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ABSTRACT

The DOD community has adopted Distributed Interactive Simulation (DIS) as a base for an evolving suite of
standards to support virtual battlefield representation. At present, DIS-based applications have focused on relatively
small-scale exercises involving less than 1000 manned simulators and computer-generated forces (CGF). Current
estimates of 10,000 to 100,000 entities to support simulation of theater-wide operations may exceed the capabilities
of existing computational hosts and interconnection networks. This paper presents strategies for using massively
parallel processors to simulate large numbers of synthetic forces using a contemporary synthetic forces software
system (ModSAF). Alternative functional decompositions of the software are presented which map to specific
parallel programming paradigms. Factors are identified which constrain candidate implementation paths. Partitioning
and filtering techniques are discussed which can be used to reduce or eliminate broadcast packet distribution in a
message-passing system. Data distribution, partitioning, and locking techniques are presented to support use of
private, near-shared, and globally-shared memory on a true shared-memory system. Test implementations of a
parallel ModSAF designed to run on the Convex Exemplar and Cray T3D MPP systems are described and benchmark
results for specific tests are presented.
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INTRODUCTION

Simulation is becoming an increasingly important
component of the DOD technology base. In particular,
Distributed Interactive Simulation (DIS) is being used
more frequently to support simulated environments for
training and concept evaluation. While DIS has
demonstrated its utility in small scale applications,
potential uses require scaling the technology to support
substantially larger scenarios involving 10,000 to
100,000 entities.

Using DIS to support large scale exercises puts
demands on both network and computational resources.
The underlying architecture of DIS is based on
broadcast of shared ground truth data to distributed
simulations or simulators in real-time at rates
sufficient to support battlefield visualization. While
efforts are underway to broaden the acceptable high
level architecture for DOD simulation applications,
current DOD policy requires most simulation
applications to operate within the current DIS
constraints. In this context, most scaleability research
has focused on network technology. Initial efforts
addressed increasing network capacity through the use
of mechanisms such as multicasting and packet
compression. Until recently, little attention had been
devoted to the computational resources required to
sustain real-time simulation.

This research project seeks to assess whether high
performance computing and communications systems
can provide the resource base needed to support the
current DIS system architecture in large-scale exercises.
We are currently in the process of adapting a
representative synthetic forces simulation to execute on
several massively parallel processors (MPP).  Our
preliminary performance results indicate significant
that gains can be achieved in entity loading by
exploiting the unique capabilities that these
architectures provide.

BACKGROUND

The majority of the battlefield entities represented in
large-scale DIS-based exercises will be synthetic or
semi-automated forces (SAF)—combat entities that are
represented through simulation as opposed to man-in-
the-loop networked simulators. Modular Semi-
Automated Forces (ModSAF) is the software most
commonly used today to represent synthetic forces in a
DIS environment and was chosen for our research.

ModSAF is an entity-based, time-stepped simulation
that can be replicated across one or more computational
hosts depending upon the size of the exercise or
location of the users. ModSAF consists of a user
interface component, or SAFstation; the simulation
component, or SAFsim; and a message logger, or
SAFlogger. These components can also be physically
distributed depending upon the exercise configuration.
[1]

SCALEABILITY

Large scale exercises present daunting problems for
DIS-based synthetic forces simulations. Three primary
factors limit the potential scaleability of simulations
such as ModSAF:

• The performance of the host processor(s)
• Network congestion when presented with

high-volume broadcast traffic
• Limited ability to effectively control the

evolution of a large scenario

Two programs have recently materialized that offer
promising insights on extending the capability of a
distributed ModSAF to support large-scale exercises.

Network-Based Scaleability Approaches

The Advanced Research Projects Agency (ARPA) Real-
Time Information Transfer and Networking (RITN)
program was formed to address network-based
approaches to the management of DIS network traffic.
In response to some of the issues addressed above, an
Application Gateway (AG) prototype was fielded for



    

the Synthetic Theater of War-Europe (STOW-E)
demonstration. In the demonstration, the AG resided on
a workstation host and acted as a gateway between the
local simulations on each local-area network (LAN)
and the wide-area network (WAN). See Figure 1.
Multicasting, packet compression, quiescent entity
state propagation, and other techniques were used to
manage the flow of entity state data to and from the
WAN as described in “An Approach to DIS
Scaleability.”[2]

Figure 1.  Application Gateway Utilization

Command Forces

Human factor issues related to interaction with large-
scale exercises are being addressed in the Command
Forces (CFOR) program [3,4,5]. Prior to the
introduction of CFOR, battlefield entities were
provided tasking directly by the human controller at
each SAFstation. CFOR incorporates explicit
modeling of battlefield command and control (C2) into
virtual simulations. As illustrated in Figure 2, CFOR
extends the DIS architecture through the introduction
of Command Entities (CEs), which are software
representations of the battlefield commander. The
Command and Control Simulation Interface Language
(CCSIL) is used for the exchange of information
between CEs. Through the use of CFOR, standard
operational orders can be provided at the battalion level
by the human controller and reports can be received
from the CEs.

GOAL AND OBJECTIVES

The goals of this project are to exploit the
computational and communications capabilities of
existing MPP architectures and leverage the results of
the RITN and CFOR efforts to consolidate the
execution of a large scale synthetic forces simulation
to one or more parallel hosts. By achieving these
goals, we hope to provide a run-time infrastructure
(RTI) for ModSAF that will support exercises
involving more than 10,000 entities.

Figure 2.  Command Entity Technical
 Reference Model

In accomplishing these goals, we first must develop
viable strategies for the modification of ModSAF to
support selected parallel models of computation and
conduct test bed experimentation on several MPP
platforms to validate each approach. Once viability for
one or more  implementation paths is determined, we
can then progress to adapting the parallel ModSAF
RTI to support CFOR capabilities.

IMPLEMENTATION STRATEGIES

Three basic paradigms exist for the mapping of
sequential codes to a parallel computer:

• Data Parallel
• Message-Passing
• Shared-memory

While a data parallel approach was employed
successfully in the Massively Parallel Warfare
Simulation (MasPaWS) [6], it was not considered here
for several reasons. Data parallelism accommodates
those codes having large, static data arrays that can be
partitioned across processing elements within the
MPP. Execution occurs in a lock-step fashion as each
PE works within it’s own data space. ModSAF relies
on the use of dynamically allocated data structures to
store simulation state data. The storage and access
mechanisms used for these structures are optimized for
the expected usage (e.g., linked list, binary or quad
tree) and would require significant redesign to conform
to a static data model.

The message-passing and shared-memory  paradigms do
not share these limitations and were considered for
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implementation and testing.  The following sections
describe the message-passing and shared-memory
ModSAF implementations and present preliminary
performance test results.

MESSAGE-PASSING MODSAF

Through the ARPA High Performance Computing
(HPC) initiative, we were provided access to a 128-
processor CRAY T3D located at Eglin AFB for the
implementation of a message-passing parallel
ModSAF.

The CRAY T3D System Architecture

The CRAY  T3D is a multiple instruction multiple
data (MIMD) parallel processor containing 32, 64,
128, 256, 512, 1024, or 2048 processing elements
depending upon the system configuration.  Memory in
the T3D is physically distributed and globally
addressable.  The CRAY T3D connects to a host
computer system that provides support for applications
running on the CRAY T3D.  All applications are
compiled on the host system but execute on the
CRAY T3D system.  Suitable host systems include
the CRAY Y-MP E series, the CRAY Y-MP M90
series, and the CRAY C90 series computer systems.

The CRAY T3D system is comprised of processing
elements (PE), the interconnect network, and
input/output (I/O) gateways. The PEs provide the
system’s computational resources.  Each PE is
comprised of a 150-MHz DECchip 21064
microprocessor (commonly known as the Alpha)
accompanied by a local memory.  The microprocessor
is a 64-bit reduced instruction set computer (RISC).
The interconnect network provides communication
paths among the PEs and the I/O gateways.  The
topology of the interconnect network is a three-
dimensional torus, which forms a three-dimensional
matrix of paths connecting the PEs.  The nodes of the
interconnect network are physically interleaved.  This
serves to minimize the maximum wiring distance
between nodes. I/O gateways transfer system data and
control information between the host system and the
CRAY T3D system.  A master clock provides a 6.67
nanosecond clock signal, which is fanned out to all
PEs and I/O gateways in the system.

Approach

We chose to adopt a host/node model for the message-
passing implementation of ModSAF.  In this model a
user program is implemented on the host that spawns
slave processes to the individual PEs.  As illustrated in
Figure 3, our approach uses the host process as both a
SAF/CE gateway for interaction with the distributed
exercise components and as an I/O server for the slave
PEs.  Although the programs downloaded to the PEs
are identical, each may follow a distinctly different

flow of control depending upon the data being
processed.

Figure 3.  Message-Passing Implementation

In this approach, each PE acts as a single ModSAF
host with the MPPs interconnection network
mimicking the WAN and facilitating Protocol Data
Unit (PDU) delivery. The effort required to parallelize
ModSAF using this approach is minimal. To support
inter-PE data distribution, a robust inter-PE packet
distribution capability utilizing the MPPs
interconnection network must be implemented.  The
remainder of the effort involves porting the applicable
ModSAF code for execution on the microprocessor
contained in the PEs of the MPP.  It may also be
necessary to implement synchronization support for
the ModSAF scheduler if global synchronous
operations are required.

Although such an approach may provide some gains in
entity loading purely from the use of the low-latency,
high-bandwidth interconnection network within the
MPP alternative strategies for event distribution and
packet filtering should be considered to optimize
performance. We chose to augment the interprocessor
communications capabilities of the message-passing
implementation by incorporating PDU multicasting,
relevance filtering, and packet bundling techniques
developed for the RITN AG.

To ameliorate the effects of load imbalance, we
embraced an approach similar to that considered for a
message-passing parallelization of CORBAN [7] where
each PE is assigned a terrain parcel and simulates
entities on or directly over the parcel. A diffusive,
dynamic load balancing algorithm, described in
“Diffusive Dynamic Load Balancing by Terrain Parcel
Swaps for Communicating Vehicles” [8], will be
considered to enforce the regularity of the terrain area
and minimize extraneous communication.

CCSIL/DIS

CE

CE

CCSIL

CCSIL

LAN/WAN

Simulator
DIS

SAF/CE
Gateway

I/O
Server

ModSAF

CRAY T3DCRAY Y-MP



    

Implementation

Prototyping of the message-passing software began in
February 1995. We implemented inter-PE packet
distribution services using a Cray Research supported
version of Parallel Virtual Machine (PVM) [9] for the
CRAY T3D.  PVM provides a portable Application
Programming Interface (API) for message-passing
applications on a variety of uniprocessor and
multiprocessor systems.  This enabled a quick and
efficient  implementation that exploits the hardware
capabilities of the CRAY T3D system to handle
communication between PEs without resorting to a
vendor-specific, proprietary interface.  

The PVM-based inter-PE packet distribution capability
was successfully integrated into the ModSAF libraries
responsible for providing distributed communication
services and required no changes to ModSAF
behavioral software in order to be used.

Porting the remainder of the core simulation services
libraries required minor modifications to the ModSAF
software.  These modifications were largely to software
constructs that were incompatible with the Alpha 64-
bit processor architecture.  Such constructs included:

• Data structure alignment along 4-byte instead of 8-
byte boundaries

• Use of intrinsic types not supported by the C
compiler (e.g., 16-bit integer types)

• Casting of pointers to 32-bit integer types

As these features were discovered during testing and
debugging, the software was modified and precompiler
directives were added to isolate the modification to the
T3D software build.

PDU multicasting and relevance filtering capabilities
were introduced through the implementation of a
multiple resolution grid that overlaid the ModSAF
terrain as shown in Figure 4. PVM dynamic group
facilities allowed the use of the pvm_bcast() to post
PDUs to the group represented at a specific grid cell.
Simulated entities used the services provided by the
pvm_joingroup() and pvm_lvgroup() functions to
express interest in receiving PDUs for specific cells
within a parameterized perception range.

An algorithm similar to the one used in the sequential
ModSAF to bundle PDUs was incorporated into the
PVM-based packet distribution facilities. The
implemented technique created a single bundle that
accepted packets of the same multicast group and
protocol family. The bundle flushed whenever the
maximum size was reached or a packet of a different
group or type was presented for transmission.

Entity with a perception radius R
located at position (X, Y, Z)

Battlespace

Received messages

Figure 4.  Relevance Filtering

At the time of this paper, dynamic load balancing
algorithms were still under development.

Preliminary Test Results

To provide an initial indication of the performance of
the message-passing implementation, we devised a
simple test program that exercised the core simulation
services. This program created notional (or
behaviorless) entities that performed a random walk
over the terrain and generated Entity State PDUs
(ESPDUs) at specified intervals. Static terrain
partitioning was applied so that each ModSAF PE
simulated entities over a specified terrain area. The
terrain was allocated to the PEs based on a simple
row/column assignment mechanism.

The first series of tests performed broadcast distribution
of all generated ESPDUs for varying numbers of
processing elements. The data gathered during these
tests included the packet send and receive rates, the
number of locally simulated (owned) entities, the
number of perceived but not simulated (reflected)
entities, the total number of entities simulated, and the
performance of the ModSAF event scheduler.

We then repeated the test series with relevance filtering
activated. In this series, each entity expressed interest
in receiving state data for all other entities residing in
cells within a specified radius. In the second test series
ESPDUs were multicast only to those PEs having
expressed interest in the originating cell.



    

As shown in Figure 5-a, the number of packets
received by each ModSAF process was reduced
significantly when relevance filtering was activated.
Figure 5-b illustrates that the number of reflected
entities also dropped sharply, which would be expected
because those entities would be responsible for the
received ESPDUs. Figure 5-c tracks the number of
multicast cell subscription and cancellation operations
performed during a three minute run.

In all tests except the 32-processor broadcast, the
ModSAF scheduler was able to effectively maintain
real-time simulation. The 32-processor broadcast run
failed when approaching sustained packet receive rates
of 2,000/second. Preliminary indications are that the
burden of processing thousands of packets per second
overwhelmed the ModSAF scheduler and caused a
PVM communications buffer overflow.  This appears
to validate our assumption that filtering and
multicasting techniques were necessary even in high-
performance parallel architectures.
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SHARED-MEMORY MODSAF

We chose the Convex Exemplar as the host platform
for the shared-memory ModSAF implementation. This
system had just been introduced when we were
beginning this project and appeared to be an ideal
candidate for our research. Several Convex Exemplar
systems were used  at the Convex Corporation
facilities in Richardson, Texas.

The Convex Exemplar System Architecture

The Convex Exemplar consists of one to sixteen
hypernodes, each hypernode containing an 8-node
symmetric multiprocessor (SMP), for a total of 8 to
128 processors.  Each processor is a Hewlett-Packard
PA-RISC PA7100 with external data cache and
instruction cache, and a clock frequency of 100 MHz.
Both caches are virtually indexed with 64-bit data path
and 800 Mbytes/second read rate.

The Exemplar uses a two-level coherent memory
/interconnect hierarchy. Each hypernode contains one
or more hypernode-private memories that provide local
storage. Each hypernode also contains one or more
global memory blocks that are accessible by all CPUs
in the system.

The interconnect within each hypernode is a 5x5 non-
blocking crossbar using semi-custom GaAs
components. Each hypernode uses four uni-directional
scaleable coherent interface (SCI) rings as the
interconnection to other hypernodes.

Approach

As shown in Figure 6, rather than mapping N
instances of distributed ModSAF onto the N PEs of an
MPP, this approach implements a single ModSAF on



    

an MPP having a globally-addressable shared-memory.
This provides an end-run around the communications
liabilities encountered in the message-passing
approach.  Here, the number of internal PDU messages
is zero.  Instead of broadcasting state data to every PE,
remote data is accessed only when a PE specifically
needs the data.  Data is pulled, not pushed. If the load
can be balanced so that most of the PEs can do useful
work most of the time, the result is a scaleable parallel
version of ModSAF.
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Figure 6.  Shared-memory Approach

However, the implementation risks are greater in this
approach.  While the message-passing approach
naturally embraces the existing ModSAF software
architecture, significant modifications to the core
libraries must be undertaken to take advantage of the
capabilities that shared-memory MPPs provide.

These modifications focus on promoting key data
structures to global memory to allow all PEs access to
entity-related data and implementing semaphores and
other locking mechanisms to enforce data integrity.

Implementation

Prototyping of the shared-memory ModSAF began in
October 1994. We first created a stripped down
ModSAF “surrogate” to explore alternative
implementation paths. This program was used to
verify that specific intended modifications to the actual
ModSAF code would perform as expected.

Using the data gathered from the surrogate, we
implemented a multi-threaded event scheduler that
enabled each PE to control the simulation of a subset
of the battlefield entities. We created a partitioned
global data structure to allow each PE access to all
entity data. This structure was instantiated as a binary
tree to minimize traversal time during searches.

Entity-level locking was introduced to remove the
possibility of simultaneous write/read operations by

contending PEs. This resulted in a potential bottleneck
at the root of the binary tree in an active simulation.

We combated this problem by creating a number of
dummy nodes starting at the root and continuing to the
log2 N level where N is the number of PEs in the
partition. To ensure freedom from deadlock, PEs only
lock a single node in the binary tree at a time.

Standard memory allocation mechanisms on the
Exemplar were found to be a performance bottleneck
due to, in part, the granularity and frequency of the
allocation. To improve performance, we instituted a
memory manager that allocates memory from large,
statically-allocated blocks.

To ameliorate the effects of load imbalance, we added
entity hand-off capabilities to the software. This proved
to be much simpler in a shared-memory
implementation because the hand off of entity state
only requires providing the receiving PE a pointer to
the appropriate vehicle table entry. Following this
approach, any events posted to the initiating PE
scheduler at the time of hand off are canceled,
repackaged, and provided to the receiving PE for
posting.

Preliminary Test Results

The first significant result was to get ModSAF
running correctly in parallel on the Exemplar. The
locking techniques introduced for global memory
access were thoroughly debugged, tested, and verified.

Second, we achieved scaleable performance over a two
hypernode system (the largest available to date). Figure
7 shows wall clock time to run two ModSAF
scenarios, as a function of the number of processors.
Note the inverse scale, so that performance
improvement has a positive slope. Performance of a
perfectly scaleable application has a slope of 1.

Scenarios 1 and 2 are identical, except that 2 is run
longer (20,000 vs. 12,000 seconds) and creates more
entities (5,000 vs. 3,000). The entities are notional
ModSAF vehicles and move randomly across the
terrain. The vehicles are subject to damage by mines
having an arbitrary detonation radius.

Each processor has periodic opportunities to perform
dynamic load balancing by exporting a vehicle to a less
busy processor. To parallelize the total work and assure
a fair comparison in Figure 7, the global frequency of
entity creation and mine detonation is independent of
the number of processors (N), but the frequency per
processor decreases linearly with N.



    

Shared Memory Performance
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Figure 7.  Scaleability Test Results

As can be seen in Figure 7, the performance of the first
scenario has a slope near 1 for N < 10 with a more
modest speedup for N through 16. The second scenario
scales well for all values of N tried. Since the first
12,000 seconds of the second scenario are identical to
the first, the lack of scaleability in the first sccenario
can be attributed to initialization effects.

Dynamic load balancing, without which performance
degrades for N > 8, proved crucial to achieving
scaleable performance.

CONCLUSIONS

Our efforts have demonstrated the feasibility of
adapting the ModSAF software architecture to execute
on representative MPPs using both message-passing
and shared-memory paradigms. Preliminary
performance analysis shows that, by exploiting some
of the unique capabilities of these MPPs, we can
enhance and extend the performance of the simulation.

Our initial measures of performance on the 128-
processor CRAY T3D seem to indicate that, while a
message-passing approach will not scale, the
introduction of bandwidth reduction techniques on the
CRAY provide the leverage to support the
communications load of over 10,000 entities. Actual
entity loading on the T3D will depend upon many
factors including entity type, distribution, and sensor
capabilities. While we are not expecting super-linear
performance, we do anticipate that per processor entity
loading will be comparable to a uni-processor
workstation. Further testing after behavioral libraries
are ported will be necessary to benchmark actual
performance.

Results from our shared-memory experimentation on
the Convex Exemplar show that scaleability can be
achieved (for up to 16-processor system) through

incremental adaptations of the ModSAF RTI to
accommodate multi-threaded execution. Our efforts on
this track will next focus on introducing the behavioral
libraries and extending scaleable performance. Since the
behavioral libraries will access mostly thread-local
instead of global data structures, we are optimistic that
scaleability can be maintained for the full simulation.
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