

GENETIC ALGORITHMS BASED
SCENARIO GENERATION FOR NETWORKED SIMULATIONS

J.W. Bala and B.K. Gogia
Datamat Systems Research, Inc.

8260 Greensboro Drive
MacLean, Virginia 22102

William Lee
Naval Air Systems Command
1421 Jefferson Drive Highway

Arlington, VA 22243-2160

ABSTRACT

To automatically generate simulated scenarios an algorithm is needed to search for the optimal
subset of scenario parameters. For most simulated environments the scenario search space is
complex and populated with discontinuities, multimodality, and noise. Complexity is especially
evident in networked simulations, where the search space can be enormous. Some high-fidelity,
large scale network simulation may require specifications of millions of parameters to describe
all entities at a high level of resolution. In this paper we present the application of the Genetic
Algorithms search technique for scenario optimization in network simulations. Genetic
Algorithms as optimization and adaptation techniques, maintain a constant-sized population of
candidate solutions known as individual scenarios. At each iteration, known as a generation,
each scenario is evaluated and recombined with others on the basis of its overall quality or
fitness in solving the simulation task. New scenarios are created using two main genetic
recombination operators known as crossover and mutation.

ABOUT THE AUTHORS

 Dr. Jerzy Bala is a Senior Scientist with Datamat Systems Research, Inc. He has an extensive
background in the field of machine learning. Dr. Bale received his M.S. degree in Electrical and
Computer Engineering and Ph.D. in Information Technology from George Mason University. He
was a member of the machine learning group at George Mason University, where he pursued
his Ph.D. In May 1993 he was awarded a postdoctoral research grant by the National Science
Foundation in Computational Science and Engineering. His research has led to over 30
publications. He is a member of ACM, American Association for Artificial Intelligence, and
ADPA.

 Mr. B.K Gogia is a President of Datamat Systems Research, Inc. His expertise is in Software
Reuse and BPR of large software development projects. He holds M.S. in Computer Science and
MBA. He is a member of IEEE, IEEE-CS, Society for Enterprise Engineering, ACM, and an
active member in ACM SIGs.

 Mr. William D. S. Lee is the Naval Air Systems Command’s training manager for the AH-1W
Attack Helicopter and the UH-1N Utility Helicopter. He has sponsored numerous Small
Business Innovative Research Phase I and Phase II efforts to include Alternative Motion
Systems, Interactive Embedded Training, and Direct Manipulation Interface. Mr. Lee holds a
BS in Systems Engineering from University of Virginia.

GENETIC ALGORITHMS BASED
SCENARIO GENERATION FOR NETWORKED SIMULATIONS

J.W. Bala and B.K. Gogia
Datamat Systems Research, Inc.

8260 Greensboro Drive
MacLean, Virginia 22102

William Lee
Naval Air Systems Command
1421 Jefferson Drive Highway

Arlington, VA 22243-2160

1. INTRODUCTION

Current DIS exercises, while large in scale
(e.g., REFORGER and ULCI FOCUS
LENS), have had relatively few entities in
their scenarios. This is primarily because the
systems used to conduct the DIS exercises
have limited capacity to support individual
entities without over-loading their
computational capacity. As such, it was
feasible to manually plan and script the
exercise for each player and entity. As the
number of players increases this will no
longer be an option. In currently planned
exercises the number of entities will expand
from a few hundred to tens or hundreds of
thousands. As a result there is a pressing
need for a new method of creating scenarios
that will greatly simplify the process and
reduce the vast amount of resources required
to generate mission rehearsals.

This paper presents a high-level master-slave
interface architecture for intelligent control of
scenario generation in distributed interactive
simulation. It addresses the complexity
problem of current and future networked
simulation systems. It is based on a principle
that utilizes Genetic Algorithm search
techniques. Genetic Algorithms efficiently
search the scenario space and generate close
to optimal scenarios. The generated scenario
performance measure is calculated based on a

distance measure to a predefined scenario
classes.

2. SCENARIO GENERATION

A simulation may be regarded as composed
of interacting objects that represent real-world
entities. These objects can correspond to
physical entities at various levels of
abstraction. Interaction between objects is
achieved by different execution mechanisms.

The entities, or simulated components, must
have sufficient “identity” to know what they
are (ball, aircraft, tree, etc.), their capabilities
(can they fly, how fast they can travel, etc.)
and how they are to respond to other objects
(engage another entity or not engage, react to
a collision with another entity, etc.) The
entities may be expressed by the following
properties:

1. State - a set of different properties,
including static (e.g., size, color, length)
and dynamic (e.g., current speed)
properties.

2. Behavior - a description of changes to

the object's state (e.g., moving left and
accelerating, responding to other
entities, etc.).

3. Identity - a name that identifies an
object and distinguishes it from all
others.

Given that objects provide the fundamental
units of simulations, the high-level
architecture must indicate the basic ways in
which these objects will be specified and will
interact with one another in all situations
(Figure 1). The Execution and Simulation
Representation module specifies timings,
event occurrences, and all other processes
involved in the simulation. The operational
support module is needed to initialize the
simulation by generating s c e n a r i o s and
distributing relevant data to all objects
involved in the simulation.

Although simulated objects and execution
mechanisms are the central components of a
simulation, other components are also
necessary in forming an overall simulation
system. These components should include
tools for s c e n a r i o g e n e r a t i o n and
configuration management. Scenario
generation is the first phase of any simulated
environment. It creates entities and describes
their initial behaviors. Scenario generation
requires the specification of a complete and
unambiguous set of specifications (rules)
describing scenario parameters (objects,
paths, events, and timings). For some high-
fidelity simulation this may require
specifications of millions of parameters to
describe all of the entities at a high level of
resolution [Barr and Clark, 1993].

Simulated
Environment of

Objects

Status
Behavior
Identity

Execution and
Simulation

Representation

Operational Support
(Scenario Generation)

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Figure 1. High Level Simulation Architecture
Historically, scenario generation has been a
labor-intensive and time consuming process.
As the complexity and number of
simulations per system increase, a more
timely and efficient method to develop
scenarios is needed. This is especially evident
in networked simulations where the
complexity of scenarios may be enormous.
To fully utilize the capabilities of current and
future simulation systems it is vital to
develop user interfaces for scenario
generation that will permit the user to
communicate easily and quickly with the
computer and construct/alter scenarios (i.e.,
to generate various scenarios with the same
simulation process). Many existing systems
do not automate the scenario generation
process. In most instances, a system
developer encodes scenarios, a process that
can literally take days. A rapid scenario
generation engine is needed.

Another motivation for automated scenario
generation is the fact that current simulation
systems have a strong tendency to replay the
same exercise scenarios over and over. This
leads to users acquiring specific skills (by

repeating the same scenarios) when the
acquisition of general skill is required.

Scenario generation can be viewed as the
search process for the optimal solution
(scenario). The search space is defined by a
set of all parameters that describe objects'
properties (State, Behavior, and Identity). An
important property of most of the search
techniques is that they suffer from
combinatorial explosion.

3. SEARCH STRATEGIES

Various strategies for effective search have
emerged from the fields of mathematics and
computer science over the years. These range
from totally uniformed search methods with
no knowledge of the domain being searched
to well-informed techniques in which
knowledge of the domain is used effectively
to speed the search. In mathematics three
main types of search methods are identified:
calculus-based, enumerative, and semi-
random.
• Calculus-based search methods seek local

extrema by solving a set of usually
equations. These methods depend upon
the existence of derivatives (well-defined
slope values). Even if we allow the
numerical approximation of derivatives,
this has a severe shortcoming. Many
practical parameter spaces have little
respect for the concept of derivatives and
the smoothness they imply (e.g., an
object's name parameter in a scenario
space). The real world of search is
populated with discontinuities,
multimodality, and noise. For example,
for almost every possible scenario there
exists some parameter (or subset of
parameters) that when its value is slightly
changed the entire scenario shifts to a
completely different category.

• In enumerative search methods, an

algorithm with a finite search space starts
looking at objective function values at
every point in the space one at a time.
Although the simplicity of this type of

search is attractive, and enumeration is a
very “human” kind of search (when the
number of possibilities is small), such
methods must eventually be discounted
for one simple reason: lack of efficiency.
Many practical spaces are simply too
large to search one at a time.

• Semi-random search methods have

achieved increasing popularity as the
shortcomings of calculus-based and
enumerative methods have been
recognized. Random searches, in the long
run, can be expected to do no better than
enumerative methods. The Genetic
Algorithm is an example of the search
procedure that uses semi-random choice
as the tool to guide a highly exploitative
search through a coding of a parameter
space [De Jong, 1988]. Each point in the
problem space can be considered as an
individual represented uniquely within the
system by a string generated by some
alphabet. This alphabet is often taken to
be {1,0}. (Some evidence exists that the
binary alphabet is optimal). At any
instance in time, the system maintains a
population of strings representing the
current set of solutions to the problem.
The process begins by random generation
or designer specifications of a starting
population. The only feedback available
to an adaptive strategy is the value of the
process performance measure (fitness).
A Genetic Algorithm is highly applicable
to multimodal and multidimensional
search spaces in which no a priori
information is required.

4. SCENARIO SEARCH METHOD

We propose a high-level master-slave
interface architecture for intelligent control of
scenario generation in distributed interactive
simulation (Figure 2).

The interface module (master module)
processes information concerned with the
global tactical picture. It has a full access and
control of those attributes of each simulation

platform that are essential for interaction
between platforms during the simulation
process. We call such attributes -- global
attributes, in contrast to - local attributes. The
global attributes mainly represent various
parameters obtained from sensor
environments. The global attributes are
highly interdependent (e.g., correlated sensor
readings between two simulator platforms).

A g e n e r a t i o n e n g i n e is responsible for
global attributes initialization and control. It
works in a semi-automatic fashion. Some
parts of global attributional representation are
supplied by users (User Defined Global
Control) and some parts are automatically
tuned. The tuning process is considered to be
an optimization problem. We propose to use
Genetic Algorithms optimization techniques
[Holland, 1975] to optimize global
attributional representation.

5 GENETIC ALGORITHMS BASED
GENERATION ENGINE

Genetic Algorithms, (Figure 3) as
optimization and adaptation techniques,
maintain a constant-sized population of
candidate solutions known as individuals [De
Jong, 1988]. The initial seed population can
be chosen randomly or on the basis of
heuristics. At each iteration, known as a
generation, each individual is evaluated and
recombined with others on the basis of its
overall quality or fitness in solving the task.

The expected number of times an individual
is selected for recombination is proportional
to its fitness relative to the rest of population.
The power of a genetic algorithm lies in its
ability to exploit in a highly efficient manner
information about a large number of
individuals. The search underlying Genetic
Algorithms is such that breadth and depth are
balanced according to the observed
performance of the individuals evaluated so
far. By allocating more reproductive
occurrences to above average individuals, the
overall effect is to increase the population's
average fitness. New individuals are created
primarily using two genetic recombination
operators known as crossover and mutation.
Crossover operates by selecting a random
location in the genetic string of the parents
(crossover point) and concatenating the initial
segment of one parent with the final segment
of the other parent to create a new child. A
second child is simultaneously generated
using the remaining segments of the two
parents. Mutation provides for occasional
disturbances in the crossover operation by
inverting one or more genetic elements
during reproduction. This operation ensures
diversity in the genetic strings over long
periods of time and prevents stagnation in the
evolution of optimal individuals. The
individuals in the population are typically
represented using a binary notation to
promote efficiency of the genetic operations
and application independence.

Simulation
Platform

a(i,1), a(i,2),...,a(i,Mi)
Attributes Describing

Status, Behavior, Identity
of Simulated Objects

SIMULATED
ENVIRONMENT OF

OBJECTS

EXECUTION AND
SIMULATION

REPRESENTATION

a(j,1), a(j,2),...,a(j,Mj)
Attributes Describing

Status, Behavior, Identity
of Simulated Objects

Simulation
Platform

a(k,1), a(k,2),...,a(k,Mk)
Attributes Describing

Status, Behavior, Identity
of Simulated Objects

Simulation
Platform

a[..][..]
Global Attributional Representation

of Tactical Picture

Generation Engine

Platforms Comunication

User Defined Global Controls

Multi-Platform Inteface

Figure 2. An Architecture for Scenario Generation in Networked Simulations

START

ENCODE
PROBLEM

SPACE

PERFORMANCE
AND STOPPING

CRITERION

SELECT BEST
PERFORMERS TO
REPRODUCE AND

BREED

APPLY
CROSSOVER AND

MUTATION TO
CREATE NEW
GENERATION

TERMINATE

>= THRESHOLD

< THRESHOLD

Figure 3. Genetic Algorithms

A Genetic Algorithm is very effective at
finding optimal solutions to a variety of
problems. It performs especially well when
solving complex “real world” problems
because it does not have many of the
limitations of traditional techniques. Due to its
nature, a Genetic Algorithm will search for
solutions without regard to the specific inner
working of the problem. This ability lets
Genetic Algorithms perform well on large,
complex scheduling problems, the design of
communication networks, nuclear plant fuel
configurations, financial portfolios
management, and various small engineering
problems.

The following considerations motivated us in
the choice of Genetic Algorithms as the
interface generation engine:

• Genetic Algorithms do not require
specification of many parameters
(usually a user specifies only the

population size, crossover and mutation
rate, and stopping criterion).

• The search space, as considered in our
proposed architecture, is highly multi-
modal. That is, there exist many
optimal/suboptimal solutions. Genetic
Algorithms search techniques are very
efficient in such a search space.

• The search space is also highly multi-
dimensional, thus yielding a very
complex search problem (Distributed
Interactive Simulations may involve
thousands of objects with hundreds of
attributes). Genetic Algorithms search
techniques are very efficient in searching
complex representation spaces.

In the proposed approach Genetic Algorithms
search the space of possible mission rehearsal
scenarios to find the most optimal scenario for
the exercise problem based on their proximity
to predefined scenario classes and
specifications that have been initially set up by
the instructors/system managers. An example
would be “A scenario class Hard” (Table 1).

ATTRIBUTE VALUE
A1 -> Number_of_moving_objects 2 to 10
A2 -> Number_of_static_objects more than 2
A3 -> Behavior_type_object_1 type_C
A4 -> background_type type_A

Table 1. An Example of the Criteria Table.

This proximity is measured by numerically
expressing closeness (distance) to a criteria
table, in other words, how close does the
user's desired scenario match previously
defined scenarios created in previous
exercises. The criteria table would have been
built as part of the acceptance of the proposed
interface architecture, or built when the system
became operational by the user. It describes
initial specifications for a given scenario and
defines the scenario category to be generated.
The entries of the criteria table are rules that
describe the conditions for various scenario
class parameters. A scenario class can be
expressed by a large number of rules that form
a disjunctive normal form (DNF) data

structure. For the Table 1 example the
corresponding rule is expressed as follows:

Scenario Class “Hard” if
[A 1 =2 ..1 0] &[A2 > 2] &[A3 = “C ”]& [A 4= “ A”]

An individual scenario in the population of
scenarios is then evaluated and recombined
with others on the basis of its overall quality
and/or fitness to the current problem, the
desired level of quality and/or fitness having
been established during system design and
refined during user operation. This process is
iterative, and the expected number of times a
scenario is selected for recombination is
proportional to its fitness relative to the rest of
the population. By allocating more reproductive
occurrences to the above scenarios (relative to
quality and/or fitness) an overall increase in
the population's average fitness is achieved.

The result is consistently different scenarios,
thereby preventing the scenario user from
"gaming" the system. The Russian submarine
that was at some location in the last exercise
may now be an Iranian submarine, or may not
be there at all, just as in the real world.

For the instructors/system managers, the
process of scenario generation is greatly
simplified by requiring only one simple process
of determining what opponent is desired and
giving "orders" to the desired forces (User
Defined Global Control module in Figure 2).
The system would then begin the process of
automatic generation scenario across all
platforms. This process leads to generation of
all local simulation attributes (Figure 2) that
now can be transmitted to individual platforms.

Object 1 Object 3 Object 4 Object 5 Object 6Object 2

Object Description Initial Position Path Specification Events Timing

Object 1 Specifications

Type Specifications An Example of the "Type" Look-up Table

01

ONE OF THE LOOK-UP TABLES

CODING/DECODING MECHANISM

1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 . 1 0 1 0 1 0 0

ENCODED BINARY REPRESENTATION

000 -> Aircraft
001 -> Tree
010 -> Road
011 -> Cloud
100 -> Hot Air Balloon
101 -> Vehicle

Simulated
Environment of Six

Objects

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
Identity

Status
Behavior
IdentityStatus

Behavior
Identity

Status
Behavior
Identity

1

Figure 5. A Scenario Coding Schema

The scenario encoding/decoding used to
represent scenarios consists of an ordered list
of fields together with the look-up tables
which indicate how bit strings are to be
decoded to produce information about a
given scenario. Figure 4 depicts a simple
example of a possible encoding/decoding
scheme. All objects are encoded as a
concatenated string of bit fields. Each field
represents objects' parameters and behavior.
It consists of sub-fields that describe the
object, its initial position, path, events, and
timings. Accordingly each sub-field is further
divided into sub-parts that describe the object
in a greater detail. Finally, the shortest, non-
dividable fields are mapped to different
pieces of information by using various look-
up tables.

6. CONCLUSIONS

A high-level master-slave interface
architecture for intelligent control of scenario
generation in distributed interactive
simulation has been presented in this paper. It
addresses the complexity problem of current
and future networked simulation systems. It
is based on a principle that utilizes Genetic
Algorithm search techniques. Genetic
Algorithms efficiently search the scenario
space and generate close to optimal scenarios.
The generated scenario performance measure
is calculated based on a distance measure to a
predefined scenario. The presented approach
has been developed and is currently being
experimentally implemented by Datamat
Systems Research, Inc.

REFERENCES

Bala, J., B.K. Gogia, “Genetic Algorithms
Based Scenario Generation Approach For
Simulated Worlds,” International Joint
Conference on Artificial Intelligence (IJCAI)
Workshop on Entertainment and AI/Alife,
Montreal, Canada, August 18, 1995.

Bala J. and Gogia, B.K., “Direct
Manipulation Interface for Flight Training
Simulators: A Rapid Scenario Generalization
and Optimization,” Naval Air Systems
Command (NAVAIR) PMA205, Phase I
Final Report, January 1995.

Barr, T. and Clark, K., “Scenario Preparation
of DIS,” Proceedings of the 14th
Interservice/Industry Training Systems and
Education Conference, 1993.

De Jong, K., “Learning with Genetic
Algorithms: An Overview,” in Machine
Learning, Vol.3, 121-138, 1988.

Feiner, S. and Beshers, C. “Worlds Within
Worlds: Metaphors for Exploring n-
Dimensional Virtual Worlds.” Proceedings
of 3rd Annual Symposium on User Interface
Technology, Snowbird, Utah, 1990.

DEFINITIONS

ACM Association for Computing
Machinery.

ADPA American Defense
Preparedness Association.

DIS Distributed Interactive
Simulation.

MASTER-SLAVE A two modules control
architecture, where a
master module is an entity
controlling a slave module.

REFORGER Return of Forces To
Germany.

