The Heritage of the Air Vehicle Training Systems Domain

David C. Gross and Lynn D. Stuckey, Jr.
Boeing Defense and Space Group

ABSTRACT

One of the Holy Grails of software development has been reusability. Everyone is frustrated with continu-
ally reinventing the wheel; everyone knows that reuse would dramatically cut costs; and no one has shown
an effective reuse paradigm. The trend has been o develop reuse paradigms without regard o past suc-
cessful projects. Historically, successes with reuse have been accidental -- based on personnel ‘not on
process. Now a new paradigm has emerged that includes a focus on past investments in forming a reuse
process. This initiative is DoD’s push toward the megaprogramming paradigm. Megaprogramming divides
system development into two lifecycles, the first focusing on the problem of leveraging assets through a
family of related products, and the second focusing on the problem of delivering a single. product. The
process for the first lifecycle is domain engineering.

Domain engineering is not easy. It revolves around all kinds of questions that simulation software engi-
neers are not used to asking such as: (a) Is this a viable domain?, (b} 1s there an acceptably. standard
- partition of the domain?, {c¢) Is this domain definable?, (d) What granularity is best for domain work prod-
ucts?, and so forth. Yet, if the DoD is going to successfully transition its approach for the development of
software intensive systems to the megaprogramming paradigm, software development organizations are
going to have to be empowered o meet these challenges.

The U.S. Navy and the Advanced Research Projects Administration are presently funding a megapro-
gramming demonstrafion project in the domain of Air Vehicle Training Systems. How has this project come
to grips with the technical challenges of domain engineering? Mostly by leveraging the investments of
previous research and development projects in this domain such as the Ada Simulation Validation Program
(ASVP), the HAVE Module {Mod Sim) Project, the Software Engineering Institute’s Structural Model Initia-
five, the Manned Flight Simulator (MFS), and a series of pianned pilot efforts. This paper discusses the
advantages and disadvantages on leveraging previous invesiments into new domain engineering efforts.
lts discussion captures valuable lessons about the transition of existing organizational assets into the
megaprogramiming paradigm.

ABOUT THE AUTHORS

David C. Gross is a software systems engineer with the Missiles & Space Division of the Boeing Defense
& Space Group. He has workad in all lifecycle phases of simulation and training systems from require-
ments devefopment through delivery., He is currently involved in applied research related to megapro-
gramming in the domain of training simulator systems. Mr. Gross holds a Bachelor of Science in Computer
Science/Engineering from Auburn University and a Master of Operations Research at the University of
Alabama at Huntsville. His thesis compares the utility of high level languages such as C++ and Ada for
simulation. Mr. Gross is a doctoral student at the University of. Central Florida, and can be reached at
gross@plato.ds.boeing.com

Lynn D. Stuckey, Jr. is a software systems engineer with the Missiles & Space Division of the Boeing
Defense & Space Group. He has been responsible for software design, code, test, and integration on
several Boeing simulation projects. He is currently involved in research and development activities dealing
with software reuse in the domain of air vehicle training systems. Mr, Stuckey holds a Bachelor of Science
degree in Electrical Engineering from the University of Alabama, in Huntsville and holds a Master offSys-’
tems Engineering from the University of Alabama, in Huntsville. His thesis presents a systems engineering
approach to software development. Mr. Stuckey is a doctoral student at the University of Central F!onda
and can be reached at stuckey@calif.enzian.com

The Heritage of the Air Vehicle Training Systems Domain

David C. Gross and Lynn D.. Stuckey, Jr.
Boeing Defense and Space Group

INTRODUCTION

"The whole of science is nothing more than
a refinement of everyday thinking.”
Albert Einstein, 1936

Research efiorts in software, especially simulation
software, have been slow to come to grips with the
concept of evolution versus revolution. There are
few if any silver bullets in software deveiopment, but
the industry -continues to re-invent_the wheel in
search of new productivity and quality. These leaps
forward -are more likely the result of understanding
present efforts and then building upon their
strengths. if Einstein is correct, then a critical as-
pect of any project attempting to advance the state
of practice must be an understanding of what con-
stitutes "everyday thinking” in that practice. How
can we refine something without first understanding
it enough to communicate with it? This challenge is
further complicated by the diverse nature of tech-
nology today -- individual problem domains for
completely legitimate reasons adopt approaches
which directly conflict with the solutions adopted in
other problem domains. Consider for example the
Ada language debate -- much of the heat in lan-
guage discussions arises because the. participants
fail to acknowledge that different problems have dif-
ferent solutions. Finally, complications arise be-
cause the state of the practice so badly lags the
state of the arf -- indeed the state of the practice is
hardly a tightly constrained range of behavior!

The STARS demonstration of megaprogramming in

the Air Vehicle Training Systems (AVTS) domain is
certainly trying to advance the state of practice.
The STARS approach is a three-pronged attempt to
improve the reliability and adaptability of complex
software systems. The first prong is automation --
the realization that demand for quality software has
outstripped our resources to supply it. The second
prong is process -- the recognition that repeated im-
provement is only possible when the method of

construction is defined and followed. The process .
in the confext of STARS is megaprogramming - -

which separates the crealion of systems into two
distinct lifecycles: domain engineering and applica-
tion engineering.” Domain engineering aims at
creating assets for use within a product family; ap-
Diication engineering aims at delivering specific

“instances of that family. The final prong, and our
tocus in this paper, is domain-specific -- the ac- .

knowledgment of the issues raised above.

Soin in.;hich'problem domain are we working‘? The
AVTS domain is a family of air vehicle training de-
vices that provides the simulation, stimulation,

 and/or emulation of all the components and sys-

tems for a real-time air vehicle simulation. [STUCK-
EY] This domain encompasses the systems nec-
essary to provide training devices that a trainee
uses to become familiar with the configuration
and/or flight characteristics of an application gir ve-
hicle, gain proficiency in executing normal proce-
dures, recognizing malfunctions/abnormal indica-
tions and executing the corresponding stan-

dard/emergency procedures, and executing mis-
— sion procedures. The devices, ar instances, of this

domain are some proper subset of the domain.
This domain includes the system diagnostic and
test requirements for the applicable air vehicle de-
vices based on individual segment requirements.

But this work is not occurring in a vacuum, as illus-
trated in Figure 1. Indeed, where it not for the rich

SEi's
Structiral K
Madal
Project F

The Air Vehicle Training
Systems Domain: &
STARS Demanstration Project

Robust Designs

Manned
Flight
Simulator_
Facility

Modular
. Simulator
2 Syslem
Program

Ada
Simulator

Validation
Program

Robust Requiremants -

Figﬁre 1: i’rojec'ts Leveraged in the AVTS Domain

resources developed by earlier research in the
field, this project could not be attempted -- the prob-
lem domain wouid simply not be sufficiently mature
to make the attempt with constrained resourges.

This paper discusses some of the research in the

domain that makes this project possible, and the
challenges in incorporating their resuilts

HERITAGE PROGRAMS

Ada Simuiation Validation Program (ASVP}
Synopsis.

The ASVP was an Air Forcé contracted research
and development program. The program spanned
some 24 months from 1985 to 1887 with extensions
that followed. It was part of the continued effort by
the DoD to have contractors demonstrate the va-
lidity and application of the Ada programming lan-
guage in a variety of environments. -

The task for this project was to re-develop in Ada, a
substantial portion ¢f the application software for
the existing E-3A Flight Crew Trainer (FCT), and o
answer the following questions: Does Ada work on
simulators? Is Ada better or worse than FORTRAN
for simulators? What are the better methods for
designing simulator software in Ada? What soft-
ware development and support tools are necessary
in the development lifecycle?

ASVP was a 24 month program consisting of some
23,000 man hours. Boging was teamed with SAIC
and Encore. The E-3A simulator re-developed was
fielded at Tinker Air Force Base. The sofiware was
re-developed and tested in Huntsville Alabama,
while hardware/software integration, system test,

and demonstration ococurred at Tinker. The work at’

Tinker was accomplished on second and third
shifts. This schedule permitted E-3A crews to con-
tinue training with no disruptions to their training
mission. JASVP-FR]

Contribution.

ASVP was an overwhelming success. 1t received
the first YW Systems Quality Award. The system
passed 87% of the acceptance test procedures on
the first pass. The FCT was evaluated by Air Force
pilots with over 4000 flying hours in an E-3A and by
instructors who trained pilots daily. The program
also became the basis for future Air Force simulator

work. it provided guidelines for the implementation

. of structural models, coding standards, and an .

object-oriented design methodology for simulators.

Modular Simulator System Program (Mod Sim)
The Mod Sim program was a tri-service supported
development program. The primary godls of the
modular simulator design were to shorten simulator
development schedules, reduce simulator develop- .
ment costs and improve simulator supporiability.
The program was organized into three phases.
Phase | surveyed the industry as to the desirability
and feasibility of introducing a generic modular sim-
ulator concept. Phase H, Modular Simulator Design
Concept Development, produced a conceptual
modular simulator architecture with a focus on
aircrew simulator functional analysis and inter-
module communication architeciure/design. The
contractors developed a conceptual modufar simu-
lator design for this effort. Phase |ll consisted of
design, demonstration and validation of the modu-
lar simulator concept. To foster industry participa-
ticn and "buy in" to. the Mod Sim design, Boeing
was required to subcontract the design and devel-
opment of 50 to 75 percent of the segments. The
Phase lIl subcontractors were Rediffusion Simula-
tion Limited {RSL), Science Applications Interna-
tional Corporation {SAIC), AAl, and Intermetrics.

' To gain further industry participation, regular Inter-

face Standards Working Group {({ISWG) meelings
were held. At these meetings both industry and
government simulation experts were aliowed to
participate in the review of the modular simulator
design and subsequent demonstration.

- Phase il was divided into two parts. Part 1 accom-
- plished four major tasks:

- a. System Partitioning. This task involved
the analysis of simulations for a large number of
fixed and rotary wing training devices. ~This data,
along with other raw data and the concepiual parti-
tioning from Phase il were used 10 create a Func-
tional Dictionary that contained an allocation of all
functions and the interface requirements between
functions. The Functional Dictionary and segment
partitiening were refined through an iterative pro-
cess using an Arfificial Intelligence tool. This re-
sulted in segments that had generic intersegment
interfaces, were loosely coupled, and focused on a
specific area of simulation expertise.

- b. Communication Architecture. This task
involved the specification of a hardware and soft-
ware communication architecture that would allow
the segments fo communicate effectively.

¢. System Performance Model. tnorder to
efficiently select a communication architecture a
System Performance Model was constructed to
emulate the various design allernatives. Fourteen

- data buses and seven protocols were analyzed.

d. Specifications. To promote the stan-
dardization of the Mod Sim architecture, a thirteen
volume generic System/Segment Specification
{DOD-STD-2187A) was prepared. The system lev-
el specification defines the communication archi-
tecture and requirements common to ali segments.
The segment level specifications define the unique
requirements applicable to the segment.

During Part 2 of Phase i, Boeing and the subcon-
tractors demonstrated the Part 1 design. The
demonstration was accomplished using a goverm-
ment provided F-16 crew station and axisting F-16
simulator source code. The government furnished
products were adapted to the modular simulator
partitioning and communicated using the modular
simulator communication architecture.

At the completion of the Phase |lI, several follow-on
tasks were contracted. These consisted of adding
an interface to the Mod Sim architecture to support
multiple simulator/team training {e.g.; Distributed

Flight
Dynamics

Interactive Simulation), adding tailoring instrucfions
to the generic specifications to ease adaptation to
specific applications, afid the creation of Mod Sim
guidance documentation. This documentation in-
cluded an engineering design guide, a manage-
ment guide and an executive report that provides
an overview of the Mod Sim- approach. The Mod
Sim architecture is shown in Figure 2. The archi-
teciure consists of 12 distinct segments that com-
municate via a Virtual Network (VNET).
[MSS-MGT]

Contribution.

There are several distinct advantages to using the
modular simulator design and design concepts in

- developing training devices. These advantages

include: L -
a. Systems Engineering. The Mod Sim

design provides a wealth of generic systems engi-

neering products that are reusable for any
application. This reduces front end development
cost and schedule and mitigates risk throughout the

© project.

b. Subcontracting. One of the primary re-
quirements for the Mod Sim architecture was the
capability to independently specify, develop, and
test individual segments as stand-alone products.
This enhances the ability to subconiract develop-
ment of segments by providing well-detined inter-
faces that reflect a straight-forward allocation of
simulator functions along traditional subsystem

Instrucior! g
COparator P
Sislion BN
Sagmem N
cag |

Enmwiron
. mant
) Segment

L et

Emctronlc
Wariare
Sagmant
It

Figure 2: Mod Sim Architecture

product boundaries, to make best of advantage of
individual organization’s strengths.

c. Integration. Use of the Mod Sim archi-
tecture and strong Ada design principles signifi-
‘cantly reduces integration time, This has been
provenin a series of demonstration projects.

d. Reusability. The Mod Sim architecture
premotes and enables reuse among families of
training devices and applications. Experience has
shown that architecture is the key to successiul
higher order reuse. -

e. Design Flexibility. The Mod Sim archi-
tecture allows latitude in design to support iow cost
and high cost devices. The Mod Sim architecture
does not place any requirements on the internal de-
sign of the segments.

f. Parallel Development and Stand-alone
Testing. Mod Sim segments can be developed
and tested in parallel due to the well defined. seg-
ment requirements and intersegment interfaces.
This can significantly shorien the overall system
development schedule and reduces integration risk
by eiiminating common interface probiems early in
the development and testing phases. -

-SEI's Structural Model

Synopsis.
The contract work to define a structural model and
the concept of structural modeling has been a col-

l[aborative effort between the United States Air

Force, it contractors, and the SEl. A structural
model is an application framework for flight simula-
tors and the structural modeling process is the
means by which this framework is engineered into
a complete system. The recognition of the techni-
cal risks associated with building complex systems
such as flight simulators was the catalyst that drove
the development of the structural modeling method.
The broad objective behind structural modeling
was to take a complex preblem domain and ab-
stract it to a coarse enough level to make it man-
ageable, modifiable, and able to be communicated
to a diverse user and developer community. Struc-
tural modeling experience has been gained in a
number of recent simulator acquisitions, including
the B-2 Weapon Systems Trainer, the C-17 Aircrew
Training System, and the Special Operations Forc-
es Aircrew Training System. [n addition, the Real-
Time Simulators Project at the SEI is currently
draiting a guidebook describing in detail structural

modeling as it applies to the development of an air:

vehicle within a flight simulator, specifically ad-

~dressing the case study of the T-39A flight
simulator. Figure 3 illustrates the Air Vehicle Struc-
tural Model. [ABOWD]

Rate Group o I
Procass Timakne

Synchronizer /

Periodic
Secuancer

exacutive lovel 7 -
T s . T T B Attt -
applcation lavel i

Subzystem
Contaller

Companent ;/ /
~— Data Flow
: Contrd Flaw I /

|
Figure 3: SEl's Air Vehicle Structural Model

Contribution.
Specific benefits realized in flight simulator soft-
ware development from the structural model de-
scribed are: -

a. Increased separation of the coordination
model from pariitioning strategy,

b. Easier integration of independently de-
veloped software components, and

¢. Stronger classification of systemic and
{particular) mission requirements. -
The Siructural Model project determined that con-
siderable design reuse is feasible; whereas code
reuse is restricted to the level of the component.
The project concluded that modeling missioh ré-
quirements is more volatile than modeling the other
requirements, and it is appropriate that they are no
longer the main drivers of the software design.

Manned Flight Simutator (MFS)

Synopsis.

The U.S. Navy, in response to every increasingly
risky and costly flight test of new aircraft, decided to
create Manned Flight Simutator{MFS). The goal of
MFS was fo provide to the Navy a low cost high
fidelity simulation capability which would allow for
growth. The Navy created a laboratory facility and
funded the development of a highly modular engi-

neering software architecture. The architecture
was created and called Controls and Simulation
Test Loop Environment{(CASTLE). CASTLE is a’
highly modular simulation system which affords the
simulation engineer the ability to create models
with the knowledge that his equations of motions,
environment, hardware and visual environment in--
terface are all predefined. The pre-definition and
reusable modules allow the simulation engineer to
concentrate on the functionalities of his math
model. . The manned flight simulator has a long his-
‘tory of opportunistic reuse of such airframe models
as, F-14, F/A-18A, T-45A, AV-8B, AH-1W, V-22,
UH-60. All of these airframe models were obtained
from outside sources and rehosted to the CASTLE
system. Upon rehost, the NAVY was able to apply.
advanced engineering and analysis tools fo in--
crease the fidelity of these models. This opportu-
nistic reuse has saved the Navy money and creat-.
ed a simulator environment that works in close
conjunction with the tlight test personnel. [PRYOR]

Contribution, ,

MFS has evolved technigques for developing simu-
fation models that are abstracted from the underly-
ing hardware. lt is clear that many simulation
models are completely independent of hardware,
for example, the atmosphere model. However, itis
maore difficult to isolate other models to & minimum
of dependencies. MFS has established that this
paradigm shift can be made, and real benefits for
reuse flow from it.

Other Relevant Projects
There are several other DoD initiatives that involve
the standardization of simulators and {raining
systems. Examples include Distributed Interactive
Simulation, Project 2851 Database Standardiza-
tion, the Simulator Data Integrity Program, and the
Universal Threat System for Simulators. AVTS
. does not constrain the use of these standards. In
fact, some characteristics of the architecture were
designed to accommodate or enhance compatibili-
ty with thesa standards, in so far as publicly avail-
able materials permit.

LEVERAGING LEGACIES INTO DOMAIN
ENGINEERING

It is important to understand our perspective on
why the use of legacy assets is imporiant. To this

“er lifecycle spans the construction and delivery of

“thesis for detailing the separate lifecycles.

"creating a specific product as application

end, a description of our process,: level of reuse,
and utilization of legacy asseis is appropriate.

Megaprogramming

Over the years, the STARS project has focused-on
enabling a paradigm shift of DoD software practic-
es to megaprogramming. The central megapro-
gramming concept is a process-driven, two lifecy-
cle approach to software development. One lifecy-
cle spans the creation and enrichment of a family of
related product, or domain (see Figure 4}. The oth-

individual products to customers, or instances of
the domain. The STARS project uses the Virgihia
Center of Excellence’s (VCOE) process calied Syn-
Syn-
thesis defines the effort associated with creating
the assets as domain engineering, and the effort in

engineering. With a legacy asset perspective, do-
main engineering is the important lifecycle.

Business Objactives Comain Ignawladge
i

¥
Domatn Engincering

h

Damain r
Managemant 1

Comain
Definition

Domain
Dafiniton

ST

Implementation

Damain
Implemantation

Projoct
Support

[FOPRTIG,

Application <
Engineering o

Suppoit / Fasdbatk

Figure 4: Domain Engineering

Level of Heuse

Synthesis is a precess developed for leveraged
reuse. Leveraged reuse is one of five approaches
to reusing software: (a} ad hoc, (b} opportunistic,
(c) integrated, (d) leveraged, and {e) anticipated.
Leveraged reuse assumes that a given product is

actually a member of a product family, the mem-
bers of which share some degree of commonality.
Synthesis invalves the definition, analysis, specifi-
cation, and implementation of a domain which
encompasses a viable product family -- a family

‘which shares sufficient commonality {(and predict-.

able variability) to justify an investment in the

domain. Individual products are developed as in-

stances of the domain, which reuse common ele-
ments of the domain and adapt variable elements
.using a defined, repeatable process.

Given our focus on leveraged reuse, legacy assets
become increasingly important. They are the basis
for the siructure, evoiution, and product fragments
held within the domain. . Without prior research in
the field, the AVTS domain would be non-viable.

Application of Legacy Products

Figure 5 describes the usefulness of legacy assels
within the demain engineering cycle of the Synthe-
sis process. It is evident that these assets have a
major role in most activities. . In domain manage-
ment they form the basis for viahility assessment,
evolution planning, and risk analysis. In domain
definition the assets are used o bound the domain,
validate terms, and define assumptions. In domain
- specification they are used in requirements analy-
sis and product design. In domain verification they
provide historical context to evaluate correctness.
In product implementation the assets are used for
algorithmic development as well as entire module
utilization. In domain validation they are used as a
- measure of effectiveness. - Finally, the assets are
utilized as an historical perspective on domain
delivery.

Lovel of Usefudness.

Domain Enginseding Acivites | None Low Madu:lm Hgh

Demain Maragement
Domain Cefinition

Comain Specification

Domair Verfeation

Product Implementation

Process Suppon Develeomant |EE

Demain Validation

Domain Delivery

Figure 5: Usefulness of Legacy Assels

526

- LEVERAGING PROGRAMS

The attempt to incorporaie new fechnologies, such
as megaprogramming, into the state of the practice
is fraught with peril. Figure 6 illustrates the process
(which by itself is a example of building upon prior
research -- this is a chart from ASVP with Mega-
programming substituted in for Ada). The exisi-
ence of useful prior research presents a paradox:
prior research created the critical mass to make the

-attempt, but using such research can open a Pan-

dora's bhox of problems. The following discussion
outlines the pitfalls and heuristics for such use.

sTART) R
; . ,

I Read Megaprogramming L'rieraturew

wcrease Your Buzzword Yocabulary |

'

Put New Vocabulary into Work At Om;i

j

NO f

! Individual Brai’nst'ormingg"—a—

|

T

YES
@Los&? , -

NO |
. v
l?nd the *Top" of the Systerll

rPerform Megaprogramming

Finat Integration

END

Figure 6: Adopting Megaprogramming

Pitfalls
Qur experience has uncovered some of the pitfalls
of building upon research legacies. S

I Making the Leap of Faith

Every demonstration project is organized around

some central “great concept.” The great concept
for the STARS demonstration project in the AVTS
Domain is megapregramming For the purposes of
the project itseli, it ts (surprisingly) not so important
-whether or not it actually is great -- the purpose of
the demonstration project is to evaluate that very
premise. In fact, the participants on the project
must be able to maintain a suspension of disbefief
about the worthiness of the concept in order to
make their very best effort at making it work. This
is analogous to the difference between "pure” sci-
ence and "pure" engineering. Failed science ex-
periments are not surprising and even expeacted --
but tailed engineering projects are failures for which
{generally) someene is held accountable. Science
{and engineering research) is a venture into the un-
known -- engineering is the application of known
mathematical and scientific principles to practical
ends. Therefore, the productive participant must
maititain this mindset -- but this attitude alone is not

enough! The productive participant must also be-

prepare to re-evaluate the most fundamental prin-
ciples in light of the great concept. He/she must be

able to conceive and implement a paradigm shift --

discarding long held and favored practices in so led
by the great concept. This requirement of suspend-
ing disbelief and questioning principles is a trap
which captures many fine engineers. Time, and
time again, we have seen perfectly good-engineers
who were unable to make this leap of faith.

O Quoting Scripture

The great concept generally arrives in a haoly book
developed in some other context.
arrives in a well-defined specification e.g., MIL-
STD-1815A in the case of ASVP). In the case of
the STARS Demonstration in the AVTS Domain,
the great concept was defined by the Reuse-Driven
Software Processes, developed by the VCOE. The
guidebook (along with companion material and
help from VCCQE) has proved extraordinarily useful
in proceeding with the demonstration project. The

pitfall is that while the guidebook is a useful first:

approximation , project participants are tempted to
argue from if as revealed truth. Rather than argu-
ing the merits of a paricular position, we frequently
found ourselves saying "but, the guidebook says..."

5-6

Sometimes, it

Relevant and understandable examples prove
much more powertul than quoting the guidebook -- -
its use is in provoking thought.

- O lvy Tower Meets the Gridiron -
. Just because the concept is expressed does not

mean it is fully fleshed out. Often, the painful de-
tails are "left as an exercise for the student". Cr-
ganizations frequently respond to such situations
with lip service == how many times has empower-
ment become a euphemism for no responsibility.
How many projects have claimed adherence to
some hot technology (e.g., object-oriented) not be-
cause they understood it -and believed in it, but
because it sounded se good. : i

1 Not Invented Here Syndrome 7
If we are to make use of any legacy projects, there

must be kernel of truth in thém that project partici-
panis are able to utilize. Of course, just because a
research project has occurred does not mean it is
prima facia useful -- but the more frequent difficulty
is that some people have Not-invented-Here
syndrome. While skepticism is a natural and
heaithy attitude for an engineer to bring to the latest
"revolutionary soiution”, refusal to consider the pos-

" sibility of some advance is the death knell for a

research effort. If the project can not persuade par-
ticipants {o overcome this attitude; then the legacy
can not be used no matter how significant their po-
tential application.

O Leveled Experience Base

One dilemma that arises in a research pro;ect is
that the various participants come with the baggage
of their own experiences. Each individual sees this
project in terms of the ones he or she has worked
most often. The AVTS domain includes some nat-

. ural examples: consider the level of complexity

difterences between a par-fask instrument trainer
and a full capability weapon system trainer. Some
of our project’s parlicipant expect a software sys-
temn size on the crder of 15,000 lines of code -- and
at the other extreme are those that expect any "re-
al" trainer must have at least a 1,000,000 lines of
code. Obviously, your expectations about size im-
pact your approach to the problems of developing
soffware in the domain. Once again, just as spe-
cific trainers are different, so are specific individuals
-- the project must-be able use and apply this di-
verse experience base. T

O The Vision Thing

The empowering premise of a demonstration
project is the promise it brings. For example, the
Mod Sim project held out the promise of avoiding
repeating high cost analysis, and building in the ex-
pectation of a diverse contractor base. However,
the glitier of the promise is different in every partic-
ipant’s eye. The project mustbe able to create and
communicate a common vision for the future. Fail-
ure to do so has two major disastrous outcomes.
First, while participants are stiill ignorant that their
version of the vision is not the “right” version, they
will waste resources working hard in conflicting
directions. Second, things get worse when they
find out their vision is not the "right" version. Most

people will teel a sense of betrayal. This can hap-

pen at any level -- engineers or management or
project sponsors.

‘Heuristics

Qur experience supports the assertion of a set of
heuristics from building upon research legacies.
Application of these heuristics will conserve the
scarce resources of a research project.

O Accept Overlapping Legacies
Qur first heuristic is that when various legacies
overlap in the approach to some aspect of the do-
main, the project ¢an productively accept the over-
_lap as "proven” in the context of the domain. The
easiest example is Ada -- three of this domain's
four research legacies adopted Ada, so the AVTS
domain accepts Ada as its language of choice.
Few project resources were invested in consider-
ation of the language choice issue.

O Seek Synergies Between [egacies
Next, we suggest that when the research legacies
seem to complement each other, there are syner-
gies that the project can take advantage of while
minimizing the required resource investment. For
example, all of the AVTS research legacies peinted
at a controlled, hierarchial; architecture with con-
trolled communication -- hence AVTS's adoption of
the Domain Architecture for Reuse in Training Sys-
. tems (DARTS). DARTS is not the architecture of
any of the research legacies but derlves from the
best aspects of all of them.

O Architecture as the Glue

A heuristic that derives from our participation on all
of these research projects is that architecture is the

5-6

glue that holds the project together -- at least for
domains involving complex software. systems. I
the project can achieve consensus on an architec-

“tural approach which reflects the needs of that

particular project, the architecture serves as the
critical context within which participants interpret
research developments. On a aggressive project, it
is easy for paricipants to be overwhelmed and left
out of the loop -- architecture is an important part of
avoiding this disaster.

0O Controliing Concept Introduction

This heuristic relates to self-constraint -- it is not so
important that a given project adopt every idea in
the marketplace as it is that the project understand
them in its own context. Any research project wants

‘1o be at the cutting edge in every aspect of its do-

main -- if for nothing else to protect its own
credibility. But the volume of potentially useful
ideas is so great that a project can easily gorge

. upon the-feast and choke to death. Visionaries on

the project tend to seek to integrate everything,
without regard to how tenuous its relationship to
this project. Since the resources of demonsiration
projects are even more limited than for delivery or-
ders in this age of declining budgets, a project can
not be successiul by trying to do everything. Ev-
eryone must "play by the rules”, that is, focus on the
objedjives of this project.. Heaithy projects will care-
fully observe the rapid river of research, and decide
what to fish out rather than swallowing it ali.

O "Prophets” Vs. "Priests”

This heuristic points out that while the current
projeciis only possible in the light of what has gone
before, the current project is fundamentally
different. The participants on a research project
have a mini-lifecycle all their own. When a project
is young, the participants are like prophets, chal-
lenging the existing order and predicting the future.
But as a project maiures, its participants become
more like priests, protecting and defending the faith
against the barbarians at the gate. This is particu-
larly dangerous when a project attempis to lever-
age a legacy by bringing participants of earlier
projects into the new research. Such-individuals
may have trouble adjusting their mindset to the new
chalienge. Consider for example one difference
between the Mod Sim challenge and the AVTS
challenge. - Mod Sim’s requirement was to build

. tailorable products; AVTS's is to build adaptable

products (and processes). This seemingly trivial

shift of nomenclature has extraordinary impact . '

g g ERIREEREERE EEEEEET

TR

e

throughout the project. Consider for example the
difference between defining an interface between
components that can be tailored (i.e., rewriilen) by
some end user, and an interface that must auto-
matically adapt o an end-user’s specific
requiremenis. 1 is not hard 1o imagine someone
*stuck® in the Mod Sim mindset and unable to cor-
rectly address the AVTS challenge.

CONCLUSION

“if t have seen further it is by standing on
the shoulders of Giants."

Issac Newlon, 1675

Newton was referring o the fremendous advances
rmade by mathernaticians, physicists, and astrono-
mers such as Da Vinci, Copernicus, Galileo, and
Kepler. Atits best, science is the most constructive
of human endeavors, with each development build-
ing carefully upon the discoveries and inventions of
earlier generations. But two things have increased
the difficulty of scientific advances in our times.
First, no longer do we build upon:the shoulders of
individual giants, we must build upon the accom-
plishments of teams of giants. While this is a direct
outcome of the complexity of the challenges we are
addressing, the product of teams are typically much
more amorphous and difficult to quantify -- hence
the aphecrism, "a camel is a horse designed by a
committee.” When confusion about the use of an
individual's product arises, one consults the indi-
vidual for a {generally) consistent exptanation. But
tearns are notorious for lack of shared visions, so
explanations from different team members fre-
quently conflict.

The second difficulty arises from the size of the
technical marketplace. When Newton developed
his calculus, he faced competition from perhaps
two serious contenders, in a scientific community of
certainly less than 10,000 members. In contrast,
Capers Jones reports that there are some
1,818,500 programmers working. in the United
States alone, each one with no doubt strongly held
opinions about the "right" language, methodology,
tools, etc. Two orders of magnitude more pedple
working on a problem that must be three orders of
magnitude less pervasive. Consider the debates in
our community about the suitability of Ada -- but
Jones says that the leading language in use today
is stit COBOL. Ada fails o make the top five and is

5-6

lumped in with "all other languages”! How can any
purported advance make headway in this towet of
Babel? [JONES]

We can advance the state of the practice, not by :
re-inventing the wheel, but by carefully building
upon work which has gone before. Software has

. been called by many others the most complex en-

deavor attempted by mankind -- the likelihood of a
single individual uniquely making a significant dis-
covery is negligible. The complexity of the problem
domain demands teams of world class experts
building upon the work of other such teams.

REFERENCES

[ABOWD] Abowd, Gregory D., et. al., Structural
Modeling: An Application Framework and Devel- .
opment Process for Flight Simulators, CMU/SEI-
93-TR-14. August 1993. Software Engineering in-
stitute, Pitisburgh, PA.

[ASVP-FR] 'Ada Simulation Validation Program Fi-
nal Report. 9 Séptember1938. The Boemg Com-
pany, Huntsville, AL,

- Gaps In the Object-
June 1994.

[JONES] Jones, Capers.
Orienfed Faradigm, |EEE Computer.
IEEE Computer Society. -

[MSS-MGT] Modular Simulator System Manage- -
ment Guide, DA25-10439-1. 13 September 1993.
The Boeing Company, Huntsvili, AL.

{PRYOR] Pryor, Greg. Personal Communicaﬁon’._s.
June 1894, Former lead aerodynamics engineer of
the MFS AH-1W Aircrew Procedures Trainer,

[STUCKEY] Stuckey, Lynn, et. al., Technical Ex-

- pectations of a Full Scale Domain Engineering

Demonstration Project. November 1994. The 16th
interservice/Industry Trammg Systems and Educa-
tion Conference.

