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ABSTRACT

Conventional image generation techniques rely largely on polygon rendering techniques . We describe here a
system that uses off-the-shelf hardware to realize high-end image generation. We have developed a prototype image
generator based on two Intel i860 processors and a host 486-PC. This hardware performs perspective transformafions,
clipping, and texture mapping. Parametric surfaces are generated by fitting either a bilinear or bicubic polynomial to
standard Defense Mapping Agency (DMA) terrain height data. Real-time texture mapping algorithms are then used to
place realistic textures, obtained from real-world photographs, onto the terrain height map. In our implementation, a
multiresolution image pyramid is used to generate properly filtered images on demand at the resolution required by the
viewing geometry. A wide range of terrain data approximations is used depending on altitude. Coarse (fine) approximations
are implemented for high (low) altitude flight A multiresolution terrain pyramid is used to achieve this approximation.
This pyramidal approach is embedded into our real-time texture mapping system with the use of an incremental scanline
algerithm. The current prototype can generate a 256 X 256 x 8-bit image at 15 frames/second using only two 1860
processors, and the algorithms scale sub-linearly with the number of processors. ) -
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1. INTRODUCTION

Real-time flight simulation has traditionally
required expensive graphics workstations. The goal of
this work is to exploit recent advances in processor and
memory  speeds. to design a high-end PC-based
multiprocessor image generator for flight simulation.
By matching computer architecture with the algorithms
best suited for this application, a total system can be
designed at far less cost than those commerciaily
available.  Furthermore, the use of off-the-shelf
components will permit the system to benefit from the
economies of scale for processor and memory
technologies. The principal application targeted here is
low-altitude flight over a largeterrain. Several key

tasks must be addressed for this application: texture

mapping, multi-resolution terrain and. image data,
high-quality antialiasing, high-speed geometry pipeline
for processing large data sets, and load balancing. This
paper describes a low-cost parallel processing solution
to these tasks. In particular, we present a paraliel
polygon rendering . algorithm for general-purpose
MIMD(Muitiple Instruction Multiple Data) message
passing architectures. - The hardware configuration
consists of a host 80486 processor and several slave
i860 processors. The current implementation consists

of only two 860 processors but the design is scalable

to more processors. -
Section 2 describes the rendering process and
mchudes a discussion of Gouraud shading and its use in

a fast incremental implementation of texture mapping. .

A description of the algorithm and hardware
configuration is given in Section 3, after a brief
discussion of parallel rendering. Additional details
concerning clipping and filtering are given in Section 4.

2. RENDERING

The process of generating images from abstract
data models is known as = rendering. Many different
rendering techniques exist for visualizing a 3D scene.
They vary from polygon rendering to ray tracing and
radiosity technicues. The latter two methods offer more
realism at the expense of system performance. Most
commercial graphics workstations support polygon
rendering only when special-purpose hardware is
available. In this paper, we describe rendering, on off
the shelf hardware.

Rendering Pipeline

There is a well-established pipeline for.
rendering 3D scenes (Foley , 1990). The elements of
this pipeline include: modeling transformation, trivial
accept/reject  classification, - illumination,viewing
transformation, clipping, rasterization, and display. The
first stage is responsibie for traversing the 3D scene
coordinate system to  the world coordinate system. This
assembles all objects, each possibly modeled in different
local coordinate systems, into one common world
coordinate system. In order to -avoid needless
processing later in the pipeline, polygons that fall.
outside the view volume are culled. - In the iilumination
step, contributicns from each light source are evaluated
for each polygon and color intensities are computed at
each vertex, The viewing transformation step projects
the 3D object coordinates into 2D screen coordinates.
Culling is an optirmization step that discards
back-facing polygons that face away from the viewer.
Clipping discards those parts of the projected polygons
that lie outside the display screen. Rasterization
converts transformed polygons into pixel color values.



T

It consists of three steps: scan conversion,
visible-surface determination, and shading., Scan
conversion determines which pixels lie in the projected
polygons. Visible surface determination generally makes
use of a zbuffer to  store the depth at each pixel. The
depth value at each pixel is used to determine whether
the pixel's color information should be stored in the
image (frarne) buffer for subsequent display. If the new
point lies closer .than the pixel already stored in that
position, the shading calculation is performed to
determine the color. Three popular shading models
include: flat, Gouraud, and Phong. Flat shading uses a
uniform color to fill the polygon. Gouraud shading
interpolates the color values stored at the vertices.
Pbong shading interpolates the vertex normals and
recomputes the Phong illurnination model at each pixel.
Gouraud shading is most popular because it offers a
good balance between realism and speed.

Gouraud Shading

ouraud shading is a popular intensity  interpolation
algorithin used to shade polygonal surfaces in
computer graphics (Gouraud, 1971). It serves to
enhance realism in rendered scenes that approximate
curved surfaces with planar polygons. In addition to
serving as a shading algorithm, we use a variant of
this approach to interpolate texture coordinates. We
begin with a review of Gouraud shading in this
section, followed by a description of its use in texture
mapping in the next section.

Gourand shading interpolates the intensities
all along a polygon, given only the true values at the
vertices. It does so whils operating in scanline order.
This means that the output screen is rendered in a
raster fashion, (e.g., scanning the polygon from
top-to-bottom, with each scan moving left-to-right).
This spatial coherence lends itself to a fast
incremental method for computing the interior
intensity values. The basic approach is illustrated in
Fig. 1.
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Figure 1: Incremental scanline interpolation.

For each scanline, the intensities at endpoints
x, and ard X, ‘are computed. This is achieved through
linear interpolation between the intensities of the
appropriate polygon vertices. This yields J, and ) in
Fig. 1, where

I=al +(1-2) ' 0< <1

L=pl,+(-p),  0<Pxl

Then, beginning with I, the intensity values along
successive  scanline positions are  computed
incrementally. In this manner, I_,, can be determined
directly from I, where the subscripts refer to

positions along the scanline, We thus have

I,= I+ dr
where
POk
(xl - xo)

Note that the scanline order allows us to exploit
incremental computations. As a result, we are spared
from having to evaluate two multiplications and two
additions per pixel. Additional savings are possible by
computing J, and I, incrementally as well. This
requires a different set of constant increments to be
added along the edges.

Incremental Texture Mapping

Although Gouraud shading has traditionally
been used to interpolate intensity values, we now use it
to interpolate texture coordinates. The computed fu,»)
coordinates are used to index into the ioput texture.
This permits us to obtain a color value that is then
applied to the output pixel. The following segment of €
code is offered as an example of how to process a single
scandine.

© odx =10/ x1 -x0); I* normalization factor */ '

du = (ul - u0) *dx; /* constant increment foru */
dv = (vl - v0) * dx; [* constant increment for v */
dz = (zI - 20) * dx; /* constant increment for z */



Jorfx = x0;x < xI:x++){
/* visit all scanline pixels */
ife < zbuflxl) {

/¥ is new point closer? */

buffx] = z;
/* update z-buffer */

serfx] = tex(u,v);
/* write texture value to screen */

}

U +=du /* increment 1 */
v +=dv; /* increment v */
z4+=dz /* increment z %/

;
The procedure given above assumes that the
scanline begins at (x0,y.z0) and ends at {xl,y,z]).
These two endpoints correspond to points (#0,w(}) and
(ul,vI), respectively, in the input texture. For every
"unit step in x, coordinates i and v are incremented by
a constant amount, e.g., du and dv, respectively. This
equates to an affine -mapping between a horizontal
scanline in screen space and an arbitrary line in texture
space with slope.dv /du  (see Fig. 2).
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Figure 2: Incremental interpolation of texture
coordinates.

Since the rendered surface may contain
occluding polygons, the. z -coordinates of visible pixels
are stored in zbuf, the 7 -buffer for the current scanline.
When a pixel is visited, its z-buffer entry is compared
against the .depth of the incoming pixel. If the
incoming pixel is found to be closer, then we proceed
with the computations involved in determining the
output value and update the z-buffer with the depth of
the closer point. Otherwise, the incoming point is
occluded and no further action is taken on that pixel.

The function rexfi,v) in the above code

samples the fexture at point fw,v), It refurns an
intensity value that is stored in scr , the sereen buffer
for the current scanline.  For color images, RGB
values would be returned by fex and written into three
separate color channels. -In the examples that follow,
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‘noticeable.

we let zex implement point sampling, e.g., no filtering.
Although this introduces well-known - artifacts, our
goal here is to examine the geometrical properties of
this simple approach. We will therefore tolerate
artifacts, such as jagged edges; in the interest of
simplicity. The filtering necessary for high-quality
image generation is described in Section 4.

Figure 3 shows a checkerboard image mapped
onto a quadrilateral using the approach described
above.

Figure 3: Naive approach applied to Checkerboard.
There are several problems that are readily

First, the textured polygon *shows
undesirable discontinuities along  horizontal lines
passing through the vertices: This is due o a sudden
change in du and dv as we move past a vertex. It is
an artifact of the linear interpolation of u and v,
Second, the image does not exhibit the foreshortening
that we would expect to see from perspective. This is
due to the fact that this approach is consistent with
bilinear transformation. As a result, it can be shown to
be exact for affine mappings but it is inadequate to
handle perspective mappings.

It is important to note that Gouraud shading
has been uvsed for years without major noticeable
artifacts because shading is a slowly-varying function.
However, applications such as texture mapping bring
out the flaws of this approach more readily with the use
of highly-varying texture patterns.



Incremental Perspective Transformations -

A theoretically correct solution results by mors
closely examining the requirements of a perspective
mapping. Since a perspective transformation is a ratio

- of two linear interpelants, it becomes possible to
achieve theoretically correct results by - introducing the
divisor, i.e., homogeneous coordinate w. We thus
mnterpolate w alongside « and v, and then perform two
divisions per pixel. The following code contains the

. necessary adjustments to make the scanline approach
work for perspective mappings.

dx = L.O/(xl1-x0); /* normalization factor */
du = (ul - u0) *dx;  /* constant increment for u ¥/
dv = (vl -v0) *dx; /* constant increment for v */
dz = (@I -z0) *dx;  /* constant increment for z */
dw = (wl -wl0) * dx; /* constant increment for w */
Jorfx = x0; x < xI; x++) { /*visit all scanline
pizels */

iffz < zbuffx]) { /* is new point closer? ¥/

zhuffx] = z; /* update z-buffer */

scrix] = tex{u/w,viw); /* write
texture value to screen */
}
u 4= du; /¥ increment u */
v 4= dv; /* increment v */
z +=dz; /* increment z */
w += dw; /* increment w */

}

Figure 4 shows the result of this method after it was
applied to the Checkerboard texture. Notice the proper
foreshortening and the continuity near the vertices. See
(Wolberg, 1990) for a more complete discussion on the
topic of real-time texture mapping and fast texture
coordinate evaluation vsing quadratic and cubic
interpolation.

3. PARALLEL RENDERING

Coupled with texture mapping, polygon
rendering provides realism and visual cues for flight
siroulation. The chief shortcoming of polygon rendering
is that it may crudely . approximate the (possibly)
smooth surface shape. This problem, however, canbe

dealt by tesselating the surface into finer {(smaller)

polygons. This increases the number of polygons that

must be rendered per frame, thereby increasing the
computational load of the image generator.

One approach to parailelizing the rendering

process is to map the stages of the rendering pipeline

Figure 4: Perspective mapping using scanline
algorihthm,

directly into hardware. In a pipeline: architecture,
though, the system can run only as fast as its slowest
stage. Since it is generally difficult to evenly distribute
the processing  load over all processors, pipeline
systems are not viable for rendering. Instead, we turn.
to a more general parallel algorithm whereby
parallelism  is obtained by replicating processing
elements.

Close inspection of the rendering problem
identifies that there are two main tasks to be
parallelized: the transformation phase and the
rasterization phase. Parallelism in the trapsformation
and rasterization phases are referred to as object
parallelism and image parallelism , respectively.
Object parallelism is achieved by processing geometric
primitives (triangles) independently of one amother.
Image parallelism is obtained by computing pixel values
indeperdlently for individual pixels or groups of pixels.

Several groups of researchers have attacked
this problem from both sides. A system with a high
degree of object parallelism is described in (Torborg,
1987). The Pixel-Planes system, with a high degree of
image parallelism, is described in (Fuchs, 1981). A
system exploiting both object and image parallelism is
described in (Molnar, 1992}. '
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From an .algorithmic standpoint, many
approaches are possible. An excellent survey can be
found in (Whitman, 1992). The most noteworthy
systemms are based on general-purpose MIMD
architectures. . We targeted this class of parallel
architecutures because it conforms most closely with
the growing trerd of high-performance general-purpose
processors with large instruction and data caches. In
this manner, parallelism is obtained by replicating a
single type of processing element. This approach is
also consistent with paralielization achieved by mapping
the problem onto workstations connected over a local
area network.

There has been significant attention drawn to
this approach in recent years. In [Barton 89, for
instance, some of the issues involved. in mapping the
rendering pipeline onto message-passing systems are
discussed. Other image and object parallelization
results are presented in  (Roble, 1988) and (L1, 1991).
In recent work, load balancing and commmnication
latencies in the message-passing environment are
addressed in (Ellsworth, 1993). Finally, (Ortega ,
1993) describes a data-parallel renderer suitable for
both SIMD and MIMD architectures.

In the work described in this paper, we exploit

both object and image parallelism to work on MIMD -

distributed-memory  message-passing systems. Our
rendering algorithm will run on systems containing up
to p processors, where p is less than the pumber of
scanlines in the frame buffer. Our method is unique in

that it multiplexes the transformation and rasterization

phases on the same processors. This has several
advantages, including reduced memory utilization,
overlappad computation and communication, and
reduced communication contention. In addition, we
ensure that all large data structures are distributed
among the processors without wasteful duplication. In
our case; this includes the list of polygons and the f
rame buffer in which the final image is assembled. We
distribute these structures evenly among the processors,
allowing the algorithm to scale very complex scenes
and high image resolutions by increasing the number of
processors.  Note that distributing the triangles
corresponds to object parallelise, while distributing the
image buffer corresponds 10 image parallelism.

Algorithm Description
The algorithim works as follows. Each of p processors

is given a list of polygons to render. For optimization
purposes, all polygons are restricted to be triangles.

This does not pose a restriction because the input scene
description of the terrain consists of elevation data on
a regularly spaced mesh. Each 2 % 2 set of nodes on
the mesh is treated as two contiguous triangles. The
image buffer is divided among the p processors in
equal-sized horizontal strips (see Fig. 5). Each siripe .
contains the same number of scanfines, which resuits in
uniform, predictable memory requirements on each
processor. The optimal size of the strips is view- and
scene-dependent and remains an area of research. The
following strategy is followed by each processor:

1) The lighting, transformation, and clipping steps are
performed by each processor on its list of triarigles. This
results in 2D triangles mapped into-screen coordinates
on the projection plane. '

2y The 2D triangles are split, if necessary, into
trapezoids along the local image buffer boundaries (see
Fig. 5). Each trapezoid is then sent to the processor
responsible for that corresponding = image buffer
Segment.

3) Upon receiving a trapezoid, a processor rasterizes it

_ inte its_local image buffer using a standard z-buffer

algorithm to eliminate hidden surfaces. The real-time
texture mapping algorithm described earlier is used to

7 shade the projected triangles.
Processor |
2
3
4

Figure 5: The image buffer is distributed across
Processors.

Triangles are split at boundaries. Processors
start with nearly the same number of triangles, but
several factors will tend to unbalance the lfoad. This
may be due to the different number of operations
required to cull, clip, and subdivide the triangles.

Similarly, varying the mumber and sizes of incoming



trapezoids will cause potentially large variations in the
rasterization time,

As a result, it is best to avoid any. synchronization points
in the process to reduce significant amounts of idle
time. Indeed, there is no synchronization point in this
approach. Furthermore, to reduce communication
overhead, trapezoids destined for the same processor
are buffered into larger messages before sending.

Division of Laber

The host 486 processor is responsible for
several tasks:

1) Monitor the joystick and update the display
-information on the host screen. This information
includes altitude/attitude, speed, and frames per second.

2} Update the position variables for the eye in
accordance with the flight dynamics.

3) Compute the M, matrix that converts all points

from the world coordinate system to the viewing
coordinate system. The matrix is computed
asynchronously, i.e., only when the slave processors
signal that they are ready to begin processing a new
frame. This achieves a befter sensation of real-time
navigation. It is important to note that the perceived
speed is equal to the product of frames/second and
meters/frame. Since frames/second will likely vary,
perceived spee can be made more uniform only if the
matrix is not associated with equal infervals in time.

4) Distribute - M, and lists of triangles to the
Processors.
The slave processors currently consist of two
i860s. The program will be migrated to the new Analog
- Devices 21060 processors that are faster and support
larger cache sizes, permitting Jarger image buffer
segments to reside locally.

4. INTERPOLATION AND
ANTIALIASING FILTERING

Flying over large terrain raises several
interesting problems with respect to clipping and
filtering, It becomes unfeasible to visit all of the
triangles - that comprise the terrain. Even
straightforward accept/reject clipping tests becomes an
overwhelming task when several million triangles must
be considered at real-time rates. . Instead, we propose
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the following solution that exploits the mesh structure of
our terrain elevation data.

We project a ray from from the eye through
the four comers of the view plane window. These four
rays pierce the image base plane. All tecrain elevation
data contained in the resulting projected area are
considered for viewing. This proves to be far less than
the entire data set. Special care is taken when looking
towards the horizon and some of the four rays may not
intersect the image base plane.

Due to perspective foreshortening, we can
expect many triangles to project to subpixel regions.
This is particularly true for distant triangies. Such
many-to-mappings give rise to undersampling, and
therefore aliasing. Aliasing i§ a dondition in which
artifacts appear i the image due to undersampling the
signal. A solution to aliasing is to bandlimit (blur) the
image before sampling. In order to avoid having to
perform blurring in real time, we preprocess the input

. image (texture), constructing a multi-resolution image

pyramid. Those points of the texture that map into
small regions are - sampled from the heavily blurred
pyramid level. In this manner, preprocessing the image
into successively blurred levels of a pyramid permit us
to avoid averaging filtering during run-time. A 17-point
Hann windowed sinc function is used to build the
pyramid (Wolberg, 1990). The major trade-off here is
that the area of integration is approximated to be a
square. : ,
- Image pyramids are of use when there is a
many-to-one mapping, i.e., minification. Those points
of the texture that map fnto large regions are magnified
and must therefore be interpolated from the highest
resolution pyramid level (the original). Bilinear and
cubic convolution are two interpolation techniques
currently supported by the system, The former (latter)
method makes use of the 2 X 2 (4 x 4) set of nearest
neighbors to compute the value of the pixel at a
fractional positicn. - B

5. SUMMARY

We describe in this paper a PC-based
photographic-quality image = generator for flight
sipmlation. In order to effectively texture map full color
imagery onto  high resolution terrain data at near
real-time rates, a multiprocessor system has been
designed to achieve both object and image parallelism.
The main thrust of the algorithm is to divide the frame
buffer into p horizontal strips, each associated with




one of p processors. A processor rasterizes incoming
triangles (or trapezoids) into its local buffer only if that
triangle Lies in that segment of the image. If the
incoming primitive either straddles the [ocal segment or
lies entirely outside of it, the processor sends the
(clipped) primitive to the appropriate processor. The
original  list of triangles is distributed to the p
processors by a host 486 processor.  Subsequently,
though, the p processors pass primitives among
themselves, if necessary, Each processor balances its
work between clipping primitives and rasterizing them.
When no more rasterization needs to be done to
complete an image, the local image buffers are
collected into one output frame buffer.
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