DAL L Lo L L i

DYNAMIC TERRAIN DATABASE DESIGN
FOR REAL TIME IMAGE GENERATION

Xin Li, Dale D. Miller, Mark Illing, Mark Kenworthy and Mark Heinen
LCRAL. Advanced Distributed Simulation
Bellevue, Washington 98005

ABSTRACT

Substantial interest in a Dynamic Terrain (DT) database has been expressed by users and
developers of real time distributed simulation and training environments. This capability atlows the
dynamic reconstruction of the landscape or rearrangment of the terrain surface during a simulation. One
of the most challenging issues for DT in distributed simulation is the tessellation and management of the
terrain database with a desired resolution meeting the real-time requirements of polygon throughput,
memory allotments and interface bandwidth of the image generator.) '

Our research work is the first attempt of developing such capability for SIMNET image generators and
databases. In this paper, the database partitioning strategies are proposed, which can be conceptually
adopted by other image generators. The dynamic soil model simulating excavating activities on the-terrain
surface is described. The management of runiime terrain database and interface messages are
presented. Impiementation issues on the image generator are also discussed. - .

Key words: Computer image generation, real-time simulation, dynamic terrain, run-time terrain database
modification, terrain relaxation, physically-based soil models.

BIOGRAPHIES

Xin Li: Dr. Xin Li is a Real-Time Software Engineer. He received his Ph. D. from the University of
Central Fiorida and his M.S./B.S. in Computer Science from the Academic Sinica of China and the
Northwest University of China. Dr. Li developed physically-based soil models while at the Institute for
Simulation and Training. Since joining Loral, Dr. Li led the dynamic lerrain effort described in this paper,
and he is currently involved in the development of real-time rendering software based on physical-based
models of clouds and smoke in a Dynamic Environment program. Dr. Xin Li can be reached at Loral ADS,
13810 SE Eastgate Way, Suite 500, Bellevue, WA 98005, (206)957-3213 (Email: xli@lads-bvu.loral.com).

Dale Miller: Dr. Dale Miller is the manager of the visual software engineering groups at Loral ADS. He
received his Ph.D. in mathematics from the University of Washington in 1976. Since then he has
centributed to the areas of abstract-algebra, digital signal processing, applications of the residue number
system for high speed digital signai processing hardware, machine vision, optical character recognition
and computer graphics. Dr. Miller is the program engineer for GT200 image generator development.

Mark llling: Mark Illing holds a B.S. in Computer Science Engineering from the University of lilinois and
is currently working in the Systems Engineering Group with the real-time CIG database and development
at Loral ADS. He is responsible for defining system requirements for real-time visual simulation systems,
as well as designing, developing and enhancing these systemns, their databases and development tools.
Mr. lHling's primary focus is embedded software control of real-time hardware subsystems.

Mark Heinen: Mark Heinen received his B.S. in Computer Science from the University of Minnesota. He
is currently a member of the Applications Software Group at Loral ADS. Mr. Heinen has worked on
various projects including database construction tools, database compilation tools, image generation
algorithms and software, CIG hardware emulation software, and CIG real-time software. He has
researched and emulated image generation algorithms in software for use in the design and development
of new generation CIG hardware technology.

-Mark Kenworthy: Mark Kenworthy is the manager of the Systems Engineeting at Loral ADS and has

specialized in design and development of real time image generation systems for the last 10 years. Mr.
Kenworthy holds a bachelor of Science degree in Aeronautical and Astronatical Engineering from Purdue
University. '

L b L L LR ik (e R

DYNAMIC TERRAIN DATABASE DESIGN
FOR REAL TIME IMAGE GENERATION

Xin Li, Dale D. Miller, Mark llling, Mark Kenworthy and Mark Heinen

1. Introduction

Previous efforts have demonstrated regl-time -

modifications of synthetic terrain using an
underlying physically-based model of the soil

- [Li93b]. " This work has utilized a regular, fine grid

for the terrain with limited extents of the virtual
environment.. Because of this, the tota) number of
polygons required. io. represent the terrain surface

remained fixed. . Also; the implementation was done’

on a graphics workstation without textures.

The goal for the effort described in this paper
was io expand upon this previous work to
implement terrain modification capability on a
production computer image generater (C1G) with full
texturing using terrain databases of unlimited size.
This required design of algorithms for reai-time
terrain repolygonization, texture map switching and
vehicle track laydown as well as the background
aggregation of polygons which preserves geometry
while reducing polygon density. The
repolygonization capability in turn required design’ of
new data structures capable of representing
changeable terrain. Finaily, with the soil model
residing on the simulation host, communication
protocols between the host:and the CIG wers
required.

This development was intended as a proof of
principle, focusing .on the realistic visual
representation of dynamic terrain. The Loral
GT100™ visual system was used for interactively
bulldozing arbitrary locations on any SIMNET terrain
database as shown in the image of Figure 1-1. No
effort was made to attain permanence of changes or

interactivity with other entities on a Distributed

Interactive Simulation (DIS) network., Further work
is required in networking issues and system
architecture design before these new visual system
capabilities can be fielded for large scale use.

2. GT100 Architecture

The GT100 is a production computer image
generator (CIG) system first introduced in 1988. It
is optimized for distributed. (networked) intaractive
tactical team training in. ground and near—ground
vehicle applications.

Figure 1-1 Real-time image of bulidozer modlfylng
terrain.

The GT100 is capable of responding to the
display demands of a wide variety of dynamic
information that arrives in its field of view. lis
designed to support the requirements of distributed
simulation mcludmg very complex databases, large
numbers of moving madels, collision détection,

" correlated sensor databases, database intersection

processing, and large numbers of special effects.

The GT100 system was an excellent candidate
system for our first impiementation of a dynamic
terrain database design because the interaction of
objects in the distributed simulation environmiént
cannot be planned. The GT100 system allows a
number of configurations and options to. be
specified by the end user. This overview of the
GT100 system rélates to the system used for our
first dynamic terrain implementation. Compiele
product information for the GT100 family of image
generators may be obtained through the authors.

2.1 System Overview

The major componenis of the GT100 visual
system are shown in Figure 2.1-1. The GT100
visual system is comprised of two parts: the CIG
Host Subassembly and the Graphics Processor

* Subassembly.

_______ " {16 Host Subassembly o

cia] S Suppart |4 Disk
Hoet CPU | [Host CPU | Host cpu | jConiralier "

T T

. factive Araa E { aphics Protassor Sub bly)

Mamury
Frame | || O

YMX BU [
Bulfer e

oTR inm[

Figure 2.1-1 Dynamic Terrain Hardware Support
Environment

The task of the CIG Host Subassembly is to
manage efficiently the environment information so
that the potentially visible three dimensional
environment polygon data can be sent to the
Graphics Processor Subassembly in real-time.
Three processors, the CIG, SIM and Support Host
CPUs, waork together to place in active area memory
ah organized description of the simulated
environment. This active area memory is
simultaneously accessed by a database fraversal
processor- (DTP) which -quickly scans the
environment description, determines what data
needs to be sent {o the Graphics Processor
Subsystem, and informs the DMA controller to send
that data to the Graphics Processor Subsystem.

The "Graphics Processor Subassembly is a

parallel pipeline graphics engine which transforms .

three dimensional environment polygon data inio
© real-time video oulput. The data is fed to the
subassembly by the CIG Host Subassembly. Each
of four graphics pipelines is made up of a graphics
processor and pixel tiler. Tiler output is combined
and displayed by the frame buffer. (See Table 2.1-1
for GT100 system specifications.)

All of the system modifications to support the
- dynamic: terrain demonstration were made within
software modules for the CIG Host Subassembly.

2.2 Resource Ulilization -

The role of the three host CPUs is to manipulate
the dynamic environment data in a manner which
consistently provides this information to the
database traversal processor (DTP/DMA). The

dynamic -environment manipulation task is-

partitioned as follows:

6-3

Table 2.1-1 GT100 System Specifications.

Image Update Rate 15 Hz
Terrain Modification Transpert Delay 167 milliseconds
Textured, Anti-Aliased, Potentially Visible Pelygons 80,000 polysfsec ~
Display Resclution 640x 480 pixels
Pixel Fill Rate 25,000,000 pixelsfsec
| Qeeulting Levels 524, 288
-{ Color Palette 4005
Number of Texturs Maps 256
Texture Map Resolution 128 x 128 pixels

SIM Host CPU - The Simulation (SIM} Host
CPU is responsible for simulating the interactions of
the vehicle in the environment. In this application
the vehicle is a bulldozer and it not only interacts

Wwith the terrain but also modifies the terrain. All

algorithms dealing with the soil model and terrain
medification éxecute on the SIM Host CF’U

CIG Host CPU - The CIG Host CPU is

responsible for managing changes to the active
area memory. As stated previcusly, the active area

_ memory confains an organized description of the_
simulated environment which is accessed _

asynchronously by the database traversal processor
{DTP). All requests for modifications to the terrain

are managed by this processor as well as other .

image generator support functlons

- Support Host CPU - As more and more tetrain
is modified by the bulidezer, a significantly large
numher of polygons are created that are potentially
visible. The visual system has a limit 1o the rate at
which it can process polygons. The support host is
responsible for. executing terrain relaxation
algorithms tc keep the polygon load below system
thresholds. '

The GT100 has & rich library of messages used

to communicate between the multiple processors for
simulation applicaticns. For further detail; please
refer to [CIG/SIM Comm 80].

We note here that any method ‘Iof dyn_amic-
terrain on the GT100 requires additional memory.

than that used for a typical simulation. It is
necessary for manipulating polygons and
maintaining a workmg copy of the pelygons while
another copy is being displayed. Our memory
utilization algorithms reuse memory when possible
and we are able to run a continous exercise lasting
over an hour with 1.5 MB of memory dedicated 1o
dynamic terrain.

2.3 Terrain Format

Movement of the simulated vehicle through the
environment requires paging environment data into
active area memory from disk. All the data to
describe a 500 meter square ared is grouped
together to form a load module. The active area
memory has a 16 x 16 array of load modules in
memory at any one time, - This allows the GT100
visual systemn to have a viewing range of 3500
meters in any direction from any position in the
database and still provide for one row or column to
be in transition (paging in from disk).

-Each load module contains a .group of polygons
that define the terrain skin. In most cases, the

terrain is defined by a 4 x 4 regular tessellation with

a grid spacing of 125 meters and up to 32 polygons
connecting these vertices. For areas that require
greater resolution than this grid supports, micro
terrain provides additional terrain polygons not
limited t¢ the grid spacing.

3. Dynamic Terrain Models

‘This section provides a high-level description for
the dynamic soil slump and manipulation models
implemented for the virtual bulldozer: simulation.
Interested readers are referred to [L193a] and
[Li93b] for more details.

3.1 Soil Slump Model.

Given a soit configuration, e.g., a pile of soil with .
certain geometrical and physical properties, the soil
slump model answers three questions:

1) Is the giveri configuration stable? {i.e., will it
slump?)

2) What restoring force is required to return the
soil configuration to static equilibrium if it is
unstable?

3) How can mass conservation be preserved while
the configuration changes state?

The stability of a given soil configuration is
determined by the safety factor of a potential failure
surface. According to the Mohr-coulomb theory, the
safety factor is defined as a ratio of the strength
force and stress force [Chowdhury 78]. The
strength force provides the resistance to
deformation by continuous shear displacement of
soil particles along surfaces of rupture, while the
stress force pushes the soil mass to move along the
failure plane. If geometrical properties (area of the
failure plane, volume of the soil mass) and physical

properties (the cohesion, internal friction angle and
unit weight of the soil) are known, both strength and
stress forces can be calculated by using equations
presented in [Li33b]. The configuration is siatically

_stable if the safety factor is greater than .one.

Otherwise, soil sliding is inevitable,
To analyze the restoring force, the unstable soil

configuration s first divided into small vertical slices:
with equal width as shown in Figure 3.1-1. 7~

V¥

Ax Ax

Figure 3.1- 1

Dividing the given mass into small
slices . T

The calculation of the restoring force of each
slice can be done individually. Since forces exerted
between each pair of soil slices are equal and in
opposite directions, they can be ganceled. At any
particular time t, therefore, sliding can only happen
in the top area of a slice. This area is further
divided into slivery, v-shaped wedges and
Newtonian physics is then applied to quantify net
forces experienced by each wedge. The total
restoring force is finally obtained by mtegratmg,
smalt forces together [Li 93a]

Mass conservation is achieved by the followmg
technique. Recall that a given configuration is
divided into n slices. The i-th slice, 1<i<n, is now
conveniently thought of as a container holding an
amount of soijl. .

A small change of the amount of soil in each
container can be viewed from two different points of
view: geometrically, this change can be represented
by the change of shaded area (shown in Fig 3.1-2),
which is a function of the heights of soil elevation
posts (e.g., y; and yj,1). On the other hand,
physically, it is the amount of soil which goes out of
a container, minus the amount of soil mass which
goes in. This principle can be described by another
function of the rate of the “flow" of soil mass, which
is in terms of a function of restoring forces
discussed earlier. Puiting all these together, one
derives n+1 ordinary differential equations with n+1
unknowns [Li 93a). Solving these equations

1T

e L L Gt R L Rt L LS LRl | el LU R DL R R B

TR TE 7 TRt =

o Lo e R

provides a solution for the soil slump behavior which -
satisfies both soil dynamics and mass conservation.

Slice i+l

Slicei
yi

Slice i-1

AX

Figure 3.1-2: Considering slices as containers
3.2 Bulldozer Vehicle Dynamics Model

The bulldozer model simulates excavating
activities such as digging, piling and pushing scil
mass. The model is developed by first analyzing the
interaction between the soil mass and a bulldozer's
blade. Assuming that the shape of the blade ¢an be
approximated by an arc of a circle with radius R, we
divide this arc into n segments. Furthermore, the
soil mass in front of the blade is partitioned into n
slices by horizontal lines at each joint point of iwo
arc segments as shown in the following figure.

Figure 3.2-1: Dividing the blade and scil mass

if the cutting part of the bulldozer pushes the
soil mass with enough force, the equilibrium will be
destroyed. At this moment, the resistance
experienced by each segment of the blade is
determined by the soil properties (i.e., cohesion,
internal and external friction angle and unit weight)
and the geometry of the blade (i.e., the length and
the cutting angle of the blade). Those resisting
forces can be calculated for each blade segment
individually. by an equation presented in [Lig3b]. If
the force applied on a blade segment is further
decomposed, we obtain two component forces: one
is perpendicuiar to the segment, which is canceled
by an opposite force provided by the blade, and
ancther is always parallel to the surface of the

blade. Integrating parallel forces of all blade
segments together, we find that the total parallel
force is pointing from the bottom to the top of the
blade, that is, the soil mass being cut is always
moving upward along the blade.

This phenomenon s also. observed
experimentally [Balovnev83]. The sequence of
events occurring during the process of interaction
between the cutting blade fixed on the advancing
bulldozer and excavated soil mass before the blade
can be described by three steps.

1) The soil chip being cut from the main soil mass
moves upward along the blade because of
resistance io the soil.

2) The soit chip is broken up into individual lumps
on the upper patt of the blade. :

3) These lumps move downward toward the soil
layers being further cut and form the soil prism
which is being dragged.

Figure 3.2-2 depicts this pattern of the
movement of soil mass, - .

Figure 3.2-2: Pattern of soil movement ahead of the
blade

This excavating action of a bulldozer is
simulated by an algorithm with three stages:
digging, piling and slumping. First, the model tracks
the motion of the bulldozer. Along its path, wherever
the altitude of soil mass is higher than the bottom of
the blade, the new soil elevation is forced to have
the same elevation value as the blade's bottom.
This procedure will create a ditch along the path of
the bulldozer on the surface of the terrain. The
second stage simulates the upward movement of
the soil along the blade by placing a -soil chunk
representing the mass cut in the first stage onto the
top of the soil prism in front of the blade. Finally, in
the third stage, the soil slump model introduced
earlier is used to simulate the free flow motion of
broken lumps: of soil. Although the soil being
brought to the top of the berm arrives continuously

in the real world, a churnk is a reasonable
approximation of the amount and location of the soil
that would actually arrive during one time slice in
our discrete time simulation process. The soil slump
mode! smoathily integrates this chunk into the bermi,
resulting in a realistic appearance. :

4. Runtime Database Modification

To marnipulate terrain in real-time without visual
- anomalies, we developed. the data services
necessary to manipulate the terrain skin,
implemented the prototype bulldozer simulation and
reduced visual system loading with polygon
reduction methods.

4.1 Terrain Manipulation Strategy

Recall that a load module is a 4x4 regular
tessellation with a grid spacing of 125 meters
" representing the typical resoclution of the terrain
- skin. Higher fidelity terrain can be displayed using
micro terrain. Our goal was {o develop a methed to
manipulate the terrain skin at less than 1 meter
elevation post spacing for a reasonably realistic
visual appearance. Replacing an entire load
module with micro terrain would require over
250,000 polygons, well beyond the means of our
visual system.

As a bulldozer affects only a small_area around
itself instantaneously, we chose to implement a
hierarchical approach. Rather than repiacing an
egntire lecad module with micro terrain, we
progressively add detail where needed by
partitioning the data into finer resolution terrain until
we meet the desired resolution for manipulation. As
the bulidozer moves to untouched terrain, additional
partitioning occurs o allow its manipulation.

We experimented with different levels of
partitioning and chose the foliowing levels as they
provide optimum data segmentation for the GT100
visual system. (See Figure 4.1-1.)

A 125 meter square of a [oad module is
replaced with a 5x5 grid at the 1st partitioning level
providing 25 meter elevation post spacing, replacing
2 polygons with 50. A squafe in the 1st partitioning
- level is replaced with a 7x7 at the 2nd level for 3.6
meter elevation post spacing, replacing 2 polygons
with 98. A square in the 2nd partitioning level is
replaced by a 7x7 ‘with the 3rd and bottom
partitioning level for 0.51 meter elevation post
spacing replacing 2 polygons with- 88 additional.
Once the bulldozer is initialized and four partitioning
levels are created, the majority of new changes fo
the paritioning merely require replacing 2 polygons

6-3

from the 2nd partitioning level with 98 new polygons

at the 3rd partitioning level.

Oth leve! partitioning 1st level partitioning

25m

0.51m

3.6mf

N

3rd leve! partitioning

2nd level paritioning

Figure 4.1-1 Terrain Partitioning

Impltementation of the terrain partitioning
dimensions, spacing and number of partitioning
levels remains flexible, allowing tuning for a
particular application or visual system. Changing
the part:tlonlng will result |n .coarser “or fmer
subd!wsmn o

‘In order to simplify locating and updating BT
information, a data structure called a "patch” is used
to represent terrain partitioning at different levels. 1t
is an atomic unit for DT informaticn exchange
between the SIM and CIG hosts. A patch consists
of three parts: geographic information, polygon
graphics processor commands and database
traversal processor commands which contain links
to other patches at the higher, lower and same
levels of terrain tessellation. Terrain patches at
different partitioning levels are managed in the
program by a patch forest of tree-like structures,
where each root of a tree represents a load module.
When a root of a paich _iree is inseried into the
runtime database, the gecgraphic surface described
by each paich in the tree is automatically processed
and displayed by the graphics pipeline.

An example of a patch tree is demonstrated in
Figure'4.1-2, : Lo R

level O Load module
[micro terrain
level 1:

E___l Normal patch

Figure 4.1-2. A Terrain Partitioning Tree
4.2 Support Services

Several new simulation support service -
messages were developed to provide additional
functionality from the visual system host
communications for the dynamic terrain
implementation. These are outlined below:

MSG_DT_REQUEST is used by the simulation

host to request the terrain definition for a specific
location. A pointer to a bottom level partition
containing the position is returned. If a partition
containing the position is not found, an additional
partition(s} is/are created, inserted in the processing
stream and the corresponding polygons for h|gher
level partition(s) is/are removed.

MSG_DT_PATCH is used to exchange
elevation information for a modified pattition
between the SIM host and the CIG host.. It contains
the location, dimensions, spacing, and z values of
elevation posts for the partition. Upon receipt of this
new information, a copy of the partition is created
with the new elevation valuss. Polygons are
textured with dirt and those under the ireads of the
bulidozer are treated specially to display the tread
pattern: It is inserted in the visual system
processing stream followed by removal of the old
partition. This process prevents visual anomalies of
some terrain missing temporatrily.

MSG_DT_RELAX is used to pass pariition
information between CIG host and the support host
for terrain relaxation. Like MSG_DT_PATCH, it
contains the position, dimensions, spacing, and z
vaiues -of elevation posts_for the partition.” In
addition, it specifies those vertices which can be
referenced during the relaxation process, but are
not be changed. No veriex is deleted from the list
during relaxation. The relaxed patch is packed
using the same message format and returned to the
CIG host with a modified z value list and a new
polygon list.

4.3 Excavation Activity Simulation
Implementation

In this section, we define the concepts of active
patch and active arena and describe the
implementation of a virtual bulidozer model on the ’
SIM host. -

~ An active patch is a terrain patch at the bottom-

level partitioning, represented by a regularly
tessellated grid of equal dimension and spaging,

and within a certain distance (say 5 meters) of the

center of the excavating blade of a bulldozer. . An
active arena is an area assembled with several
adjacent active patches. It is a region where

elevation changes to the elevation posts of the
terrain surface are likely to happen in the near
future. An example_of an active arena is shown in

Figure 4.3-1.

6 7 8
3 4 5
0 1 2

Figure 4.3-1 An active arena of terrain excavation

During a simulation, the center of the blade is
always located at the central patch (patch 4 in the
figure above). When the bulidozer moves forward
or backward, the blade center leaves the central
patch. - In order to maintain the bulldozer in the
center patch, three patches are swapped out from
the active arena and patch requests are issued. by
the SIM hosi. These requests are received by the
CIG host and three new patches are returned to the
SiM host. The active arena‘is then re-assembled by
the SIM host. Thus, the dimensions and number of
patches in the active arena remain the same.

in implementing a bulldozer model, the active
arena is represented by an mxn array of elevation
posts maintained by the bulldozer simulation in the
SIM host. All dynamic soil computations are
performed on this elevation post array. When the
bulldozer moves with its blade down, the terrain
surface inside the active arena is changed.
Modified elevation posts are sent from the SIM host
to the CIG host. The CIG host then updates the

texture and vertices of polygons in the runiime
terrain database in order for the changes to be
viewed through the visual system. To reduce the
number of messages from the SIM host to the CIG
host, active patches are checked and only those
with elevation post changes are sent to the CIG
host.

In this approach, the data rates through the SIM
host/CIG host interface per simulation frame may be
very high due to new active patch data being

- transmitied from the CIG host to the SIM host. .

Recall that three patches are swapped out and
three new patches are brought into the active arena
when the bulldozer's blade moves across a patch
boundary. - During a simulation, activities of an
gxcavating machine may coincide with_a patch
boundary. If the vehicle motion is oscillating across
a boundary, active patches would be swapped in
and out continuously, resulting a heavy network
traffic.

To remedy this problem, we maintain a data
structure in the SIM host to temporarily store those
active patches which are just swapped out of the
active arena, or likely to be used in the near future.
(An algorithm was developed to predict which
patches are likely to be used in the next few
simulation frames.) All terrain patches brought to
the SIM host are kept in a tree structure to provide
not only terrain surface information required by the
dynamic soil slippage and manipulation model but
also geometrical data for the vehicle's terrain
following. As the simulation exercise continues, the
distance between some terrain patches and the
center of the bulldozer's blade exceed a threshold.
These patches are then discarded by.the SIM host.

Maintaining some temporary storage in the SIM
host increases the amount of data redundancy and
causes potential data consistency problems. These
drawbacks, however, are minimized by careful
design and implementation. The payoff for this
extra work, however, is great: the mean number of
message bytes per simulation frame was reduced
by two orders of magnitude. -

4.4 Polygon Reduction

As discussed earlier, a load module in the run-
time database is tessellated into hierarchically-
structured grids at different partitioning levels when
the bulldozer lays its blade down. These smaller
grids create a greater polygon load for the graphics
pipeline of the computer image generator. As a
simulation proceeds, the number of polygons
representing the fine details of the terrain surface
grows. If the polygon throughput reaches a

6-3

threshold, a terrain relaxation procedure is called to
reduce the polygon density. In this section, we
describe the terrain relaxation algorithm used for
real-time relaxation of a terrain patch.

4.41 Relaxation Algorithm. To achieve a
speed improvement in the rendering process of the
image generator, the terrain relaxation algorithm is
used to reduce the number of polygons required to
define the terrain surface of a regularly spaced grid
of elevation points. Without terrain relaxation, the
surface definition consists of a list of triangles (2
triangies for each 2x2 set of elevation points). The
number of triangles required to define a terrain
surface for a set of nxm elevation points without
terrain relaxation is: 2«(n-1p(m-1}. -

The terrain relaxation procedure creates a list of
polygens that omit those elevation points which do
not add important geometrical surface information to
the overall appearance of the terrain surface. An
automatic polygon. reduction is performed in
relatively co-planar areas within a regularly spaced
grid of elevation data poinis. A programmable
tolerance value is used in the co-planarity
caiculation to achieve varying levels of polygon
reduction, dependent upon the desired accuracy of
the surface definition.

In addition, any given elevation point can be
assigned to be fixed in elevation, i.e., the co-
planarity calculation uses a tolerance of 0.0 to
determine if that elevation point is within the plane
being examined. This allows the relaxation
procedure to retain some physical properties of the
terrain surface, such as ridge lines or shallow
ditches. Similarly, vehicle tracks or other polygons
with attributes related to their appearance (color,
texture or shading) are tagged to be fixed so that
these features are not altered during the relaxation
Drocess., ’ oo N =

The borders of the overall elevation grid data
point set are always assumed to be fixed. This
allows adjacent terrain patches at the bottom level

‘of tessellation to be relaxed independently, but to

still have an exact correspondence in their adjoining
surface definition: Failure to fix the borders would
create terrain separation ai the patch boundaries.

4.4.2 Relaxation Strategies. There are two
different strategies to determine when to relax and
which terrain paiches to relax: time-based strategy
and distance-based strategy.

Time-based: each terrain paich at the bottom
level of tessellation receives a time stamp when it is
created from the terrain partitioning. It is updated
with the current time whenever the patch is

e

ree

modified. Time stamps are routinely examined
against a threshold. Those patches whose time
stamp exceeds the threshold are chosen as objects
for relaxation.

Digtance-based: each terrain patch at the
bottom level of tesseliation is tagged .with the
distance to the center of the bulldozer's blade when
it is created. This distance recalculated as the
bulldozer travels. These distances are routinely
compared to a threshold. Those patches whose
distance exceeds the threshold are chosen as
objects to relax.

In our implementation on the Loral GT100, the
distance-based strategy was used. With 30 meters
as the distance threshold and 0.1 meter as the
relaxation tolerance, the number of polygons in the
run-time database remains within a manageable
range.

5. Conclusion and Future Work

A real-time interactive bulldozer simulation
demonstrated dynamic terrain capability on the
GT100 image generator as part of the Institute for
Simulation . and Training Dynamic Terrain
Demonstration at I/ITSEC '93. The virtual bulldozer,
driven by a Spaceball™ interface, can interactively
modify any standard SIMNET terrain database at
any freely-chosen location.

Fundameantal problems remain before dynamic
terrain capability can be fielded for large scale
simulation. Even with the terrain relaxation
approach used, exercises with many -entities
changing terrain will ultimately create so many
polygons that CiGs are unable to render views and
non-visual entities become computationally
overburdened. MNew methods are needed for
aggregating polygons while maintaining geometry
and minimizing polygon density. Arbitration issues
must also be considered for multiple entities
changing a region simultaneously. Finally, the
design of a system architecture which is scaleable
and reliable must be addressed.

One promising method for aggregation of
polygons is the use of triangulated irregular

networks (TiNs), which can represent the ferrain -

relief with much lower polygonal density than can
regular grids. We intend to investigate real-time
methods for TINning modified terrain in future
efforts,

6. Acknowledgement

The authors wouid like to thank the US Army
Simulation, Training and Instrumentation Command
(STRICOM) and the Institute for Simulation and
Training (IST), who sponsored this. work (contract
N61339-92-K-0001).

7. References

[Balovrnev8d] Balovnev, V.l., New Methods for
Calculating Resistance to Cuiting of Soil,
Translated from Russian, Published for the U.S.
Dept. of Agriculiure and the National Science
Foundation, Washington, D.C., 1983.

[Chowdhury78] Chowdhury, R. N., Slope Analysis,
Elsevier North-Holland Inc., 1978.)

[CIG/SIM Comm 90] GT100 CIG to Simulation Host
interface Manual, BBN Systems and
Technologies Corp., March 1890.

[Li93a] Li, X., Physicaily-Based Modeling and
Distributed Computation for Simulation of
Dynamic Terrain in Virtual Environments, Ph.
D. Dissertation, University of Central Florida,
March, 1993. '

[Lio3b] Li, X. and Moshell, J.M., "Modeling Soil:
Realtime Dynamic Models for Soil slippage and
Manipulation,” Proceedings of SIGGRAPH '93
(Anahiem, CA, Aug. 1-6, 1983). In ACM
Computer Graphics, vol. 27, 361-368.

