APPLYING ADVANCED PARALLEL PROCESSING CONCEPTS TO
RADAR SIMULATION AND IMAGE GENERATION

Edward W. Drew and Ron Matusof
CAE-Link Corporation
Binghamton, New York

ABSTRACT

This paper discusses advanced parallel processing concepts and their use for
radar simulation and image processing. [t describes both the advantages and
disadvantages of a number of architectures and illustrates these with actual
implementations. It discusses issues relevant to real-time image generation,
including latency, synchronization, and scheduling dispersion. 1t also discusses the
problems inherent in designing state-of-the-art systems in a research and -
development environment, and then applying that product to an evolving market.
Finally, it makes recommendations concerning future directions in parallel processing
and simulation.
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INTRODUCTION

Throughout the history of simulation,
one of the most complex problems has in-
volved the synthesis and generation of im-
agery that represents the simulated terrain.
This imagery, whether it is for out-the-win-
dow viewing, simulation of infrared (IR} for
night vision operations, or simulation of ra-
dar imagery, has usually required large
processing capability and expensive, custom
designed hardware and software.

In the last few vyears, three conflicting
forces have radically changed the approach
to the simulation of imagery. First, real-
world equipment {such as IR sensors and
radars) has become significantly more
complex. This has tended to drive up the
complexity of image simulations. At the

same time, competitive pressure has forced.

a decline in the price of image simulations
by at least one order of magnitude, and we
can expect this trend to continue in the
future. Finally, as defense budgets continue
to decline globally, systems originally de-
signed for military use are being converted
into more commercial applications, which
tends to both add competitive cost pressureé
and at the same time increase performance
requirements. The net result is that the
simulation of imagery during the mid 1990's
will have to perform more detailed compu-
tations across a wider number of applica-
tions, and at a significantly lower cost than
systermns designed just ten years ago.

[n 1988, we began work on a data flow
architecture for multi-mode radar
simulation.! This work was performed for
four years under research and development
funding with the intended goal of producing
a radar simulation system with increased
processing capability and an order of magni-
tude reduction in recurring cost.

We were interested in applying parallel
processing techniques to lower the cost and
increase the performance of our simulation.
Parallel processing allows for increased
computational performance at significantly
lower recurring costs, but carries with it a
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set of unique design methodologies and
constraints. The architecture we describe in
this paper has been applied to a variety of
Navy, Air Force, and International Digital
Radar Land Mass Simulation (DRLMS)
programs. Additionally, the same
architecture (and, in fact, the same hard-
ware design) supports US Army helicopter
combat training by providing environmental
feedback information.

In this paper, we discuss our approach
to parallel processing, including both the
advantages and disadvantages we have
discovered after six years of product devel-
opment, testing, and fielding.

PROBLEM DEFINITION

The basic ideas behind most radar
simulations involve simulating the signal at
various stages of its life, including: its
emission by the radar, "its propagation, ef-
fects from reflection off terrain and cultural
surfaces, the signal's return propagation,
and the radar internal signal processing
characteristics. The degree to which the
signal is simulated at each stage determines
the overall fidelity of the radar simulation.

High fidelity radar simulation is an ex-
tremely complex undertaking.” The equa-
tions that govern the radar signal propaga-
tion (namely Maxwell's equations) are not
well suited to operate in discrete time steps,
like those found in most simulations. On
the other hand, the effects of the signal
propagation are either totally independent
{as when terrain is illuminated} or additive
(for example, when the received signal is
processed). The independent and additive
nature of radar makes it a primary candidate
for parallel processing.

Similarly, the problems faced by the de-
signer of image generatars are highly com-
plex and require large processing capabhilities
{many estimates range from one billion to
one trillion floating point operations per
second}. One subset of the image genera-
tor is the function of environmental feed-
back. Environmental feedback refers to the



processing that provides information con-
cerning the interactions between any two
points in the simulated environment {such
as line of sight, collision detection, surface
attributes, etc.). These interactions are
usually independent and we find that they
are ideally suited to parallel processing.

QOur intent was develop a parallel proc-
essing architecture that could apply to a
wide variety of complex applications includ-
ing radar simulation, image generation,
acoustic simulation, acoustic analysis, and
the like. Although we have been generally
successful in our system development, we
have learned some interesting fessons con-
cerning parallel processing, radar simulation,
data base manipulation, and product devel-
opment using state-of-the-art technigues
and hardware.

PARALLEL PROCESSING

Conventional computer processing is a
sequential task where program execution
occurs in a pre-defined order and operates
under the control of a central processor.
Although the speed of conventional ¢om-
puter processors continues to improve
dramatically, the highest processing
throughput attainable is still limited by the
speed of the central processor, its ability to
access memory, and the ability to move
data between the processor and in-
put/cutput ports.

Recent enhancements to serial proces-
sors have included a super-scalar architec-
ture, which, in theory, allows several in-
structions to be executed simultaneously.
In practice, there are only particular combi-
nations of instructions that execute simulta-

neocusly, such as operand and instruction -

fetch, so performance improvements vary
greatly betvween applications.

Parallel processing uses a different ap-
proach to improve the processing power of
a computational architecture. Rather than
using the conventional von Neumann model
of a computational machine, parallel proc-
essing divides the problem into a number of
individual tasks that are processed inde-
pendently. In many applications, the prob-
lem is divided across multiple processors
where the individual processcor is still a von
Nuemann machine operating in serial fash-
ion. Although this approach provides sig-
nificantly greater overall processing power,
it is still constrained by the bandwidth of
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the interconnection between the individual
processars.

Another approach to parallel processing

divides the tasks into a number of software

processes’ and interconnects these proc-
esses through a data flow path known as a
link. This approach separates the process-
ing architecture {a software function) from
the physical architecture (a hardware func-
tion). The software design does not con-
strain itself to a von Nuemann architecture
(even if housed on von Nuemann computa-
tional platforms) and significant processing
improvements are theoretically possible.
The overall system performance, however,
is limited .by the choice of computational
processors, the mapping of Ssoftwidre
processes and links to these processors,
and the physical interconnection of the
processors.

_ADVANCED CONCEPTS

After a great deal of research, we chose
to implement a prototype programmable
DRLMS (pDRLMS) on an interconnected
network of Inmos (now SGS-Thompson) T-
800 transputers. Transputers are powerful
32 bit processors that support high level
language development, parallel on-chip
processing, and include four high speed
data link connections to other transputers,
In 1988, when we started this program;
these processors were among the fastest

_processors on the market. They were also

relatively new to the market and very few
applications had been implemented on

" them.

The pDRLMS uses a data-flow architec-
ture and its design attempts to separate the
software implementation from the hardware
architecture. Data flow architectures are
those in which the messages that flow be-
tween nodes provide control and synchroni-
zation of the system. Software tasks are
divided into processes that communicate
with each other via virtual links. A virtual
link does not neceassarily have a correspond-
ing physical link, and the mapping of proc-
esses (software 1tasks) to processors

(hardware nodes) is ususally not one-to-one.

Traditional DRLMS applications involve
some form of pipeline, where each process
acts as a worker on an assembly line. Data
comas as input from the previous worker,
processed, and then output to the next
worker. Many attempts to design parallel



DRLMS implementations have involved
making parallel pipelines, so that numerous
processes occur concurrently. Unfortu-
nately, the start of the pipeline {data trans-
fer from the host computer} and the end of

the pipeline (display of imagery to the crew).

can not be broken into multiple parallel
tasks, and these become bottlenecks in the
systam.

A different problem occurs for applica-
tions that involve large data base processing
capabilities, such as environmental feedback
calculations. In these cases, the problem
can be decomposed until there is a one-to-
one mapping between data base polygons
and software processes.
case, the benefits of parallel implementa-
tions are lost to the overhead of communi-
cating between a large number of proc-
esses.

The degree to which a problem space is
made parallel is known as its granularity.
Coarse grain parallelism occurs when the
problem is broken into very large pieces.
Fine grain parallelism occurs when the
problem is broken into very small pieces
(such as a small_block of sequential code).
When a problem is too coarsely parallel,
throughput suffers since there is a large
amount of sequential processing in each
software process. When the problem is too

finely parailel, system performance degrades.

due to an increase in message traffic be-
tween the processes. We therefore chose a
methodology of decomposition that opti-
mized the granularity for the most efficient
processing architecture. This method is it-
erative, and attempts to decompose the
problem in four ways:

T. Functional Decomposition. During
functional  decomposition, large
functions that operate independently
are identified. For example, the
major functions in a radar simulation
might be data base manipulation,
radar illumination, radar effects, and
radar image generation.

2. Domain Decomposition.
main decomposition, the data which
is to be processed is examined to
determine if there are subsets
{domains} which can be conven-
iently grouped to provide increased
processing efficiency. The domains
required by each major function are

In this extreme-

During do-
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then identified. Domain decomposi-
tion is very useful in reducing the
amount of processmg a single node
must perform.

3. Farming. A farm is an architectural
concept where each processor per-
forms the whole task on a portion of
the domain. This scheme allows
scaling of the processing. The
processing power can be increased
by increasing the size of the farm.

4. Pipelining. A pipeline is the antithe-
sis of a farm in that each processor
performs a portion of the task _on
the whole domain. In many appli-
cations, there is great -efficiency
gained by breaking a single serial
task into a set of smaller tasks op-
erating in a pipeline.

Once the problem has been fully de-
composed, the required replication of tasks
is determined. The appropriate number of
times a process, farm, or pipeline is repli-
cated is a function of the desired through-
put of the system, the available resources,
the desired traffic on the network, and the
degree of parallelism inherent in the problem
space. This represents a delicate balance
between system performance, system cost,
and system reliability and these decisions
are better made on a case-by-case basis.

The decomposition of a simple DRLMS
is shown in Figure 1. Although the decom-
position in the previous paragraphs de-
scribes functional decomposition, the meth-
odology described works equally well for
other decompositions, such as object- based :
or data-driven decompositions.

QOnce the software processes have been
identified, they are mapped into a software
architecture known as a virtual network.
The virtual network describes the intercon-
nection of individual processes and the
communication and data path between
them. There is no requirement for the vir-
tual network to map one-to-one with a
physical network. It is because of this
separation of virtual and physical networks
that it is possible for a process to have large
numbers of virtual connections, while the
host processor has only four physical con-
nections.

Qur architecture is based upon a virtual
intercommunication scheme which make
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Figure 1 Simple DRLMS Decomposition
Processing is divided into functions and domains.
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the physical implementation of the network
transparent to the application software.
This capability is provided by a software
package known as the message handler.
The message handler resides on each physi-
cal node and it acts as a postman, sending
messages to the correct destination, and
receiving and buffering incoming messages.
Messages are received via any of the physi-
cal links and buffered. Once messages are
received, the message handler re-transmits
those messages destined for other nodes (a
process referred to as °~ ~through-routing™)
and organizes the messages intended for
this node. Based on the incoming message
traffic, the message handler **wakes up”

processes which have turned themselves off .

while waiting for data and assigns them to
execute a particular task. The message
handler also transmits messages created on
this node by resident processes.

APPLICATIONS

Qur first application of this architecture .

was in support of the AH-64 Combat Mis-
sion Simulator for the US Army. The archi-
tecture was used to implement a Terrain
information System (TIS). The TIS is an

environmental feedback system which pro- -

vides high-fidelity [ine-of-sight, elevation,
and occultation calculations which are fully
correlated to the simulator's image genera:
tor data base.

The TIS is a classic example of domain

decompasition and farming. All information’

passed between the host computer and the
TiS travels through a single process known
as an Interface Manager. This process de-
termines what information is required and
which part of the network will provide it.

The Interface Manager then requests that

environmental feedback information be pro-
vided by one of the four farms comprising
the TIS. Each farm is composed of one
Executor, which is responsible  for
coordinating the activity of the farm, and
fifteen mode! processors. Each model proc-
essor has a unique domain, consisting of a
subset of the data base. The Mode! Proces-
sor opgrates upon its domain, with the Ex-
ecutor correlating the results and sending
the information back to the Interface Man-
ager for distribution to the host. As such,
the problem of environmenta! feedback has
been dormain decomposed at the Model
Processor level and farmed at the Executor

from the transmitter.
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_ with the sweep pattern.

level. The TIS architecture is shown in Fig-
ure 2.

Our second venture was a production
version of our research and development
pDRLMS. The pDRLMS is an example of all
four methods of problemm decomposition.
The DRLMS was first decomposed into
major functional processes of data base
retrieval, illumination, radar characteristics,
and netwaork control.

Several domains became apparent at the
outset. Three types of data base are re-
quired for the pDRLMS, namely gridded
terrain, list-based culture, and weather de-
scriptors. Although these could be viewed
as separate domains, we opted to consider
them as a single domain consisting of in-
formation which is defined in spatial terms
{i.e., absolute position and attitude). Radar
effects, o the other hand, tend to happen
in a series. of sectors emanating radially
from the radar transmitter and coincident
We defined this
domain to consist of information which is
defined in radial terms (rotation and range)
Beamspread effects
are a function of range and have very little
contribution from rotation. We opted to
define a third domain for beamspread which
is based solely on range from the transmit-
ter. A final domain was reserved for video
generation, which requires information tg.be -
described in terms of pixel space. - :

With our major functions defined, and
our domains identified, we proceeded to
determine where farming and pipelining
would be beneficial. The result is shown in’
Figure 3. i )

ISSUES AND LESSONS LEARNED

Qur architecture is asynchronous, and it
brings with it certain concerns inherent with
the asynchronous generation and use of
data. The system is synchronized t0 ° “real-
time’" in at least one place: the interface
with the host computer. In the case of
pDRLMS applications, it is also synchro-
nized to the frame rate of the radar display.
Between these points, the system is syn-
chronized only by the flow of messages. It
is therefore possible to envision situations
where data consistency across the network
is not achieved. We had feared in certain

.applications that it might be possible to

generate erroneous data due to data incon-
sistency, but thorough testing of the system
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Figure 3 Simple DRLMS Decomposition
System has been decomposed into major functions and domains (see Figure 1) and is
further decomposed into pipelines and farms. Numbers in parenthesis indicate the size
of the processing farm (number of parallel processes).

by both CAE-Link engineers and our
customers has failed to detect this problem.

Similarly, we had been waorried that in
very large networks, scheduling dispersion
could potentially cause unsynchronized up-
dates which would ba perceivable by the
crew, and again this has not been the case.

This is not to say that our experience
with this development has been without
problems. QOne of the first problems we
encountered was the support for high level
languages. Although compilers were avail-
able for both FORTRAN and C, the only
truly supported compiler was provided for
QCCAM. OCCAM was the first fanguage to
be based upon the concept of parallel and
sequential execution, allowing fof communi-
cation and synchronization between concur-
rent processes. Although the language is
quite efficient and provides significant ad-
vantages for parallel processing, we have
found that it is equally hard to find qualified
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QCCAM programmers. As the compilers for
C and CT* have impraved, and libraries
have been added to support parallel execu-
tion, we have begun to reduce the amount
of OCCAM in the system with the eventual
goal of gliminating OCCAM entirely.

 There were few applications hosted on.
T800 Transputers when we began this

- design effort in 1988. The size of our net-

works {between 64 and 400 physical nodes
thus far) required special considerations in
our design. We developed our message
handling software largely because there was
no commerciaily available alternative from
which to. choose. We therefore have in-
vented a proprietary, closed architecture in
a situation where we had desired a fully
open architecture. As the use of transput-
ers grows, commarcial alternatives are be-
coming available and it is our goal to mi-
grate to a commercial message handler
system in the near futura.



We also tended to find quirks in the pro-
totype hardware with which we were
working. To be fair, we were generally us-
ing pre-qualified hardware and beta releases
of software tools and often found ourselves
in the unenviable position of working around
unanticipated hardware shortfalls.

Our method of decomposition appears .

to have worked quite well, although it still
ieaves a bottleneck at the interface to the
host and at the output to a crew display.
However, we have successfully reduced the
cost and complexity of a typical radar appli-
cation by over an order of magnitude and
have implemented the TIS with only one
board type and the pDRLMS with only four.

CONCLUSIONS

in general, we have found that our ar-
chitecture, and most other parallel architec-
tures, offer the following advantages over
traditional approaches:

1. Scalability. CQur system has been
scaled to a factor of 12-to-1 in-
crease in performance simply by
adding processors, and we believe
that a 32-to-1 increase s readily
achievable.

2. Reconfigurability.

ware, and the application software
are designed independently, a wide
variety of applications can be hosted
on this architecture.

3. Optimization. This architecture al-
lows processes to be moved from
processor to processor without af-
fecting the hardware interface. This
allows for easy [oad balancing, ad-
ditional problem space decomposi-
tion even after the system has been
built, and the ability to optimize by
adding additional processes as
needed.

Because the-
hardware, the communication soft--
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We are firm believers in the concepts of
parallel processing. There are many fine
parallel processing architectures on the
market, and we are not attempting to imply
that this architecture is inherently better
than any other. Woe believe that parallelism
can be successfully exploited as a general
purpose architecture to sclve a variety of
problems, and we propose our four-step
method of problem decomposition as an
attractive method of determining the appro-
priate level of granularity for a given prob-
lem space.
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