FEEDING HUNGRY PROCESSORS: REAL-TIME 1/O DEMANDS OF HIGH-
PERFORMANCE MULTIPROCESSING COMPUTERS

Bruce H. Johnson
Silicon Graphics Computer Systems
Houston, Texas

ABSTRACT

It has been documented that microprocessor performance doubles about every 21 months.
Much is published and reported on the fechnology that delivers this impressive computing
power, Much less is said, however, about the unigue Input/Output (/O) demands that are
presented when using these microprocessors in high-performance, real-fime, multiprocessing
environments. Raw computing power is seldom questioned anymore. Of more concem
today is the ablity of a computer system to deliver data fo and from these high-
performance processors.

For example, it is not difficult to select a computing engine that is capabie of performing the
computations necessary to drive a Full Flight Simulator (FFS) or a Weapons Systems Trainer
(WST). It is, however, a significantly greater challenge to defermine how the simutation 1/O
can be performed so os to eliminate bottlenecks and lafencies. The tfraining value of a
simulator can easily be lowered by the stepping or jumping of an instrument, visual system, -
or mation base that is due to the indbility of the I/O 1o keep up with the processors.

This paper will explore some of the technology available that can be used to "feed" today's
high-performance, reakiime, multiprocessing systems. Both advances in hardware and
software will be discussed, advancas that give developers the tools they need to deliver I/O
fo and from a simulafor withy determinism and realism.

ABQOUT THE AUTHOR

Mr. Bruce Johinson is a Systems Engineer for Silicon Graphics Compiuter Systems and consulls

to the realHime, simulation industry. He has spent the last twelve years working for both
simulation/training contractors and computer systerm manufaciurers. He holds a Bachelor of
Science Degree In Engineering and Computer Science from the University of Florida.




- FEEDING HUNGRY PROCESSORS: REAL-TIME 1/O DEMANDS OF HIGH- -
- PERFORMANCE MULTIPROCESSING COMPUTERS

Bruce H. Johnson
Silicon Graphics Computer Sysfems
Houston Texas

- INTRCDUCTION

There is no doubt that IO issues are
important tfo the simulation community.
Virtually all simulation systems have some
sort- of specific /O requirernents that must
be mel, In some cases, the industry has
even defined specific /O standards for
simulators, For example, the Federal
Aviation Authority (FAA) requires that FAA
cerfified simulators have o transport delay
of less than 150 milliseconds (FAA Advisory
Circular AC 120-40B). Though not s easily
quantified as transport delay, nearly every
simulator  specification
components be free of jumping and
stepping. A simulator does not have to be
directly involved with pilot fraining in order
to have specific /O requirements.
are also some very specific fransport delay
requirements identified in the
Communication Architecture for Distributed
‘Interactive Simulation (CADIS) documenit. |

How data is moved between the simulator
and the CPU (or CPUs) can make a big
difference in the amount of effort it will take
to meet these types of requirements. While
the heart of a realtime, host computer
systemn may sfill be the CPU {or CPUs), the
/Q interconnect and how well It is utilized
will often determine the level of realism and
fidelity of a given simulation.

The computer systems of today differ
dramatically from those offered only a few
vears ago.  Along with the changes in
features. and capabilities, there comes o
need to change the way that much of the
systemn design is being done, This is
particularly. true in terms of designing and
optimizing the flow of datfa from a simulcartor,

requires that ali

There

to the CPUs, and then back again.
Practices that provided efficient use of
resources a few years ago could potentially
"bottleneck"  today's high-performance
systems fthat rely heavily upon data
buffering and pipelining: C

THE FIRST STEP: PASSING DATA '%'C;!FROM
MEMORY

When considering the 1/O of a high- -

performance computer system, the first

area to explore is the path from processors

to memory. Cerainly not unique fo the
real-time  ~industry, all computing
applications are concemed with providing

“the widesl, shorfest path from “CPUs to

memory.- Memory subsystems of modemn
computers are generaly made up of
Dynamic Random Access Memory (DRAM).
While it was stated previously that CPU
performance has been doubling every 21
months, DRAM access times  have
decreased only by a factar of about one
third over the past decade. This difference
in performance change is shown in Figure 1.

=CPL Performance f
=D RAM Access Times

ﬁff T——
W*‘“‘M
1980 1985 1290 - 1885 2000
- Figure 1



MR S ) S

Armdahl's law says that the performance of
a computer system as a whole will increase
as a result of better performance in a
component only to the extent that the
improved component may be used. For

example, if the speed of a CPU s .

dramatically increased, but the memory
speeds are kept relafively constant, the
CPU will spend increasing numbers of clock
cycles waiting for memory to respond.
Computer designers must clearly provide
some fechniques that permit faster paths to
memory in order to keep the CPUs of the
systern well fed.

One scolution 1o this problem is in the use of

“higher speed Siatic Random Access

Mermory (SRAM). Idedily, o maximize the
bandwidth between CPU and memory
(and also provide more deterministic
memory caccess ~ times), all memory
subsystems would consist entirely of SRAM
memory. Indeed some computer systerns

- offer {or have offered) large SRAM memory
-~ subsysterns as key components of  iheir

design (e.g.. Encore RSX and CRAY C-90).
The dowrside o SRAM is in ifs additional
cost when compared to that of DRAM. As
can be . seen from the following equafions,
in order to equip an average size simulator
host computer with SRAM as opposed to
DRAM would Increase its - price

- approximately 100,000 doliars.

200% / MegaByte (MB) * 64MB DRAM = § 12,800
20008 / MegaByte (MB) * 64MB SRAM = $128,000

Redltime . developers and  engineers
demand high-performance _.and
determinism, but delivering a sysfem with

enfirely SRAM memory is cerfainly cost:

prohibitive to most.
Overview of Caching

A more cost effective solution fo the
problem lies in the use of caches. Caches
are SRAM-basad subsets of the lower cost
DRAM that are provided on a system so

- that the CPUs have faster access 1o data.

Caches are generally implemented with

either @ ‘“write-through® or “write-back"

strategy.  Write-through caches will write

6—7

modifications to their memory immediately
back to main memory. Write-back caches
will wait 1o write modified memory back o
main memory until the cache line is needed
to hold other data, For almost all
applications, write back caches provide
beter performance by reducing @ the
amount of fraffic befween ﬁ*e cache and
mgcin memory.

When cache data is read in, it Is normally
done using a "cache line" of data. Reading
datain cache lines takes advantage of the

fact that the next piece of data thar o
processor wants js very likely to be near the
one that was just accessed. This B why.
when designing 1/O fransfers, an engineer
should always think in ferms of long bursts of
data (i.e., a cache Ine size) since if Is likely
that this s how data s being moved

“intermnally through the system:. ~ = -

All popular RISC microprocessors foday
incorporate small on-chip - caches  that
generally range from -8 - 128 KB in size.
These on-chip caches, or primary caches,
are most offen supplemented with larger
secondary caches that reside external o
the CPU itself. The size of secondary caches
varies even more, secondary caches exist
that are as large as 4MB per CPU. To
emphasize the imporfance of caches in
application performance. ~Table 1 s |
presented to show access cycles of caches
versus that of main memory (humbers are
representative only and do not necessarily
reflect any particular computer sysiem):

read cache hit prirnarny cache 1 cycle
read cache hif secondcry cache | 4-11 cycles
read miss (access main memoty) | 100-160 cycles

Table 1
Caching and Mulfiprocessing

The use of cache in comptter systems s not
a new design concept, bul integrating of

cache ~ with mulfiprocessor computer

systerns  Is. The chdlenge for o
multiprocessing systerm when using caches
is to ensure that each CPU has a consistent
view of the system memory. When using




caches, it is certainly not uncommon for the
same data to be kept in multiple locations
and this data must be efficiently
synchronized and exchanged. A typicadl
solution to fthis problem is through the
- addition of bus snooping to the system
architecture. Bus snooping means that
each interface to the: system bus (.e.. CPU
cards; memory cards, /O inferfaces, efc.)
monitors, or snoops, the bus traffic. Upon a
read request, the inferface with the atest
copy of the data responds to the read. The
fechniques implemented by multiprocessing
systems to optimize cache coherency can
make a big difference in overall system
performance,

- Some multiprocessing systems implement a
duplicate set of cache *tags” in order to
minimize confention between processors
and the bus snooping mechanism. Cache
tags are used in a system fo-identify the
addresses for the data that reside in cache,
They are used by both the CPUs and bus
snooping mechanism In a multiprocessor

- system. The CPUs use cache tags to index
info the cache and pull data when there is
a cache hit. The bus sncoping. mechanism
utiizes cache tags when monitoring the
addresses on the bus. When snooping and
CPU access to cache occur simultaneously,
CPU cycles can be lost due to contention
for tags. Duplicate cache tags can greatly
reduce ihe contention between CPU and
the bus snooping mechanism.

Another cache coherency technique used
in some architectures is the three-party
transaction. A three-party transaction is
implemented as follows. Whenever a read
request is satisfied by data from a second
processor's cache, the main memory
interface "accepts” the read as if it were g
write. For example, if processor A gccesses
memory for which the only valid copy is
contained in processor B's cache, the block
of memory will be simultaneously writfen
back to main memory and fransferred To
processor A's cache.

Memory interfeaving

Another technique used for maximizing the
baondwidth  to  memory s  memory
inferleaving. Memory interleaving is @ way
of organizing the DRAM memory of a
sysfemn into "leaves" that are copable of
independently processing @ memory
request for a processor, Each memory leaf
can be thought of as an independent path
from CPUs fo memory. By infereaving
memory. the negofive affect of DRAM
access latency (when compared o CPU
clock rate) is hidden by overlapped
memory accesses in mulfiple  memory
lecaves. o

Memory interleaving s especially
advanfageous in mulfiprocessor  systems.
Most operating systems ensure proper
distribution of sequential memory accesses
by a single process. However, this is
normally not done for multiple processes
executing on multiple Processors,
Therefore, to minimize the probability of two
successive memory accesses to the same
leaf, memory interleaving is provided. As
the number of processors increases, the
number of memory leaves should have the
capability of being increased as well.

THE NEXT STEP: PASSING DATA TO/FROM THE
1/O BUSES

As with advances in the access times of
memory, growth in the performance of 1/O
buses has not kept up with growth in CPU
performance.” Figure 2 and Table 2
compare the growth in the performance of

indusiry standard 1/O buses with that of RISC -

microprocessor - performance (years
indicates years of use, not introduction).
Years Popular 170 Bus | Bandwidth
< 1980 MultiBus-1 10 MBfsec
1980s SElbus 26.67 MB/sec
19903 ViMEbus 40-65 MB/sec
2000s Futurebus+ 100 MB/sec '
Table 2.



Table 2

“CPU Performance e
..|=lQ Bus Bandwidth

1980 1985 1990 1985 20040
Figure 2

Not only has /O bus performance growth
lagged CPU performance growth, but the
data path from CPU to I/O bus in today's
systems is generally longer than what it used
to be. Data offen must be scaled from the
large infernal buses of RISC processors to
narrower |/O buses such as SCSl and VME.

Figure 3 is g simplified example of how the
buses of a high-performance computer
system are offen scaled down from larger
systern buses to smaller 1/O buses.

| 1.
1

CPUs . Memory

F]| VO Buses - 1/4
of System Bus |
Bandwidth

SCSI. VME, and Other "Lower” Bandwidth [nterfaces

Figure 3 T -

In a similar fashion, the bus bandwidth of
the system bus is generally much higher
than that of I/O and peripheral buses. This
presents systermn designers with the unique
challenge of tryving to maximize the
throughput of g lower performance bus

(.e., SCSl or VME), while minimizing the

~negative - effect. that the slower data

transfers will have on the high-speed system
bus. Some features that are used to
accomplish this are /O caches, data
buffering. and the pipelining of bus gronf
and requests on the 1/O bus.,

Maximizing the Performance of a VMEbus
Whether incorporating < single board

interface or a completa IO subsystern, the
VMEbus has become a de-facio standard

~ in the simulation and fraining industry. While

most reaktime computer systems dre
designed with an infegral VMEbus, . the

_ performance  features and  integration
capabilifies of the bus can often vary

greatly between manufacturers.

In theotry. boards that comply with the IEEE-
1014 VMEbus Specification shouid work
together on the some bus. In practice,
however, every dasign enginest knows that

VME board integration can be a difficult.

task. Af least part of the problem can be
attributed to the format of the VMEbus
Specification s it leaves room for
inferprefation In many areas. As a resuli,
boards can be funcfionally cotrect vef
employ marginal design practices that are
exposéd with increased bus activity and
contention. In addition, a myrad. of
software issues can increase the complexity
of VME bocrd lnfegrohon as well,

VME board selecﬁon is crucial fo opflmlzmg
the bandwidth of the VMEbus. The
bandwidth of the VMEbus in a given
application will most likely be defermined
by the boards on the bus, not the host
computer confroliing the bus. Boards that
suppeort block transfers, Direct Memory
Access (DMA) transfers, and 64-bit data
transfers are going to be.able fo pass data
at much faster rates than those that support
only Programmed I/O (FIO). Table 3 shows
an  example of the differences © in

-throughput that can be expected between
data transferred vig PIO versus that of DMA_

(while data Is representative in nafure if is
based on actual testing resulfs).




Transfor Typa PIC Bandwidth | DMA Bandwidth
|.8-biKD8) Rocd | .5MB/fsec - 3.0MB/sec

8-biD8) Write JEMB/sec 3.75MB/sec

32-bik{D32) Read | 2.0MB/sec 12MB/sec
L32-biKD32) Wilte | 3.0MB/sec 15MB/sec

Table 3
Some of the Fealures Available for VME I/O

One feature. that several reakfime
computer systems are offering is the
capabiity to support multiple VME buses
from a single computer, In fact, systems are
available foday. that offer up to five
separate VME buses per system. Not only
does this drarmatically increase the 1/O
bandwidth of a system buf it also adds a
great deal of flexibility to the 1/O design. For
example, it is often o wise practice to
isolate siower VME boards (.e., those that
are qccessed via programmed I/C) from
boards that are performing faster DMA
block fransfers,

Many vendors now aiso provide support for
64 bit data transfers on the VMEbus per
Revision D of the VME Specification, - &4-bit
fransfers  can  effectively double the
throughpul capabiities of a YMEbus. In
order to implement 64-bit transfers, both the
host and the farget (VME board) must
provide Dé4 support. It appears that more
and mere VME board manufacturers are
adding this capablility fo their products.

For VME boards that do not have DMA

capabilities, some host computer vendors.

provide a DMA master capability on their
VMEbus interfaces. Commionly referred to
as a DMA engine, this DMA master
capability enables boards that lack support
for DMA to increase their performance by
using the DMA capabilfies of the VME
intferface. Using the DMA engine facility,

applications have been shown to deliver

higher performance even when using
fransfer sizes as small as 128 bytes. Figure 4
shows relative performance differences
between /O transfers using PIO compared
with those of atypical DMA. engine.

10 ; ,
; I
8l Vo
'E i
g 8r CMA Engine
?25 4l - lamb [=Programmed 10
= - -
2 .
0 : ; .
32 128 512 1024 4096
Block Size
Figure 4 -

Perhaps unique to recltime systems is
feature that gives the capability fo route
VMEbus inferrupt levels to individual CPUs.
In this way, real-fime tasks can be isolatec
to execute In response to inferupts
mapped to a -specific CPU - -thereby

- reducing interrupt latencies incurred by the

processing of non-realtime interrupts on the
CPU. Additionally, for systems that operate
under o UNIX-based OS, it is virtually
Impergtive that the clock scheduling
interrupt  be- removed from an isolated
processor to  ensure determminism  in
responding To high pricrity infemmupts.

Caleulating Available Bus Bandwidith

A very important metric in determining the
I/C capabilities of a computer system is the
avdilable bus bandwidth. - Available bus
bandwidth refers to the amount of data
that an /O backplane can transfer at any
one fime. Often vendors gquote an I/O bus
bandwidth  that refiects only the

‘performance of a single type of operation -

invariably, the fastest, In almost - all
simulation applications, however, the /O
bus incorporates several different types and
sizes of fransfers on the bus. :

Available bus bandwidih. varies greatly with
each gpplication and Is dependent upon
both the host and the I/O boards. The

sfollowing example dermonstrates this. A

given simulation application has . the



R L LLLL Al banll

following /O réquirements every frame of ifs
simulation: )

5 KB read from reflective memory

30 KB written to reflective memory

100 KE read from DMA interface device

100 KB  write to VME-based SCSl disk for
record/playback

For redlistic data presentation the /O i

performed al 60 Herfz (Hz):
5KB*60=  0.3MB
30KB*60= = 1.8MB
100KB* 60 = 6.0 MB
100 KB * 60 = 6.0 MB o
Total = 14.1 MB per second

Cnly 14.1 MB/sec need 1o be sustained,
which Is well within the vendor quoted bus
bandwidih of 25 MB/second. Yef taking a
closer look at the type of 1/O that is actually
being performed reveals a real /O

bottleneck. For purposes of this discussion,

assume the computer systern Is copable of
delivering the following bandwidths with
various operations on the VMEbus:

D32 PIO Non-block write fransfers 4 MB/sec
D32 PIO Non-block write transfers 1 MB/sec
D32 DMA Block read transfers 30 MB/sec
Doé4 DMA Block write transfers 55 MB/sec _

Applying these numbers to our previously
generated throughput requirements . yields
a problem:

1.8MB @4 MBfsec = .. 45%
C3MB@1MB/fsec= 30%
60MB @ 30 MB/fsec = 20%
60MB @55 MB/fsec = 11%

106% utilization

- A solution to this engineer's problem could

lie in the availability of a VME DMA master
capabilty on the host compuier which
could be used with VME cards thot support
only PIO. If provided, this DMA "engine"
should be able fo deliver the following
bandwldth for writes to the VMEbus:

DMA Engine D32 Nonblock writes 9 MBfsec .

Plugging this into the equafions, we now
have o different resulf:

18MB@9MBfsec = ~20%

0.3MB @ 1 MB/sec = 30% 7 ' - .

60MB @ 3CMB/fsec= - 20%
60MB@B5MB/sec=  22% . -
92% utilization

These numbers are given only gs an
example, vyet they . underscore the
importance of understanding the various
factors  that influence avdilable bus
bandwidth.

Using SCSI for Realtime
SCS! controflers are  inexpensive DMA

devices that are generally optimized to
make maximum use of a system’s resources.

~When using 16-bit SCSI, useful bandwidths

of up to 14 MB/fsec can be achieved on
each SCSI bus. . Factoring this into an
average price for bus expansion and
comparing it fo VME vyields the insightful
results of Table 4.
|Deviceto Add | Price__ | Bandwidth | $/MB
SCSl bus < 351000 | 14 MB/sec 71
VIMEbtis > $ 10000 | 50 MB/sec| 200

Table 4 .
While SCSI may sfill present a non-traditional
approach to interfacing and controlling
realfime hardware, its price/performance
advantage cerainly cannot be ignored.
Already, commercial interface

- manufacturers are reglizing the advantages

of SCSi by introducing SCSl-based /O
devices such as terminal setvers. Realtime
SCSl interfaces should be considergd as @
cost effective solution for virtually any future
1/O requirement,

MULTIPROCESSING AND [/0

While very powerful simulafors and
simulation systerns are being developed
foday that are driven by single-processor
computer systems, multiprocessor systems
are becoming more and more the norm. A
few of the reasons why multiprocessor




systems are advantageous for simulation
applications are identified -in- the following
paragraphs:

o  Many simulators and simulated systems
have increased in complexity of late
and require addifional system resources
to process the load. Developmeni of
simulators for such devices as the Air
Force's F-22 and NASA's Space Station
Freedom are reaching new limits in
processing power demands. -

» Recent trends show an increcase in the
incorporation of  special  purpose
processing at the host computer level,
Image generafion graphics, motion-
base flight models, conirol loading
forces, DIS packet processing, etc., are
now dll capable of being processed by
host computer processors.  This design
pemits befter data localization and
simpler process synchronization than do
designs that  incorporate loosely-
coupled processors. " .

4

e  Multiprocessing also permits isolation of

proceassors fo perform specific real-time

tasks. Processor isolation means that all
anclllary processes to the regHime
process (i.e. system dasmons. graphics
processing, efc.) can be forced away
from reai-time CPUs, thereby achieving
improved redltime response and
determinism. .

Symmetric Multiprocessing and /O

A Syrmmetiic Mulliprocessing (SMP) system Is

a balanced computafional system where -

multiple . processors equally share the
resources of the system in order 1o process

a given workload. The sharing of resources.

is generally done via o shared system bus
that connects the CPUs, memaory, and 1/O
of the system. In g frue SMP system, ALL
processors of a system have.equal access
to ALL resources of the system including
memory, /O, and the Operating Systern
(O8) itself,

This simple fact is a key to maximizing the
advantage - of an SMP system. Noi all
multiorocessing systems are fully symmetric
and, fherefore, leave a potential for
different performance results. based on
varying factors of asymmetry. - For example,
a multiprocessor system may have memory
areas that favor certain processors such
fhaf there can be dramatic differences in
performance based on which memory is
being utilized by which processor.

Likewise, I/O in‘rer"l;oceé that reside on the
CPU boards of a system often provide fast

-access to peripheral devices from only @

subset of the available CPUs. The remaining
CPUs of the system are likely to elther have -
much slower access to the inferfaces or no
access at all. In general, ar SMP system will
be more predictable in nature if resources
of the systern are able fo be evenly
distributed to the available CPUs of the
system.

DISPELLING SOME COMMON
MISCONCEPTIONS ABOUT REALTIME
SIMULATION {/O.

“Realfime simulation cppﬁcdﬁonS' hdve
poor cache hit ratios"

While this sfatement was largely true for
computer systems ‘that were being
designed and manufaciured only a few
years ago, it is far fess frue foday. It is rather
difficut to generalize about  the.
characteristics of all simulation code, but for
purposes  of this  discussion a few
assumiptions will be made. Simulation code,
as compared to code of a purely: scientific
application  or that of a DataBose
Management System (DBMS), has a greater

percentage of branch insfructions in ifs

instruction stream and o larger percentage
of scalar daota locofed randomly in
memory. Because of thase characteristics,
simutation code does not fake advaniage
of the cache as well
applications.

Yet the reason that simulation applications
are caching befter today is due o the

as do other



simple fact that the sze of caches has
dramatically increcised over the past few
years. Toble 5 shows examples of how
cache sizes of simulation host computers
have increased over the past ten years.

Year Example Cache per Processor
1980 32 KB

1985 up to 128 KB

1990 up tc 256 KB

1994 up to 4MB

Table 5

So substantially have cache sizes increased.,
that many industry "cache busting"
benchmairks no longer bust caches. By the
fime this paper is published, there will be
high-performance computer systems
available with up to 4 MBytes of cache per
processor.  With cache sizes this large.
simulation code now caches better than
ever,

Multiorocessing systerns will saturate their
systemm bus any fime more than a few
processors are added to the system”

As with the previous misconception, this
statement is much less true today than it
was a few years back. The main reason for
this Is in the dramafic increase in system bus
bandwidth in recent years. Table 6 shows
examples of changes In system bus
bandwidih over the past ten years.

lyear |systemBus Bandwidih
1985 26.67 MB/sec
1990 100 MB{sec
1994 1200 MB/sec
Table &

“/O cycles can easily "starve' the system
bus away from the CPUs"

This is @ misconception that often is brought
about by a lack of understanding of how
‘data is actudlly transferred throughout a
-high performance compufer system. Here
s a clossic. example of how this
misconception is formulated. A systems

6—7

engineer is trying fo understand the way
that DMA transfers occur in. his computer
system In order to estimate what resources
are being consumed:

1. His computer system has a sustained
system bus (or memory bus) bandwidth
of 1.2 Gigabytes/second.

2. His application requires a SCS| device fo
~ perform 2 KB DMA fransfers info main -
memory af a rate of 5 MB/fsecond.

3. He concludes that once the daia
transfer phase begins, his transfers will
require about 400 microseconds (us) to
complete and will tie up the system bus
during that period of fime.

Taking a closer look at how data aciually
flows through this system, however, revedls
quite a difference. The basic unit-of transfer
on this system bus is actually 128 bytes (the
size of a full cache line of data) and the bus
fransfers each 128 bylte block in 100
nanoseconds (ns). Since the interface fo
the $CSI bus confains enough buffering and
data  funnel operations to pack all
operations and keep the system bus from
being used inefficiently, the system bus will
be used for only 16 100ns transfers. This
equates to 1.6 ps on the systemn bus -
hundreds of times less than whaf was
originally expected. _
IMPORTANCE OF UNDERSTANDING
HARDWARE ISSUES AT SOFTWARE LEVEL

As the ‘complexity of simulators and
simulation systems increases, there are more
and more aftempts to minimize ihe
complexity of the. system fo the average
software developer. Many higher level
languages provide  constructs  that
encourage dabstraction in an effort to
simplify the amount of detail that must be
understood by each programmer.. For the
most part, these concepts are desirable
and should be encouraged. Yet this can
lead to some dramatic performance
implications if detfails of how |/O is handled
by the system are not well understood.




Programmed 1/0 Pitfalls

By using standard system calls of virtually
any O§, one may "map" VME address
space to the virfual memory of a user
process. This permits a user to easily
read/write fo the memory and registers of a
VME board as if using global variables of
their program. A user process then may
program the VME card to perform different
functions andfor send and receive data
through Programmed 1/O (PIO) reads/writes.
Reflective memory boards are often
infegraied this way and provide o simple
way for separate computer systems . fo
share memory.,

There are., however, several potentiai
problems with implementing PIC that should
be considered when evaluating for
potential 1/O botflenecks. First of all, from a
systfems point of view, PIO I8 a very
-inefficient way to move data around. PIC
operations cannot be pipelined and the
~enfire 1/O path from the VIVIEbus to the CPU
remains “fied up” during the PIO operation.
In addition, fests have shown that PIO
utilizes: 100% of a CPU's resources during
large 1I/O transfers - leaving It unusable to
other processes. This contrasts with DMA
fransfers which can be extensively pipelined
through fthe use of data prefetching,
freeing up the CPUs considerably.

What can also happen when using PIC s
that developers may begin tfo freat the
memory that resides on the VME as they
would the normal virfual memory of their
process.. Simulation varables are often
-defined and manipulated on the VME-
-mappead memory such that hundreds of
VME accesses are occurring with every pass
through their programming model. In many
cases the software developer is not even
aware that VME memory is being accessed
since offen the address mapping .occurs
external to their process or program. The
resuits of this can be disastrous. A read or
write to VME memory can take hundreds of
times longer than that of normal memory
access.

Pipelining, Caching, Eic.

Another - potenticdl area for severe
performance degradation that s often
overiooked by the average software
developer is the caching characteristics of
a datg area. As an example, the soffware
design may utilize a large shared memory
ared (or datapool) for the sharing of data
between processes. Then a portion of this
area may be accessed from a DMA master
that resides on the VMEbus. Since certain
system architectures will mark entire DMA
buffers uncacheable, developers must be
careful that the entire shared memory area
is not also marked uncacheable. To
maoximize the use of . cacheable shared
memory partitions, it Is often advisable to
split up normal data areas from those that
will be used for I/O (i.e.. multiple datapools
or memory partitions). '

CONCLUSION

Computer systems today offer incredulous
compuiing power from the deskiop to the
supercomputer, Yet even the most
powerful of computing engines cannot
guarantee that a simulation be free of
excessive /O lafencies and “glitches”.
Effectively haressing the  available
computing  power in the simulation arnd
fraining  community requires both - an
understanding of computer  system
architecture and the application itself.

This poper has presen’red some details
about the realtime, /O capabilities of

- foday’s high-performance, multiprocessing:

computer systems. It has also- presenfed

some dssign hints thal can be used to -

minimize (/O problems that invariably crop
up during simulator design (or even long
after simulator delivery). While today’s
processors  are  hungrier than ever,
understanding how o keep them well fed
can ultimately help the industry to meet the
challenges of the 1990s and beyond.





