
shape, among other things) the architecture
chosen for a particular training sysiem has a
decisive impact on reuse. We have observed* that
software parts which were developed under one
architecture were adapted only with great difficulty
to serve in ancther architecture.” When the
architectures are significantly different, we have
concluded that redevelopment is more cost-
effective than re-coding.®

660

“customer requirements.

WHAT IS A "GOOD" ARCHITECTURE

Iif architectures are different from one ancther, it
ought to be possible to say that one architecture is
better or worse than ancother in some meaningful
sense. Nevertheless, we have seen very little in
either the training systems literature or the
software engineering literature on what makes one
architecture better than another. There are
assertions that one architecture or another is a
“good thing," but there is little public scrutmy of
criteria.

We will offer the following characteristics against

which sofiware architectures can be measured.

Since we are about to describe a specific software
architecture, the Domain Architecture for Reuse in

Training Systems {DARTS), these criteria may be

unconsciously biased toward DARTS. However,
we have attempted to establish a widely
acceptable set of criteria.)

A good architecture can be leveraged. It must

- show promise of lasting beyond present programs,

rather than being a quick fix of specific current
problems. |t must be adaptable to easily fit many
development methods. [t must promote the
highest levels of reuse maturity. It must hold up to

-changing requirements. And it must be scalable”
. across a significant portion of the training systems

domain.

A goocd architecture promotes sysiem
understanding. It must "look like" the problem
space in some significant sense. It must be clear,
and it must clearly meet both user and end
lts quality and style
should match what are considered sound systems
and software engineering principles.

A good architecture is rational. It should
promote and support a repeatable and improvabie
process for building out a specific member of the
family.

A good architecture is affordable. It must be

"efficient enough" in both time and memory. [t
must support large-scale cost and schedule
improvements in both the short term and the long
term. And it must have been defined, published,
and demonstrated to work in order to reduce risk.

A good architecture is a good citizen. [t should
not violate company or customer standards.
should be broadly accepted or acgeptable in the
training systems and customer community. It
should be available in the public domain rather
than being bound to a proprietary hardware or
software system. It should meet the emerging
framework criteria articulated by the ARPA DSSA
project. And it should take advantage of military
and international standards like the Ada
orogramming language and 150 communications
protocols.

HISTORY OF DARTS

Boeing Defense & Space Group had participated
in the Ada Simulation Validation Program (ASVE)
where the term ‘“structural model” was first
introduced to industry. We had also participated in
Mod Sim? from the beginning of the program
through our role as the prime contractor for the
demanstration/validation phase. When we had a
preview of structural modeling at the SEIl, we were
anxious 1o reconcile the two, if that were possible.

I PropulsionI | Nawccmml

With help from the SEl, we were able to realize
what it was that we needed to develop: an
architecture which captured both the reusable form
of a structural model and the reusable content of
Mod Sim.

The resulting software architecture, DARTS, was
developed as the domain-specific sdftware
architecture (DSSA) for the Air Vehicle Training
System (AVTS3)} used by the Navy/STARS 1993
demonstration of the benefits of mega-
programming.

Characteristics Adapted From Mod Sim:

Several features of the Mod Sim architectﬁre are
incorporated in DARTS:

® DARTS is based on the notion of a generic
flight simulator that is capable of being adapted
into any present or foreseeable training simulator.
The generic simulator is partitioned into
approximately 125 air vehicle Functions or areas of
capability.

® Each of these Functions is assigned to one of

twelve Segments (see Figure 1). '
® A Segment is characterized as being coherent
internally and locsely coupled externally. That is,
the Functions assigned 10 a Segment "go together”

Flight Flight Flight
Controls Dynamics Station

a9
Control .

Virtual Network

Environment

Physical
Cues

Radar

| Visual I

Electronic
Wartare

| Weapons I

Figure 1 DARTS Segments

Foriunately, ASVP provided a common starting
point.

6671

in the sense that there are data flow, execution
order, or other dependencies between them.
Funclions assigned to different Segments, on the

P

other hand, do not "go together” in this sense and The GSEl's AVSM, for example, has a data

may execute independently of Functions in other
Segments, except that they may produce data for
or consume data from those Functions.

® Segments have a clearly defined set of

synchronization mechanism at the start of each

frame which accomplishes the same thing.
Nevertheless, shared memory often ties the builder
of a training system to one or a handful of vendors
of shared memory hardware. We believe

interfaces with one another. The generic interface . message-based communication is a more general

definitions, which are maintained as compilable
Ada code and which are adaptable to the
requirements of a specific training system, define
the only means by which Segmenis may
communicaie with one ancther.

To summarize the first four points, a sizable block
of systems engineering work was done on Mod
Sim and its follow-ons. This work was subjected to
an industry-wide review process and evaluated via
a demonsiration project. There is a defined
process for adapting this work to virtually all kinds
of simulators.

In our conversations with the Software Productivity
Consortium (SPC) and STARS, it became clear

solution. We also understand that achieving
universal agreement on this point is unlikely.

Mod Sim Characteristics Discarded in DARTS

A few features of the original Mod Sim architecture
imposed unnecessary restrictions on
impletnentors, and were replaced in DARTS: .

® Basic Mod Sim divided a trainer into twelve
separate boxes, called Modules. Because DARTS
ought to work on any computer system or
combination of computer systems, we discarded
the notion of one Segment per box (or Module).
Instead, we distinguished between Segments
{closely coupled software systems) and Modules

that this reusable systems engineering and its = {(computational systems) so that any number of

work products are very similar to the processes we
now call Domain Engineering®.

® DARTS retaing the message-based
communication method between Segments
pioneered on Mod Sim.
communications have a certain safety factor which
is absent in shared-memory architectures. imagine
the following scenario: variable x is computed by a
Segment running in another CPU. Your Segment
executes the following code:

¥ := Shared Memory.X;
bo_Something Else;
Z := Shared Memory.X;

if (Y /= 2) then
Strike Pilot Repeatedly
With_Control Column;

end if;

in a shared-memory architecture, if the other
Segment changes variable x while this Segment is
Doling]_Something Else, the pilot might become
unhappy! In a message-based architecture like
DARTS, on the other hand, variables are only
updated when the application program requests
that they be updated. -

Message-based communication is not the only

safe mechanism for avoiding the situation above.

65

Segments could reside in a Module. The current
version of the Mod Sim specifications have
adopted this convention as well,

® Mod Sim Segments communicated with one

Message-based . another over a fiber-optic network. This capability

is still available for communication between
Segments which reside in different Modules, but
for Segments in the same Module, it makes sense
to communicate through shared memory.

The wrong way to do this is 1o require individual
Segments to know where they are and where other
Segments are, so that they can use shared
memory for some communications and fiber optics
for others. The right way, in our opinion, is fo
create the concept of a Virtual Network (VNET). A
Segment simply calls "Put” or "Get" indicating that
it wants to give data to other Segments or get data
from other Segments, [t is up to the VNET
software to determine how to transfer the data.

5 -

Characteristics Adapted From Structural Model

The internal workings of a given Segment are
irrelevant to the operation of a “"classic* Mod Sim.
So long as the Segments meet their interface
requirements, any internal architecture can be
used.

Note that requiring standard interfaces is not the
issue. Having standard interfaces makes it quite
simple, for example, to subcontract and
subsequently accept ong or more Segments on the
simulator. In the Mod Sim demonstration, we
produced only two of the eleven Segments,
subcontracting the other nine. This capability was
retained in DARTS. ’

But to assert that the internal workings of a
Segment don't matter is to assert that any
architecture is as good as any other, which is
contrary to our thesis. Accordingly, with only a few
modifications that we describe below, we
incorporated the SEl's AVSM into our Modules
and Segments.

THE DARTS ARCHITECTURE

An overview of DARTS is shown in Figure 2. A
training system is divided into Segmentis;
Segments are divided into Subsystems; and
Subsystems are divided into Components.
Segments are grouped together into Modules.
Note that the analysis that produces the final
architecture begins with functional decomposition
and ends with what can sensibly be described as
objecis.

Is the DARTS analysis methodology "real" Object
Criented Design (O0OD)? In one sense it certainly
is, since the leaf nodes are what anyone would
describe as "objects”. On the other hand, since
DARTS begins with a functional decomposition, it
is occasionally necessary to divide the function of
a Compeonent into several Segments. For
example, a hydraulic pump Component may exist
in the Flight Station Segment {o produce the
simulation of hydraulic fluid flows, while a hydraulic

pump Component may alse be required in the

Physical Cues Segment whose only function is to
simulate the sound of the pump's operation.

We have preferred to use the term "Object

&6

3

Abstracted Design," and we follow those who view
the applicability of pure OOD to training systems
design with some skepticism?. Rich McCabe of the
Software Productivity Consortium gave an insight
which may temper some of the passions arcused
by this issue: as a rule, functions in the real world
are accomplished, not by spirits or demons, hut by
objects.? To found a systems engineering practice
on this commonsense notion seems at least
defensible.

Module Executive

There is one Module Executive for every Module
(computational system). All operating system and
hardware dependent functions such as interrupt,
task suspend and resume, and so on, are located
here. The Module Executive “"causes" the
Segment Executives to execute.
deliberately ambiguous, since the right way of
doing this on a given program may be to call the
Segment Executives as subprograms, or it may be
to schedule their execution as independent tasks.
Because data flow between the Module Executive
and Segment Executives is one-way and small
(the clock tick message passes from the Module
Executive to its Segment Executives), it does not
stand in the way of implementing the right choice
for a program. -

Segment Executive

The Segment Executives are responsible for all
communications over the VNET apart from the
clock tick message. By isolating the VNET
communications functions in the Segment
Executives, the lower-level elements (Subsysiem
Controller and Component) may be reused from
similar software for other architectures. All data
contained in messages (that is, all data defined in
the adapted DARTS Interface Specifications) flows
through the Segment Executives between the
VNET and lower level elements.)

The Segment Executives are also responsible for
mode and state control logic (iotal freeze,
reposition, run mode, and so on).

The Segment Executives schedule the execution
of their Subsystem Controllers by using a
scheduling table mechanism similar to that used in
the AVSEM. A difference between DARTS and the

This is kept

Current frame Moduls ¥ interrupt, task suspendiresuma

Exesutive Qs

Sarvices
Currant frame Y

W'Y Al
Application All other messages Segment Cperating
Services ¢ Executive Exectiive Systam or]
Rup-Tima

> % Data toffrom
Mossages, Package
Arpropdate Inter-Subsystem data
" Entry based en
ra Meode/State, e
108 commands, ian tim
Subsystem Frama Subsystem Execution timing System
Contraller Conteollar Tirmer
Data flow only
threugh argumenis
to Component entries
i v
£ Virar iver —3
Hardware
Clock
GControl flow
Cata flow

Figure 2. Domain Architecture for Reuse in Training Systermns Ovarview

AVSM is that functions such as malunction
insertion and mode/state change which the AVSM
handles through a separate aperiodic scheduling
ihread are handled in the main execution thread in
DARTS: a mode or state change message in
DARTS is a message like any other, though it is
processed by the Segment Executives. Because of
the way the AVSM does aperiodic execution, this
is not a large or significant change.

The Segment ExXecutives in DARTS call upon the
appropriate aperiodic entries in each of the
Subsystem Controllers, based on the receipt of the
appropriate control messages through the VNET.

Subsystems and Subsystem Controllers -

Subsystems correspond to the Functions allocated
to Segments in the Mod Sim architecture. Though
the analysis has been completed on only half the
Segments so far, it appears that there will be little
difficulty in accomplishing this for other Segmenis.
Nevertheless, the possibility must be raised that
more than one Subsystem will be reguired to
implement a given Function. There is no structural
impediment to doing this in DARTS.

Subsystem Controllers are implemented as in the
AVSM. In the AVSM data flows out of
Subsystems through a shared memory based

Export Area, while in DARTS (largely because of
the correspondence between Subsystems and
interface messages) the Segment Executive
provides the Subsystem Controller with data from

messages and builds messages to send to the
VNET. ’ :)

All data flow between Subsystems takes place
through buffers maintained in the Segment
Executives.

We believe that it is the responsibility of the
individual Components to provide “"safe" input
values for themselves. Thus, the Initialize entry for
each Component provides both input and output
data. Once the Component has executed its
Initialize function, it may execute without error
even though neo input data has yet arrived over the
VNET. This eliminates all worries about which
Components or Subsystems need io execute
before others in order to avoid erronecus data
being processed.

The VNET provides information to the Import
function as to whether or not new data has been
received since the last iteration. DARTS takes
advantage of this by only copying data from
message buffers when new data has been
received. This new-data information is not
available in the AVSM.

664

Components

As in the AVSM, the lowest level element is called
the Compcnent. Each of the Components
corresponds to an Object in the QOD sense,
Thus, a Hydraulics Subsystem may consist of
Pump, Valve and Reservoir Components.
However, the Hydraulics Subsystem may contain
Components such as Flows, Bleeds and Pressures
which are less c¢learly objects. Nevertheless, these
“function objects” are assigned to Components so
that the Subsystem Controller only needs o
contain "glue" logic between the Components.

in DARTS, as in the AVSM, all knowledge about
the operation and state of Components is
contained within the Components. And no
knowledge about the extemal environment
(simulation control commands, presence or
absence of other Components, computational
environment} is contained within the Components.
Components compute the state of the objects they
simulate in a purely abstract, and therefore
reusable, manner. These tules, which are among
the most aftractive features of the Structural
Model, comprise "knowledge firewalls™,

Just as in the AVSM, all data flow betwean
Components takes place through the subprogram
calls for each of the entries in the Components.
As the SEI points out, this set of enitries is both
necessary and sufficient to permit the knowledge
firewalls described above to operate.

MEGAPROGRAMMING AND DARTS

A team has been assembled consisting of ARPA,
NAVAIR, NTSC, Boeing, DUAL Inc., and the SPC
to demonstrate the applicability of the concept of
megaprogramming to the iraining system domain,
and, as part of the process, to evaluate DARTS as
a domain architecture for achieving reuse in the
context of megaprogramming.

As defined by STARS, megaprogramming is "the
practice of building and evolving computer
software component by component.
Megaprogramming builds on the processes and
lechnologies of software reuse, software
engineering environments, softwa:. architecture
engineering, and application generat..:; in order to
provide a component-oriented product line".

To realize a quantum improvement in the way

665

software-intensive systems are developed,
megaprogramming envisions two distinct but
cooperating lifecycles, comresponding to the family
of sysiems (product line, domain) and to the
specific system {product) respectively.

Architecture becomes a key unifying feature of the
product line lifecycle, while processes for its use
are the driver for the product or project lifecycle.

The processes which drive the product [ine
lifecycle are collectively known as domain
engineering and include not only the familiar notion
of domain analysis, but extend to managing the
product line investment, creating reusable assets
(processes and components) and supporting
muitiple projects that use those domain assets.

Under megaprogramming, the process of building
a specific system is referred to as application
engineering. Achieving the quantum improvement
expected by megaprogramming comes primarily
through leveraging the processes, components,

and technology assets developed under the

domain engineering investment effort to produce
individual preducts very uniformly, quickly, and at
the lowest cost per product.

The heart of this investment in domain assets is to
pre-position all of the commonalily among
members of the family along with processes for
adding values for the defined variability among all
possible members of the family. For example, all
Operational Flight Trainers simulate aircraft
engines, while the number of engines varies from
aircraft to aircraft.

Domain engineering work products are being
developed for the Air Vehicle Training System
{AVTS) domain based on the DARTS architecture.
The work products follow the SPC Synthesis
guidelines and are derived from the DARTS
architacture.

Each of the DARTS Segments has been defined
as a domain and specified with: (a) a decision
model for capturing the variability of the domain;
{b) product requirements for representing the
adaptable requirements; {c) product design for
representing the failorable design data; and (d)

- process specification that guides the application

engineer through the instantiation of an instance of
the domain.

D

The final step of the domain engineering process is
to implement the domain (i.e., adaptable code and
documents and information for their generation) so
that the application engineer can generate the
products for a given program.

Within the domain of egach Segment, DARTS
guided the domain analysis and each of the work
products. Generally, Functions re-used from Mod
Sim became DARTS Subsystems, and
Components were derived for each of the
Subsystems.

These work products are being incorporated into a
Software Engineering Environment that will be
used by application engineers to construct a T-34C
Flight Instrument Traiter (FIT). The primary
purpose of this demonsiration effort is to show the
benefits of megaprogramming on a real-world air
vehicle training device.

DARTS support of and conformance fo
megaprogramming has been recognized in its
adoption by the Navy/STARS demonstration
project. DARTS is specific to a domain; in this
case, the product line of air vehicle training
systems. With sponsorship from ARPA, the
engineering data foundation of DARTS is being
validated by subjecting it to a formal, defined
domain engineering process authored by the
SPC.e Using the SPC's domain engineerirg
process, DARTS is being configured to support
high leverage reuse in the form of domain
commenality and variability. Again, using the
SPC's domain engineering methodology, DARTS
is being extended to include defined processes for
building cut any member of the air vehicle training

system product line.
ADVANTAGES OF DARTS

The performance of DARTS, as it appears to us at
the present time, against the criteria we discussed
at the start of this paper is summarized in Figure 3.
Some advantages of DARTS which were captured
from its progenitors deserve special mention.

Advantages Captured From the AVSM

The first set of advantages of the DARTS follows
the advantages given for the AVSM, because
DARTS incorporates such large paris of the
Structural Medel.

® The Subsysiem Controllers and Components
are based on reusable templates. Every
Subsystem looks like every other Subsystem and
every Component locks ke every other
Component, in that they have the same
subprogram entries and the same package
structure.

® Components are so structured as to be widely
reusable. Since Components have no knowledge
of their environments and little dependence on the
architecture, they should be reusable in the widest
possible context.

@® Reuse becomes a matter of selecting and
adapting from this set of identical parts, and it is
entirely possible to automate this selection and
adaptation based on a decision mode! captured in
a SEE.]

Leverage

Net tiod to any CASE toal ar computer vandor

Simplifies System Understanding

Rational

Affordable

Good Citizen

Major elemants proven on multiple programs (F-16 Mod Sim, USAF Stuctural Medal)

Subsystem specs and bodies and Component spacs may ba automatically genarated
Reuse of Components across multiple architactures

Scalability by plug-replacement of Components, Subsystams, Sagments

Segments may be aliminated ar comblnad for product-line variations

Based an industry-wide Domain Engineering affort

Stmall numbar of wall-definad elaments {12 Segments, Subsystems, Companents)
Structura maps to requiramants analysis (sarly management visibility into softwara)
Software enginsaring principlas from SE, SPC and 3TARS

Subsystems and Componants are a toolset, not a straitjacket
Resuits of garly systemns engineering activities flow into design
Interface spacliications clarify requiramants, guide design

Much systams enginearing work Is already done, simply by selecting the architacture
Parallel development, testing improve schedule parformance

Lower integration tima proven in F-16 simulator program

Architecture proven in ¥-16 program to be'fasf, cheap enough far 50 Hz WST

Exact specification of computer power, best computer architacture for segrnent

Based on standards in public domain [FDDI, XTP, Ada)

Mod Sim and Structural Madet govarnment-sponsorad for simulation industry
ISWG got wida consensus fram govemment, simutation industry

Contact with ARPA DSSA prograum through STARS

Figure 3. Surﬁmary of DARTS Porformancs Issues

66

@ DARTS provides an integration harness for each
of the Components and Subsystems that can
permit early, structured testing. Integration of
Components into working Subsystems, integration
of Subsystems into working Segments, and
integration of working Segments into a working
training system can be done in a structured
manner, and early prototyping steps of design can
be done with actual components.

Advantages Captured From Mod Sim

The second set of advantages of DARTS is

derived from the advantages in the Mod Sim
architecture, because many of its strongest
features are also incorporated in DARTS.

® Since DARTS begins with a widely accepted
decomposition based on functional requirements,
requirements traceability is illuminated rather than
obscured by the architecture.

® The division of Functions into Segments
facilitates scalability. Quite often, the functionality
of entire Segments is not required for a given
training system. For example, Electronic Warfare
is not commonly found on transport aircraft
simulators.

® Delivery is more predictable, since the
components are all nameable and locatable very
early in the program. Each of the Subsystems and
Components ¢an be tracked from a very early date
in the program, so that reaction to delays and data
voids have lower impact.

® DARTS is designed o permit Segments tc be
easily subcontractable. Companies with expertise
in visual systems, electronic warfare, or weapons
but which have little or no ftraining system
experience can compete to build the appropriate
Segments. Software development and testing can
take place in paraliel with many workers and
organizations until the very latest point in the
schedule, thus greatly reducing time to delivery.
Further, the ability of Segments to_be tested as
stand-alone components lowers both prime ard
subcontractor risk at acceptance.

@ As requirements change, within a range of
simulators, or as follow-ons require more or less
CPU power, DARTS permits near-zero-effort
addition or deletion of Segments and of
computational power allocated io a Segment,

Segments may be moved from one Module to
another, again with near-zero effort. When this
change is anticipated, a hardware architecture can
be chosen for the affected Segments that permits
the simple plug-replacement of CPUs with less
powerful or more powerful CPUs.

® Interfaces . between Segments are strictly
specified in compilable Ada. Adaptation of these
reusable interfaces to the requirements of a
specific program is accomplished by the decision
model for the domain, and we have demonstrated
that it is easy to automate this process.

DISADVANTAGES OF DARTS

® Communications between Segments using
meassages and a VNET may take a larger amount
of exscution time than communications using
shared memory, even when data synchronization
(as in the AVSM) is taken into account. We
believe that this price is small on today's CPUs,
and will be smaller in tomorrow's CPUs.

Futher, because messages permit a wider variety
of computational hardware to be used on a
simulator, the dollars-and-cents cost of computers
may not be very different between the two
methods. Nevertheless, we see the possibility that
another architecture or a modified DARTS will be
more appropriate for some programs.

® DARTS, like the AVSM, absolutely requires
data flow control, which takes engineering hours.
Our slogan has been, "If you want to control data
flow, you've got to control data flow." The generic,
adatable interface specification provides a great
deal of help in this control process, and utilities
associated with DARTS automate much of the
tedious coding work [ike message setup and
connection.

® Organizations and companies in the simutation
industry have historically seen Mod Sim as a
hardware architecture, of importance only in a
niche. This Mod Sim ancesiry may be a political
disadvantage when dealing with those
organizations. '

® As we indicated earlier, since DARTS begins
with functional decompeosition, the functionality of
some components may be spread across several
Segments. We have observed that cases like this
are the exception, not the rule. 8till, a ceriain

amount of object elegance is lost in DARTS, and
effort is required to maintain concurrency among
these cbjects. We have tentatively opted for giving
identical names to Components whose "pure

object" functionality is divided across Segments

(i.e., a Component named Hydraulic_Pump in both
Flight Station and Physical Cues Segments), since
most configuration management systems can be
made to indicate the connection.

CONCLUSION

DARTS has been the result of an evelutionary
process which has incorporated the results of
current research in software engineering and
principles from Boeing Defense & Space Group's
experience in the simulation industry.

Research at Boeing and at the SEl has proven that
the two major elements of DARTS (Mod Sim and
the Structural Model) are effective, low-risk
architectures which can have significant impact on
program cost and schedule. Research under
STARS has confirmed this.

The overwhelming advantage of DARTS becomes
apparent when it is used as a foundation for
megaprogramming. Given the requirements for a
specific program, the decision model for the
domain and the adaptable, reusable components
and interface specifications of DARTS, one can
indeed "turn the crank" of a definable, automatable
process to produce code and documents. This
vision of process-driven reuse has been realized in
our work for STARS, and is so much more
powerful than other reuse models, that we believe
it does represent a quantum improvement in the
way we develop and reuse software.

REFERENCES

1. Software Engineering Institute. "An Introduction
to Structural Models”, 14th VITSEC, Nov. 1992,

2. Scfiware Engineering Institute. Structural
Modeling Guidebook (Draft), January 1993.

3. The Boeing Company. System Segment
Specification for the Generic Modular Simulator
System, Volumes I-XIV, S495-10400, June 1991.

4. Freemon, Brett W. and Crispen, R. G. "Testing
A Technology For Reuse", 14th IATSEC

6638

Proceedings, Nov. 1992,

5. The Boeing Company. Ada Simulator
Validation Program Final Report, D495-49506-1,
Sept. 1988, '

8. Software Productivity Consortium. Synthesis
Guidebook Volume 1 Methodology Definition, SPC-
91122-MC, Dec. 1991. ’

7. Gross, David C. and Stuckey, Lynn D, "Is
Object-Oriented Design Sound Simulator Software
Engineering?” 14th IATSEC Proceedings, Nov.
1992

8. Rich McCabe, personal communication, April
1998. : _

9. Boehm, Barry W. and Scherlis, William L.
"Megaprogramming (Preliminary Version)'. STARS
'92 Proceedings, Dec. 1992,

