R L LU L L LD i UL I I L LRl L e L LU

INTERFACES AND THEIR MANAGEMENT IN A LARGE ADA PROJECT

Walter E. Zink, Senior Systems Engineer
and

Richard E. Poupore, Systems Engineer

CAE-Link Corporation, -Binghamton, NY

ABSTRACT

The Depariment of Defense continues to require thet Ada be the sole progromming language for cll new software .
related projects. In addition, these new projects are expected to achieve higher fevels of maintcinabiity from a
software perspective. Ada and jts reloted ‘compilation/software engineering iSsues have given interfaces and their
menagement whole new perspective. In today’s environment of dwindling defense dollars, extensive rework during the
development or maintenance phase of a project due to interfoce changes, is prohivitive. Therefore, 'is crucial to the
success of large Ada projects to address interface issues from the ‘highest perspective. For example, in o simulation

environment, as the recl-world device changes, the simulator must remain concurrent to provide maximum training .~

benefit. These chaonges often result in changes to interfaces. In order to keep pace with the development ond
subsequent upgrades, it is necessary to provide reliable, mointainable and flexible interface structures. By combining o
successful software architecture, o dolabose-driven interface. management tool and outo—generaied conneciion
software, major interface updates can be made in a timely and efficient manrer. Experience has shown that with the

proper interface design strategy, maximum cost sevings can be reafized over the entire life cycle of the simultor. An

approach to interfaces, their management and connection software is discussed.
ABOUT THE AUTHORS
Walter E. Zink Sr. is currently a Senior System Engineer ot CAZ-Link Corporation, where he hos held management and

technicel positions since 1986. His current efforl is devoted primarily to system~level software design of the Real-
Time Simulation Environment that supports the Ada architecture in use ot Link. Prior to that, Mr. Zink was employed by

the General Flectric Company for twelve years, where he held various technical and management positions. His principal -~

activities there were in the oreas of Computer Based Instruction ond Arificial intelligence/Expert Systems. Mr. Zink
holds o B. S. in physics from Hording University. Other publications includes a paper entitled "The Chalienges of
Develo)ping A Regl-Time Environment in Adg", presented oi the 13th Interservice/industry Training Systems Conference
{1991).

Richard E. Poupore is o Systems Engineer at CAE~Link Corporation, where he hos been employed since 1987. He is
currently working on severgl system and sub-system fevel tasks involving inter—task interfaces, interfuce mancgement
and vendor systems inierfaces. Mr. Poupore’s involvement in these tasks has included system design, development and
testing. He was primarily responsible for the design and development of the Shared Memory Management system. He

has dlso been involved with a real-time debugger, the sequencer software and o'real-time, no-wait /O system. Mr._

Poupore holds a B. S. degree in computer engineering from Rochester Institute of Technology.

6-10

INTERFACES AND THEIR MANAGEMENT IN A LARGE ADA PROJECT

Walter L. Zink, Senior Systems Engineer

and

Richard E. Poupore, Systems Engirieer
CAE-Link Corporgtion, Binghamton, NY

INTRODUCTION

This paper provides an overview of the management of

. engineer should be able to wrile {ests in a development -

interfaces among software elements ond its significance

in the overall fife cycle process. To .do this, the paper
begins with regquiremenis imposed on the B2-Aircrew
Training Device (ATD) and ¢ view of the simulation
computer environment. This is followed by the issues
associoted with interfoces and the project’s requirements.
An interfoce mancgement sysiem is discussed. This
system includes a ool 1o manage inferfaces and
generate interface data movement software. The system
aiso includes the design of the generated software. The
paper concludes with a discussion of the benefils derived
from this interface manogement system.

REQUIREMENTS

The B2-AID is o high fidelity training device, The
training device is required to provide not only o redlistic
copy of the cockpit but clso a reclistic training
environment. To provide this, a substantial amount of
Ada code is needed. . The B2-ATD currently has almost
two miliion lines of code.

The B2-ATD wos one of the early Air Force Ada projects.
The Air Ferce felt that traditional simulation. architecture
would not be sufficient, They required that a structural
model, - as defined by Carnegie Mellon ~University’s
Softwore Engineering Institute (SEI)!, be used for the
- softwore architecture. Port of the required structural
model s o sofiware dato bus. As inierfaces move
across the deola bus they must remain uniform with
respect to time ond ecch other. A Computer Software
Component (CSC) must be able to retrieve data from
another CSC in a consistent manor. A CSC is defined os
a simulated system such as engines.

As with most military projects, the Air Force placed the
requirement that all CSCs be independently testable. An

environment and use those tesls on the simulator. The
engineer should also be able to insert the CSC into. the
simulation foad ond be able {o iest it when not all of the
C5Cs on which it depends are in the load. '

The Air Force clso required the ability to keep the
software current with the B2 air.vehicle. If g system is
added or modified in the air vehicle, a corresponding
change must be made to the simulator. - These changes
need to be made in a fust end accurote way. To

- support this, inferfaces must be easy to update.

The B2-ATD is olso required by DOD-STD 216742 1o

. provide documentation of interfaces. An Interface Design

Document (iDD} that reflects interfeces of the simulator
must be provided.

ENVIRONMENT
Hardware

The main computotional engine consists of five systems,”
each with four processors. Each system hos o base
rate. The processors in that system run at the base rate
or some even submultiple of that rate. The systems run
at different bose rates depending on the simuloted
systems " running on them or the penphers[devices

- hanging from them. - The computational engine is where

~ most of the simulation softwore execules.

I also

_contoins most of the over thirteen thousand interfoces.
- A pair of workstations power “the Instructer Operator

System (I0S), the mon-machine interfoce for The
instructor. ~ Several peripheral devices are connected to
the computational engine to perform ¢ variety of
functions. These include on Image Generator (IG), a

Digital Rodar Land Mass System (DRLMS), interfoces to

B2 On-Board Computers (0BCs) and o VME-bcsed
hordwore interfoce system. The simulotion compuler

. complex is shown in Figure 1.

6-10

Compatatiomal

nstructor o= —— | —EI\
Operator \ Four i 555
Station (j0S} || Processor [{]
71 1 e |
i z _ DRLMS
B{ processor |1 | HsD - —L1
T worksbtion [J1 | i L - —]
man- | 1| Aswmckronous {4 | | Four Four I
Machine | | saremmet FLYMELL processor | processor | L B3 N On Board
Intarface I 1 1 System System | computars
\[smgle 11| dem 4 Hz H]
1 Processor 111 | I I i
1| Workslation 1 | i
| | Asymchronous | I Four Four | _EI
S A i Procassor Processos y 1553
VHE 2 z
e — | = 1/
wof T N
Cockpit
1 Hardware
T5C-3
Figure 1 The Simulation Computer Complex
respond to any given simulation state and the update of
Software the C3C’s objecis. i invokes the - operctions in the
. _ 3 _ definition package(s) end thereby controls the execution
The Ada crchitecture provides a unified cnd consistent of the CSC. __

basis for developing software which operates in ¢
- complex hardware envirenment, It is consistent with
SE’s Air Vehicle Architectured. 1 is comprised of
several closses of "elements”, each . element performing
a specified function in the overall makeup of the system
ond subsystems. It orovides stringent data and contro!
flow os well as the ability to test an immature or
particlly defined system.

The crchitecture is bosed cround the auionomous CSC,
its immediate environment and its relctionship to olher
CSCs. -~ Fach CSC is comprised of object definition

Control] Definilion

package(s), object decloration package(s) and o CSC Imperter || otoger Pociages | | Diporter
control - manager. Figure 2 depicts a typical CSC, its t ' 1
process ond data flow. The figure uses a graphical -t = = — - — — — — >
notetion described in “A Graphical Notglion For .
- Software"%,

Key
The definition package(s) provides the abstract for the Oﬂnm Packoge Data Fiow
C5C’s objects and their control. It provides types that T
define the object's inierna dato structures. The \:lf"“"‘mm' - — — [oolrol Flox
definition package(s) also conteins functions ond

procedures that provide the basic functionclity for 1

manipulation of the objects. The declarclion package(s) = A Tvoical : —
provides instances of the CSC’s objects. The control i ' lgure 2 A Typical €3C '
manager i5 responsiole for determining how the CSC will

6-10

Wrapped cround the CSC-are the structural model’s
interface elements. These interfoce elements are not
part of the CSC, they are the software data bus. Prior
to execution of a typical CSC the importer element is
celled. The importer consumes date from other CSCs by
transferring that data from a shared memory region to
the CSC's local objects. After the CSC control manager

runs, the software sequencer -invokes the exporter.

elemenl. The.exporter transfers deio produced by the

CSC from the local objects to the shared memory region -

for other CSCs to import.
ISSUES

The first issue addressed is the sofiware dato bus, It

must support all of the requirements impesed on the .

B2-ATD. The date bus must not interfere with the CSC
software. [must copy data from one CSC to another
and allow those CS5Cs to be independent of each other.

Since the simulotor has many processors, the data bus
requires intermediote data storage in o shared memory
region. The structure of this data storage area is very
imporiant. | the datc is placed in one dota pockage
for the entire simulotor, Ada requires thal the enfire
dala bus be recompiled each time an interface is
changed. On the other hand, interfoce dala could be
packoged one object per Ado packege. This minimizes
recompilation but imposes o pair of -problems. The first
problem is one of providing Configuration Management
(CM) for all of these Ada units. The second problem is
that many Ada- compilers hove limitations as to the
cmount of withing that an Ada unit can have. One of
the ATD’s export elements hos over one thousand
" interfaces gssociated with it. At one object per data

package, the exporl element would require over one.
thousand with statements which would breck most.

compilers.

The software date structure should dlso allow the
interface elements to move dato ot maximum speed. If
must also provide maximum utilization of memory when
storing date in shared memory.

In a single thread process the execution of ony given
software compenent con be- precisely predicted with
respect io the execution of ol other sofiware
components. ~ Therefore, the availability and integrity of
“interfoce data can be quoranteed. The issues of dato
consistency and integrity in such an environment is not
a problem. Since the B2-ATD is a multi-thread, multi-
rate environment, these issues ¢re o major concern. An

6-10

interfoce object can be updated by the producer at the
same time a consumer is irying fo reod thot date,
resulting in the loss of dala consistency ond integrity.

The software date bus must be built so thai thisrdoes

not happen.

Decoupling is o mojor issue stemming from the
requirements of CSC qutonomy and independent
lestobilily.
sofiwore with exiernal interfaces when the external
sofiware does not yet exist. An even harder problem is

An engineer needs to be oble o develop

how to independently test software when the external . _ _

interface is being driven. Decoupling the software
modules provides maximum reusability and flexisility,
both desircble gualities. '

The requirement to keep the ATD current with the air
vehicle magnifies the issues concerning rapid interface
updates. The need to provide o means to verify
interfaces and provide concordance is in the forefront.
How is that informotion provided ond how is it
maintoined? - '

INTERFACE MANAGEMENT APPROACH

Managing interfaces is not just providing a solid software

grehitecture.

(SMM) system provides that support on the B2-ATD.
The SMM system consists of two ports, on Interfoce
Management Too! (IMT) and Software Interfacés ™ (SI).

The Interface Manogement Teol manages ¢ dato base of

interfoce information and the generation of the

- connection manager software. It supports the update of

interfaces and provides reports and " documentation of

interfaces. The Software Interfaces subsection of Shared
Memory Moncgement is-the connection manager softwore

generated by the interfoce Manogement Tool. It runs on
the simulator and is the sofiware data bus.

Interface Management Tool

The IMT is actually o tool set. The heart of the IMT is
the Interfoce Update Processor (IUP). Al other todls,
with the exception of the interface Design Document.
(IDD)/interface report generator, support the IUP. The
IMT is loyered over g relational data bose. The relational
dato baose is used by the IMT to stere interfoce
information for rapid retrieval.

An entire system musi be developed to
support the interfaces. The Shared Memory Management

TN T W e it s o

o b bl e R

interface Update Processor

The Interface Update Processor’s funclien 15 to
determine interfoce updates, update the date base and
generate new connection. manager ~sofiware. This
process is shown in Figure 3. To accomplish this task,
the declaration packeges with interface updates are
parsed and the interfoce information is extracted. The
information is parsed from o combinction of Ada code
and comments. The types of information extracted are:

Interface lobel

Source package and object, for exports
Destination package and object, for imports
Object type {package and type mark}

Initial values, for exports

A orief description, for exports

. & & ¢ ¢ @

This information allows the interface software to know
where the dato is exported frem and imparted to. It is

document the interfoce. The interface lobel is o nome
given to o specific interface. It is used to make the _
connection . between the export of the dclo and ¢l
imports.

The interface informotion need not be placed in an
object decloration pockage. The [UP dllows the

“information to be placed in a text file. This text file car

also used in crecting intermediate storage and initiclizing’

that intermediate object. The intermedicie sloroge is
discussed in the Software Inierfoces section below. The

conain the interface information for one or many
declaration packoges. This option is cvailable on the
82~ATD, but is not currently being used. -

The interfece information found in Figure 4 is on
example of information found in o declorations packoge.
Figure 5 shows the same information os it looks in a
text file. In both fiqures the upper case text indicafes -
key words used to parse the files. The lower cose text
indicates information being extracted from. the file.

In Figure 5 the initialization informetion for the time of
day objecl is too long to fit on one [ine. The IUP allows
the initiclization data to be on more than one line. The
ability o provide more than one line of input allows

_ initiolization of iarge composite types such as records of

interface description provides information used to arrays of records.
Decloration Relational B
Packooes Dato Bose
New -) Genérﬁted)
Dt Up(hlgs _ Source \
7 -
Purse Exdrect Deterrmine Validcte Upeicte Complle Roliback
QOld Doty Dato
Software Dala Updoles lpdales Bose Source Hose
s f : 3
i Slaius Slotus
I | ota I | | [
I R I N7, N Xl
o . Ne
__Key
O Data Dato Flow <>Drecisian
T ™ Process Flgw ’
\:‘ Process
[I5C-12

Figure 3 The Interface Update Processor

6-10

~=>EXPORTS
—=>LABFL lime_of_doy

currenttime : {ime_types.times ,

= *(hour=>12,minute=>0,second=>0);

——>DESCRIPTION current time of doy
——>LABEL day_of_year

current.day : time_types.days = 1;
——>Eﬁ%CRIP ION current day of year
-=>

Figure 4 Interface Information In Source Code

-->PACKAGE. some_dota_package
-—>EXPORTS

——>LABEL time_of_day

—=>0BJECT current _time

—=>TYPE time_types.times.
——>INTALIZATON {hour=>12,
——>INALIZATION minute=>0
—->INTIALIZATION second=>0)
~=>DESCRIPTION current time of day
——>LABEL doy_of year

-=>0BJECT current day

~=>TYPL tlme,u“)es.doys
—=>INITIALIZATION 1
——>E§BCRIPTION current day of year
-=>

Figure 5 Interface Information In Text File

Next the IUP extracts interface information from the
relational data base for the updated pockages. With the-
two sets of data, old and new, the IUP determines what
interface updates have ‘been made. The updates qre
volidated fo insure that this change doss not- contgin
any detectable errors. These validation checks include
the comparison of the types on both sides of the
interface, insuring that unique fields of the dota base
are not violated and all required information is provided.
It is at this time that project related rules are enforced.
An example is that no export object con be deleted
unless there are no imports of that data. The intent is
to prevent the removal of an interfoce that is siill

- required by another CSC,

Once the interfuce updates are validated, the relational
date base is updated. With these updoies in the data
base, the IUP generates all import and export elements
offected by this update. The newly generaied date bus
software and the updated declarotion pockages, along
with any other units required for the update, are
compiled against the project ibraries to insure Ada
compilation correctness.

6-10

In the event that the dato bose update has preblems or
the compilation check fails, the interfoce updates are
rolled back out of the relational dofa base. By doing
this, the IMT gucraniees that the interface updates wil
work with the rest of the project software, at least to
the point where ¢ new executable can. be linked and
tested. [l also insures that the relational data bose is
current with the project libraries. T

The IUP hos a softwore switch that can be used to
genercte data bus softwore. When this swilch is used
the IUP alters its process flow. The resulting process
flow skips the "Compile Source" block show in Figure 3
and always posses through the "Rollback Data Base”
block. This option gives application engineers the ability
to do host environment testing without updating - the
relational data base or project libraries.

Support Tools

As stated previcusly, the IUP has o sel of iools
supporting . The first of these tocls is an interface
information syntax checker. s purpose is to insure’
that the interfoce dato can be parsed from: the updated
units prier to submitting them to the IUP. Once on
interface update is mode, the software is pdssed
through the syniox checker. If o syntox error is found
ir the inlerfoce information, an error message s
displayed on the screen clong with the line number of _
the. error. ’

The second support tool is an interactive relational data
base query toal. It gives cpplication engineers .access io
current interface definitions. It nol only allows on
engineer fo query the data base but it also aliows the
generation of custom interface reports. These reports

are generated based on any or all of the daia base

fielss. This information can be used to modifying
interfaces and reloted software.

The information in the declaration packeges is the reql
interface informotion data base. The relational data
base is only used for rapid retrieval during the update,
verification, software generation and report generation.
In this way, standard CM tools can be used to CM ths
softwore and therefore the interfaces. With that in
mind, -a mass insert (ool aflows quick populction of ihe

_ relational dota base. In the event a relationgl dotg base

becomes corrupted, the mass insert tool can repopulate

it from the CMed source.

R O S - A———)

CEIFRONCE o W DRV g N RN S R —

el e Dopre | AN (b §-gd THR

The fina! tool is an interfoce definition report generator.
The output of this teol is used to build o project IDD.
The 10D is used for compliance with DOD-STD 2167A. It

js also used by application and project engineers when
- designing -major and minor software upgrades. ;

Software Interfaces

In developing the Software interfaces, it is necessary to
meet the requirement for data consistency and integrity
while supporting flexibility. These constraints led to the
design of the exporter and importer elements.

The exporter element is comprised of two subsections, a
glebal memory package and an exporter procedure. The
global memory package. contains ail of the. dota to be
placed into shared memory, available to ¢ll.CSCs. This
pockage olso contoins control dato which defines the
state of the exporter. Figure 6 shows the struclure of
an exparter's global data package.

CoPRCTD.

084_a |_L_| Ij
 OBJ_B D D
. OBu_C I:l |:|

0BJ_N D [:l

POINTER [Il 0ormn

msc-11

Fiqure 6 Dota Flow In ond Out of o Clobal Data
Package

To provide dota consistency, every global object in the

global memory package is double buffered. QOne buffer

is the current import object, the second buffer is the
next export object. By maintaining iwo buffers the
exporter can be writing to one buffer while on importer
is recding from the other. -Access to these buffers is
manaqged through a pointer. This pointer is not an Ada
access type, but an index into the buffer sets. For
speed, ¢ single pointer is used for all buffer sets.

The export procedure first determines the location of the
next buffer set. It then lransfers the latest dala

6~10

produced by the CSC into the nexi buffer. When
compleled, the export procedure updcoles the dola
pointer to point o the latest data.

The importer element contains an importer procedure.
The import procedure copies the data pointers, of all
exporters being imporied from, to local copies. These
locol copies are used {o retrieve consistent sets of

import data. The consistency is maintained even if an
exporter updaoles its _data or pointer during the
-importer's processing. -

A Tecture designed into the imporier procedure is o
bypass conditicn. The use of a bypass condilion aliows
o control manager to turn the movement of data on or

“off in the importer. A bypass condition can be attached

to one or more interface objects. For iesting purposes,
the designer may group all imports coming from g
specific exporter and cttach one bypass condition to this
group. If the exporting CSC is not currently in the
system, the importer can bypass all imports from that
CSC. The interface objecis con then be set to suilable
default volues. |n oddition, an emulator or an off-line
development tool can be used to produce dynomic input

volues for the CSC. This con be accomplished without-

modifying o singie line of code in the CSC.

The importer ond exporter are structured to optimize
their run-time charocteristics. The emphasis is placed
on speed with space ¢s the secondary concern ond lines
of code the lowest priority. Development environment
constraints of recompilation and relinking ore also taken
into account.

The exporter procedure sequencing is straight line. As
stated before, the exporter first determines which byffer
to store the new dato in. Each export iem is then
move from local memory io the global memory package.

* Finally, the data pointer is updated. This code contains

no branching ond is olready optimized for speed.

The importer procedure is ‘more complex than the
exparter procedure and should be optimal. The imparier
procedure is segmented bosed on byposs conditions to

fimit the number of "if" stotements in the code. Al

objects without an associoted bypass *condition are
ikewise grouped logether. With cache in mind, imports
inside ihe “if" siatements ore grouped on an exporter
boundary.) ’

BENEFITS

In the orea of testability, the architecture allows total
CSC autonomy. With a local copy of the interface datg,
- engineers can independently test their software. In the
garly phose - of development ¢ test driver con be
developed to drive the inputs.
matures and other CSCs are added, the import bypasses
can be used fo turn off inputs from sysiems thot ore
not yet available. Defoult data or o scaled back version
of the test driver con be used to provide input for these
inter{aces.

These features also ead to simplifying the job of
keeping the simulator current with the air vehicle. The
local copy of interface data and the import bypusses
allow a CSC to be modified to accept inputs or provide
outputs 1o.0 new CSC. This new CSC moy not be in the
simulclion software set.
updated and the test driver used for regression testing.
When the new CSC is added, the bypasses can be turned
off allowing the data to be imported. _ -

The interioce doto query tool provides valuable
information in making both small ond large updates to
the simulation software, By using the relational dato
base, detailed reports con be generoled to show the
interaction of CSCs. This informalion can be used for
load balancing, CSC upgrades and other similar
enhancements. : These reports also fill the requirement
of providing ¢ DOD--STD 2167A (DD,

The IUP: provides many benefits. it ollows an application
engineer to update an interface by modifying @ CSC's
declaration package. The engineer then runs the [UP
which validates the updotes and generates the chonges
to the connection managers. This process cllows easy,
rapid updates to interfoces. The IUP tokes o process
that once took two or three doys and reduces i to
minutes. .

By using the IUP o uniform method of moving dota
belween CSCs has been cbiuined. The method of

moving dato can be easily changed across the simulator.
A compller upgrade may couse o rethinking of the-

inferfoce softwore structure. A change of global cate
structure ar the grouping of dota by type may lead to
execution optimization. The B2-ATD currently hos over
two hundred connection mancgers. To make a simple
change to the design of the dola bus software by hang

6-10

As the overall system-

The existing CSC can be ~

would require a huge amount of time. Chaonging the
data bus software generalor takes men-days, not man-
weeks.

The primary cencern is dato consistency. The use of
double buffering and o single data pointer for an
exporter has ochieved that. This method allows the
exporter {0 'updhie the datg ot the same time as an
importer is importing. - Since lhe importer copies the
pointer to a local storage location, the exporter can
updaote the peinter during the importers execution.

CONCLUSIONS

As projects grow in size and complexity, the meed to
start managing interfaces at the earliest possible fime is
paramount. Interface monagement can no longer be
viewed os a Hardware Software Iniegration (HSI) activity.

A software tool to aulomate interfoce management is o
necessity. This tool must be able to do iype checking,
interface verification, interface concordance and provide
a myriad of reports. In order to insure the integrity of
the interfaces, this tool must have the abiiity to
qgenerate the interfoce connection software. It must also
be able to generate o project level IDD. The tools for
managing the interfoces must be easy to use and be
reliable. -

The interaction of the softwore architecture and the
interface methodology must be orchestraled. The two
need to play together to provide o software environment
that is conducive to software development. - An engineer”
must be coble o rapidly offect an update to the
software. Thot update must be of the highest quaiity
ond religbility. Only then con the cicim be made ihat
the software is truly maintaincble.

While rapid updates ond- maintainability ore required
conditions the interfoce software must accomplish its
job. If must meintain data consistency and must do 50
in an optlmcl manner.

The SMM system allows an opplica‘uon engineer to alter

interfoces by changing informaticn in their software. An
engineer simply tags an object with an inferface lobel
and thereby makes o connection to the producer or
consumer of that date. This is done without knowing
where the dota comes from or where it is going to.

l
T

REFERENCES

1 "Structural Modeling Whiie Paper" Software Engineering
Institute ~ Carnegie Mellon University, Piltshurgh,
Pennsylvania 15213, March 1992 draft

2 “Wiitary Standord Defense System Software
Development", DOD-STD-2167A 29FEB8S

3 "Structural Modeling Guidebook” Software Engineering
Institute ~ Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213 Jonuary 1993 drefi

4o Graphicai Nototion For Software", Willigm S,
Bennett, 1991, Morcel Dekker, lnc., New York, Basel,
Hong Kong

6-10

