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ABSTRACT

Modern combat aircraft sensor systems such as synthetic aperture radar (SAR) produce highly detailed,
information rich displays. The simulation of such displays for training has demanded ever increasing
computational resources as well as data sources more detailed than normally available digital feature
analysis data (DFAD). By focusing on the correct reproduction of the content of a radar display rather
than on a detailed model of radar physics, a novel Digital Radar Land Mass Simulator (DRLMS) for
training is briefly described. A prototype of the system reproduces realistic real-beam, Doppler beam
sharpened {DBS), and SAR ground maps from readily available data sources. : :

This radar simulation technique depends upon highly detailed, modified phototexture databases which
contain both dimensional and effective radar cross-section information for broad area clutter and specific
radar targets. This paper discusses the application of artificial neural networks in generating such
databases from readily available data sources including Project 2851 and commercial satellite data. The
issues, differences and solution approaches necessary to generate databases from such disparate
sources as overhead imagery, DFAD feature data and existing simulator visual system databases are
examined. ' .

The techniques discussed have broad applications to the low-cost simulation of imaging sensor displays
including millimeter microwave (MMW) and forward looking infrared (FLIR). The approach also
drastically reduces the computational needs for a DRLMS system. The prototype, capable of generating
SAR maps, was hosted on a single Motorola 68040 processor in a Macintosh personal computer. A
simulation of the APG-88 radar, including real beam, expanded and DBS modes, is targeted to run in real
time on a single MIPS R-4400 microprocessor.
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INTRODUCTION

The Digital Radar Land Mass Simulator
(DRLMS) discussed below departs from the
traditional approach used for mest DRLMS.
Rather than relying on a rigorous simulation of
the electromagnetic properties of the radar, the
approach below uses photographic imagery pre-
processed using a neural network to yield a
database of pre-assigned radar reflectivities,
which are then manipulated in real-time to yield
a simulated high resolution Synthetic Aperture
Radar (SAR) paich. For the engineer familiar
with the physics of radar systems, this approach
may seem too simplistic a process to yield
credible results. Yet the images produced, while
not to be confused with a target signature

prediction, are convincing for man-in-the-loop

training and laboratory applications.

One factor that allows the simplified DRLMS
approach is the nature of image formation in
high-resolution . radar, where the effects of
aspect are reduced in comparison to low
resolution systems. This reduction in aspect
sensitivity allows effective simulated imagery to
be generated from simplified processes.

HIGH RESOLUTION RADAR TARGETS

For ground mapping radar, nearly all poiht
targets extend across several wavelengths, and
are said to occupy the optical region, where the

ray tracing methods of geometric optics can be .

applied to estimate the radar cross section
{RCS). A radar target is composed of one or
more scatterers, depending upon the nature of
the target and the radar. For the purpose of
RCS estimation, these individual scatterers are
described using various geometric shapes that
allow ray tracing. Several of the fundamental
shapes and their effective RCS (o) in the optical
region are defined below:

Sphere of radius a o =na?
. 2
Normal to flat plate of areaA o =i%i\—
Normal to triangular corner
4nat
reflector of edge length a o=
geleng 32
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The spherical scatterer is considered to be
isotropic, and thus presents the same radar
cross section regardless of the incidence angle
of illumination. For flat plate reflectors and
complex reflectors made up of flat plates, such
as a corner reflector, the return strength varies
depending upon the incident angle. The RCS of
a flat plate exhibits a sensitivity to aspect
(directivity} that is proportional to the size of the
reflector. . Table 1 depicts the mainlobe nufl-ic-
null angle for flat plate refleciors of increasing
size. Note that for small reflectors, the useful
angle is quite large.

Table 1:
Flat Plate Directivity vs/ Size (X-Band)
Flat Plate ‘Flat Plate Nullto-Null =
Size (m) Size (A) {degrees)
0.1 3 =~ 38*
3 10 =12
3 100 =1
30 1000 =0.1

*

value shown does not consider resorn'ant
effects applicable to targets of less than 107,

Complex reflectors such as trihedral corner
reflectors are even less sensitive to aspect.
Large corner reflectors (such as found in many
man-made objects) presenting strong relurns
over incident angles of roughly 45;.

For a high-resolution X-band radar with a
resolution celf size of 1 meter, each cell can only
contain a few optical region scatterers (the cell
is only =30\ on a side). ‘Since the most
probable scatterer size in a cell is small in terms
of A, the mainlobe size is correspondingly large,
resulting in @ return that is relatively constant
over large aspect angles. This is the case found
in practice with high resolution radar, where
scaltering sources are found to remain fixed in
larget location over aspect variations up to
about 30; . The small size of the cell in A also

+ increases the probability that a single scatterer
_ dominates the return.

In contrast, a low resolution radar, where each
resolution cell covers a very large area relative
to A, contains muitiple scaterers. in the optical

region. First, it is now possible for very large -

scattering facets to exist within the range cell,
resulting in strong, but highly directive returns.



Also, the return from multiple reflectors within
the range cell is the phasor sum of the individual
returns. This sum varies depending upon the
geometry between the radar antenna and the

relative phase between the individual scatterers. .

This phasor sum can vary greatly as the aircraft
moves relative -io the target, resulting in
fluctuating return intensities that are highly
aspect sensitive. This case is illustrated in
Figure 1, where an identical set of comer
reflectors is illuminated by both a high resolution
and a low resolution radar. While the low
resolution radar return is dependent upon the
phasor sum, the high resolution radar sees
relatively constant returns from fixed locations
over large aspect angles.

Low resolution:
Return of cell is
phasor sum of
several scatterers.

High resolution:
Returns of cells
are driven by
.one or few smali
scaltters.

N

o

Figure 1: Comparison of return from high and
low resolution radar from discrete comer
reflectors.

The asiute reader may wonder by this point,
"What on Earth has this got to do with neural
networks and DRLMS data bases?” The point of
the preceding discussion is to identify the
underlying reasons for the fundamental
differences in the displayed returns from real-
world targets produced by both high and low

resolution radar systems. By capitalizing on the:

fact that the spatial arrangement of scatterers
that are relatively insensitive to aspect
{compared to low resolution radar) it is possible
to use readily available photographic image
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sources io construct data bases for effective
high resolution radar simulation. The
photographic nature of the data inherently
provides the spatial arrangement of features.

Neural networks can be applied to identify
material classes from the spectral signature of
readily available multi-spectral imagery. This can
in turn, now be assigned a suitable value to
represent radar reflectivity. In our simplified
DRLMS process, we have applied this to
imagery on a pixel-by-pixel basis, allowing a
detailed correlation between a simulated SAR
patch and the original pholographic data
source.2 Below, the use of this approach is
described and contrasted to traditional DRLMS
processing.

TRADITIONAL DRLMS APPROACH

Conventional DLRMS systems have relied upon
the availability of digital representations of
terrain and cultural features. The terrain is
maintained as DTED terrain posts and cultural
data is derived from DFAD text files. A

- propagation model determines the two-way

losses for each.pulse as it travels to and from
terrain and features, calculating the phasor sum
for the signal at the receiving antenna. The
energy reflected from the terrain is determined -
by ray-tracing each pulse, taking into accounting
for such attributes as slope, material type, and
ierrain fexture and correcting for receiver
attributes such as sensitivity time control (STC)
and gain. ‘Because of the complexity of these
calculations, DRLMS systems have been
synonymous Wwith complex, special purpose
hardware in order to maintain real-world display
update rates. Extending this approach to high
resolution radar such as SAR continues 1o
challenge the state-of-art in computing.

A key limitation for high resolution DRLMS is the
content of the underlying database®. Advanced
signal processing technologies allow radar such
as Doppler beam shampened (DBS) and
synthetic aperture radar (SAR), to achieve
resofutions on the order of a 5 meters or less for
tactical systems. Standard- database products
have not kept pace. Level 2 DTED for example,
provides tetrain at 30 meter resolution, and
Level 2 DFAD allows cultural resoiution {o two.
meters. While suitable for some high resolution



radar simulations, the Level 2 DFAD product
has limited geographic availability.  Military
training simulators frequently have a world-wide
mission requirement,

To fill the gap between the expected content of
the simulated sensor display and the content of
the typical database, generic paiterns are often
applied. The major drawback of this approach is
the loss of geo-specific content in the data base.
Unless modified by specific cultural features, a
SAR patch of one urban area will look much the
same as the next, and may bear little
resemblance to the real-world.

PHOTOTEXTURE BASED DRLMS

Phototexiure is the term applied here to mutti-
spectral aerial images. (The term "phototexture”
comes from visual simulation where it describes
photographic data that is applied to polygon
surfaces 10 enhance realism.) Such imagery is
readily available, and is included as part of the
Project 2851 SIF format.
phototexture data can be applied as the starting
point in generating representative high resolution
radar imagery. Typically, these images are
obtained frcm commercial satellite or aerial
photography.,

Prolotype system description

SAIC has developed a prototype DRLMS
systern that demonstrates the utility of this
approach to high-resolution radar simulation.
The prototype radar simutation system is hosted
on a commercial Macintosh Quadra computer
(68040 @ 25 MHz). No special purpose
hardware is required, allowing for re-hosting on

This same’

a variety of systems. Pre-processing of the raw-

phototexture data followed by selective real-time
image processing is the core of the system.
The overall process for generating 2 SAR image
is depicted in block diagram form in Figure 2.
With  additional processing to simulate
fluctuating target returns and other effects, the
capability has been extended to DBS and real-
beam displays as well.
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—
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Figure 2. Simpliﬁed block diagram T of

phototexture-based radar simulation process.
Processes depicted above the heavy line are
pre-processing. Operations  below are
peiformed in real-time,
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Database preparation overview

In comparison to Level 2 DFAD, high resolution
photographic imagery is available on virtually a
world-wide basis. Remote sensing sateliites
such as SPOT routinely generate multi-spectraf
imagery with a resolution of 20 meters, and
panchromatic imagery to 10 meters. Imagery
sold commercially from Russian satellites with
the MK-4 camera provide mulli-spectral six
meter data. Recent easing of U.S. restrictions
on the resolution of commercial satellite imagery
foreshadows a blossoming market for sub-10
meter imagery. In addition to satellite imagery,
false color and multi-spectral imagery from
aircraft offers affordable access to sub-meter
photegraphic data sources.

The DRLMS simulation process begins with the
segmentation of a multi-spectral photographic

image into feature classes. .Segmentation is the-

process of breaking a complex data set, such as
a multi-spectral image, into distinct sub-classes.
This is actomplished by training a feed-forward,
back-propagation neural network to classify
individual  pixels based upon their speciral
content in the available bands24. . This type of
network is an iterative gradient algorithm that is
trained to minimize the mean-square efror
between its ouiput and the desired result, as
characterized by a set of exemplar data. Figure
3 depicts the general configuration of such a

_hetwork. _
Input Layer
Connection
Weights Hidden
Layer
Nodes <, - |
A Output
Layer

Figure 3: Typical Back-Propagation Network
Configuration.

The number of input nodes corresponds to the
number of spectral bands-per-pixel while the
number of output nodes. corresponds to the
desired number of feature classes to be
idertified. The hidden layer allows the network
to develop internal representations of the input
data for re-mapping into the output classes. The

6-14

number of - hidden layer nodes is less
determinislic, and depends greatly upon the
nature of the input image data as discussed
below. In Figure 3, each circle represent a
processing node, with the connecting lines
depicting the interconnection . weights. . Each
node simply outputs a value which is dependent
upon the sum of inputs. The connection weights
(which are initially random) are adjusted during
fraining until the output nodes generate a
desired value in response to a known input.

To segment an image, the neural network is first
trained on-an exemplar set of pixels identified in
the image. The exemplar set is identified

“manually by a photo-analyst, and includes pixels

coded for a variety of different reflectivity
features. - Examples include bare soil, asphalt
surfaces, cultural structures and water. The
network is trained to a suitably low error value,
then used to segment the entire image into the
identified classes on a pixel-by pixel basis. To
aid in the visualization of the segmented dala,
each feature class is assigned a pre-determined
pixel value. The resulting image is inspected for
systematic errors in classification, which are
corrected manually. Minor errors in
classification (such as the coding of a high-
reflectivity pixel in the midst of an open field) are
not removed. These ariifacts become part of
the background clutter that is present in a real-
world scene. o

In practice, we have used the segmented
imagery to develop phototexiure for radar
processes In two different ways. Both depend
upon the pre-assignment of values fo pixels that
represent displayed intensities of radar returns
expected from typical grazing angles.
In  our first approach, the segmented
phototexture was used only to remove gross
artifacts and adjust the underlying pixel values of

“the original phototexture. For example, water

pixels would be set .to a uniform low value
{(representing the return: expected from a large
forward scattering surface) while melallic
structures are brightened. More recently, we
have used the segmented image to define the
geometric limits for Gaussian noise patterns with
distiibutions appropriate for scatterers that

- display a Rayleigh distribution. - The former

method has the advantage of yielding a more
detailed scene content, at the expense of




inappropriate refumns from some features. The
latter method provides a more predictable, but
less detailed return.  For terrain processing,
correlated DTED is used .to. provide underlying
land form data.

Neural network application

Several different neural networks paradigms can
be applied to process multi-spectral images to
identify, on a pixel-by-pixel basis, the probable
material class of the surface to support the
processes outlined above. We have selected
supervised networks such as the feed-forward

back-propagation network described above over

unsupervised. clustering paradigms, although
both have been applied to image segmentation2.
Similar techniques are used in remote sensing
to identify ore bodies and esiimate crop yields
from multi-spectral data. For the sample images
here, a three layer back-propagation neural
network was applied.. The essential steps in the
process are:

- extracting a suitable training set from the

image
- configuring and training the neural network
- processing the raw image
- manual correction of classification errors

The sample image in Figure 4 is typical in that it
contains a mixture of man-made structures and
natural features. Through the segmentation
process, each pixel is assigned to a pre-defined
feature class. In the example here, the image
was segmented-into six classes, including soil,
asphait, concrete, man-made sfruciures,
vegetation, and water. The exemplar pixel
groups used to construct the training set were
identified through manual image analysis, with
care taken to represent the variation present in
the original image.,

It is a frequent misconception that the exemplar
set should consist of "perfect” examples of each

- class.  Actually, the reverse is true. For

example, the metallic structure exemplar pixel
set includes both pixels for large industrial

- structures as well as for smaller buildings as the

intent during processing was 1o assign both
structures to a single class. The set of exemplar
pixels for asphalt includes both pixels from
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taxiways as well as for the small secondary
roads. In training a neural network, it is
important to attempt to include exemplar pixeis
for the entire range of values expected for a
particular class. This requirement is reduced in
practice by corrupting the exemplar set data with
random noise while the network is training. This
reduces the tendency of the network to
converge on a local minimum in the training data
instead of a more general solution. Training with
added random: noise is continued  until a
recognition goal (typically set at 95% or greater
RMS) is reached.

Figure 4: Sample phototexture

It is also beneficial to randomize the order of
presentation in the fraining sef, particularly
where large numbers of identical, or nearly
identical pixels are present in the exemplar. set
for a ¢lass. Without randomization, the network
is easily trapped in a local minimum. This is
indicated by tracking the identification error as
each exemplar is presented to the network. An
alternating pattern of high - low- error as the
exemplars are presented combined with an
essentially fixed RMS error indicates a local
minimum. Often, this is attacked by altering
fraining parameters such as the percentage of
random noise or reducing the traihing rate or
“momentum” of the network. We have also
found it useful to search the exemplars for
identical pixels. Reducing the number of such



pixels can correct local minimum problems. The
risk in this approach is in altering the distribution
- of pixels in an exemplar set such that it is no
longer representative of the input image.

[t is helpful to view the exemplar sets as
occupying one or more regions in a space
defined by the number of spectral bands
* gvailable. For the three-band data used here, it
can be called RGB-space, and represented as a
- simple volume. For LANDSAT  Thematic
Mapper data, this space would be a seven
dimensional structure. . In either case, the
exemplar set for a single class: may occupy
several disconnected regions, with other classes
occupying intervening regions, The complexity
of the image data in this structure requires the

use of a network with one or more hidden layers

in crder for the network fo re-map the input data
into the desired set of output classes:

The optimum number of hidden layer nodes is a
subject of some debate. Too few hidden layer
nodes will prevent the net from converging,
while too many adversely effects performance.
Image data as a rule is complex, with several
discrete groups of pixels in RGB-space
assignable to a single class. Water for example,
may vary from bright blue through green to
brown depending upon suspended sediment,
regions of RGB-space which can also contain
soil, vegetation, and man-made structures. The
number of hidden layer nodes is equal, in the
worst case, to the number of disconnected or
meshed regions in the input distributions. As this
is often a difficult number to-determine, rules-of-
thumb have evolved. LippmannS states that
there must typically be more than three-times
the number of hidden layer nodes as input
nodes. For the three-band data used here, a
number of hidden layer nodes equal to the
product of the input and outputs. nodes is a
conservative starting point.

After training, the network is used to segment
the entire image on a pixel by pixel basis. As
shown in Figure 5, the segmented image pixel
values are assigned to a single value depending
upon the feature class. In practice, this is a
useful point at which to examine the segmented
image in comparison to the original. While
scattered errors are expected, systematic errors
can usually be traced to errors in constructing
the training set. Often, this can be resolved by
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noting those regions of the image incorrectly
classified, and adjusting the exemplars in the
training set accordingly. For example, regions
of vegetation in shadow may be mis-classified
as asphalt. By ensuring that exemplars for

shadowed vegetation are included in the training
set, a successful segmertation often results.

Figure 5: Example segmented image.

In other instances, the seis may not be
separable. In our experience, beach sand is
readily mis-classified as concrete. Close
examination of the exemplar set values found
that in the source image, many of the pixel
values for the two surfaces are identical. This
should not have been a surptise given that
concrete contains a high percentage of local
sand. A possible solution to this problem is
obtaining source data with a larger number of
spectral bands. To date however, we have
elected to manually select and modify the critical
mis-identified regions, which are readily
detected in the segmented image. This is easily
accomplished with commercial or public domain
image manipulations tools.

While inseparable exemplars occur in natural
imagery, a different problem exists in
phototexture derived from visual system
databases. Ih some cases, it may be desirable
to use such phototexture as source data to
avoid feature correlation issues. In such
images, the total number of applied textures can
be rather low, allowing nearly complete



characterization in the training set. = Also, the
textures are typically applied in geometric
patterns obtained from DFAD data. Although
-selected to avoid visual discontinuities, the
different textures. may. be readily classified by &
well trained neural network, resulting in a patch-
-work appearance in the segmented image due
to distinct texture boundaries. In such cases,

adjusting ‘the original phototexture pixel values -

-based on the segmentation data may produce

unwanted edges. Our second approach to
generating a database (i.e., re-assigning pixels
in a given segment to a defined range of random
values based upen the feature class) allows this
problem to be reduced. For example, assigning
separable 'mean . points, but overlapping
distribution fimits, to soil and vegetation classes
aliows : large regions to remain d[stmct while
minimizing border edges.

While the approach described is applied fo radar
images in our prototype system, the database
generation process can be extended to other
sensor systems as well. For example, the
segmentation value assigned to a given pixe!
may be selected fo represent an infrared
reflectivity and material heat capacity rather than
X-band radar reflectivity. [n a similar manner,
databases for MMMW radar can also be
constructed, Using this approach, highly
detailed, geospecific sensor simulation can be
produced to support world-wide missions.

Real-time processing overview

Real-time processing centers on adding aspect
sensitive radar features such as leading edge
-enhancement and far-shore brightening to the
image, and adjusting the gamma of the resulting
image to that typical. of a sensor display as
shown in Figuwre 6. These processes are
implemented using image processing algorithms
that are aspect sensitive, allowing the
approximation - of the required radar effects.
Also in real-time, DTED data is ray-traced to find
both shadowed areas and forward scattering
slopes. This information is combined with the
processed phototexiure to adjust the displayed
values of the pixels. Additional processing
necessary for DBS and real-beam map displays
is not depicted in the figure.
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Figure 6. Simulated SAR image using adjusted
phototexture. Simulated illumination direction is
from the northwest.

A generic form of cultural shadowing is used fo
produce occulted areas behind structures for
which actual elevation data is unavailable.
Generating this entails performing a rear-edge
detection ‘on a structure-only segment of the
data base, and extending this edge as a function
of grazing angle. While the images generated
should not be confused with a rigorous radar
signature ‘prediction, they do provide efficiently
computed, effective sensor simulation for
raining. '

COMPUTATIONAL RESOURCES

In the prototype DRLMS system and in
subsequent developments, the number of
computations required for the generation of an
image is directly scaled by the displayed range
and azimuth resolution of the simulated radar
system. Since image processing to produce
representative SAR-like images replaces the
more rigorous calculations of traditional DRLMS,
the total number of computations required in real
time are greatly reduced. For example, a
tactical radar simulation may display an effective
256 x 256 resolution cells (the size of the

simulated SAR image shown in Figure 3). The

processes applied require on the order-of 100
floating point operations per displayed pixel to
transform the pre-processed data base inio a
representative SAR image (plus any additional



overhead for the operating system, retrieving the
. database and performing interface processes).
This translates to approximately 7 million floating
point operations to build an image.

A modern RISC processor such as the MIPS
R4000, operating at 100MHz, is rated at
approximately 16 MFLOPS. Based upon ths
operations required, and neglecting the
computing overhead previously mentioned, it is
estimated that approximately 2 to 3 simulated
SAR patches per second can be processed on a
machine of this class. This is in good
agreement with benchmark data from the
Macintosh prototype, where processing times in
the range of 15 seconds per paich are typical for
a processor of 1/30th the rated floating point
speed.

The benchmarks above predict the hosting of a
real-time DRLMS on a single microprocessor,
With newer generations of RISC processors
such as the MIPS R4400 promising floating-
point performance of 24 MFLOPS, further
enhancements are achievable.
conirast to traditional DRLMS systems which
depend upon special purpose hardware
achieving hundreds of MFLOPS in parallei
computing architectures.8
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