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ABSTRACT

To automatically generate simulated scenarios an algorithm is needed to search for the optimal
subset of scenario parameters. For most simulated environments the scenario search space is
complex and populated with discontinuities, multimodality, and noise. Complexity is especially
evident in networked simulations, where the search space can be enormous. Some high-fidelity,
large scale network simulation may require specifications of millions of parameters to describe
all entities at a high level of resolution. In this paper we present the application of the Genetic
Algorithms search technique for scenario optimization in network simulations. Genetic
Algorithms as optimization and adaptation techniques, maintain a constant-sized population of
candidate solutions known as individual scenarios. At each iteration, known as a generation,
each scenario is evaluated and recombined with others on the basis of its overall quality or
fitnessin solving the simulation task. New scenarios are created using two main genetic
recombination operators known as crossover and mutation.
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1. INTRODUCTION

Current DIS exercises, while large in scale
(e.g., REFORGER and ULCI FOCUS
LENS), have had reatively few entities in
their scenarios. Thisis primarily because the
systems used to conduct the DIS exercises
have limited capacity to support individua
entities  without  over-loading  their
computational capacity. As such, it was
feasble to manually plan and script the
exercise for each player and entity. Asthe
number of players increases this will no
longer be an option. In currently planned
exercises the number of entities will expand
from afew hundred to tens or hundreds of
thousands. Asaresult there is a pressing
need for a new method of creating scenarios
that will greatly simplify the process and
reduce the vast amount of resources required
to generate mission rehearsals.

This paper presents a high-level master-slave
interface architecture for intelligent control of
scenario generation in distributed interactive
simulation. It addresses the complexity
problem of current and future networked
simulation systems. It is based on a principle
that utilizes Genetic Algorithm search
techniques. Genetic Algorithms efficiently
search the scenario space and generate close
to optimal scenarios. The generated scenario
performance measure is calculated based on a

distance measure to a predefined scenario
classes.

2. SCENARIO GENERATION

A simulation may be regarded as composed
of interacting objects that represent real-world
entities. These objects can correspond to
physical entities at various levels of
abstraction. Interaction between objects is
achieved by different execution mechanisms.

The entities, or simulated components, must
have sufficient “identity” to know what they
are (ball, aircraft, tree, etc.), their capabilities
(can they fly, how fast they can travel, etc.)
and how they are to respond to other objects
(engage another entity or not engage, react to
a collison with another entity, etc.) The
entities may be expressed by the following
properties:

1. State - a set of different properties,
including static (e.g., Size, color, length)
and dynamic (e.g., current speed)
properties.

2. Behavior - a description of changes to
the object's state (e.g., moving left and
accelerating, responding to other
entities, etc.).



3. ldentity - a name that identifies an
object and distinguishes it from all
others.

Given that objects provide the fundamental
units of simulations, the high-leve
architecture must indicate the basic waysin
which these objects will be specified and will
interact with one another in all situations
(Figure 1). The Execution and Simulation
Representation module specifies timings,
event occurrences, and al other processes
involved in the ssimulation. The operationa
support module is needed to initidize the
simulation by generating scenarios and
distributing relevant data to all objects
involved in the smulation.

Although simulated objects and execution
mechanisms are the central components of a
simulation, other components are aso
necessary in forming an overal simulation
system. These components should include
tools for scenario generation and
configuration management. Scenario
generation is the first phase of any simulated
environment. It creates entities and describes
their initial behaviors. Scenario generation
requires the specification of a complete and
unambiguous set of specifications (rules)
describing scenario parameters (objects,
paths, events, and timings). For some high-
fiddity smulation this may require
gpecifications of millions of parameters to
describe all of the entities at a high level of
resolution [Barr and Clark, 1993].
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Figure 1. High Level Simulation Architecture
Historically, scenario generation has been a
labor-intensive and time consuming process.
As the complexity and number of
simulations per system increase, a more
timely and efficient method to develop
scenarios is needed. Thisis especially evident
in  networked simulations where the
complexity of scenarios may be enormous.
To fully utilize the capabilities of current and
future simulation systems it is vita to
develop user interfaces for scenario
generation that will permit the user to
communicate easily and quickly with the
computer and construct/alter scenarios (i.e.,
to generate various scenarios with the same
simulation process). Many existing systems
do not automate the scenario generation
process. In most instances, a system
developer encodes scenarios, a process that
can literdly take days. A rapid scenario
generation engine is needed.

Another motivation for automated scenario
generation is the fact that current simulation
systems have a strong tendency to replay the
same exercise scenarios over and over. This
leads to users acquiring specific skills (by



repeating the same scenarios) when the
acquisition of general skill isrequired.

Scenario generation can be viewed as the
search process for the optima solution
(scenario). The search space is defined by a
set of all parameters that describe objects
properties (State, Behavior, and Identity). An
important property of most of the search
techniques is that they suffer from
combinatorial explosion.

3. SEARCH STRATEGIES

Various strategies for effective search have
emerged from the fields of mathematics and
computer science over the years. These range
from totally uniformed search methods with
no knowledge of the domain being searched
to waell-informed techniques in which
knowledge of the domain is used effectively
to speed the search. In mathematics three
main types of search methods are identified:
caculus-based, enumerative, and semi-
random.

» Caculus-based search methods seek local
extrema by solving a set of usualy
equations. These methods depend upon
the existence of derivatives (well-defined
slope values). Even if we alow the
numerical approximation of derivatives,
this has a severe shortcoming. Many
practicad parameter spaces have little
respect for the concept of derivatives and
the smoothness they imply (e.g., an
object's name parameter in a scenario
space). The rea world of search is
popul ated with discontinuities,
multimodality, and noise. For example,
for aimost every possible scenario there
exists some parameter (or subset of
parameters) that when itsvalueis dightly
changed the entire scenario shifts to a
completely different category.

* In enumerative search methods, an
algorithm with afinite search space starts
looking at objective function values at
every point in the space one at a time.
Although the simplicity of this type of

search is attractive, and enumeration isa
very “human” kind of search (when the
number of possibilities is small), such
methods must eventually be discounted
for one ssmple reason: lack of efficiency.
Many practicad spaces are ssmply too
largeto search one at atime.

e Semi-random search methods have
achieved increasing popularity as the
shortcomings of calculus-based and
enumerative  methods have  been
recognized. Random searches, in the long
run, can be expected to do no better than
enumerative methods. The Genetic
Algorithm is an example of the search
procedure that uses semi-random choice
asthe tool to guide a highly exploitative
search through a coding of a parameter
space [De Jong, 1988]. Each point in the
problem space can be considered as an
individual represented uniquely within the
system by a string generated by some
alphabet. This alphabet is often taken to
be {1,0}. (Some evidence exists that the
binary aphabet is optima). At any
instance in time, the system maintains a
population of strings representing the
current set of solutions to the problem.
The process begins by random generation
or designer specifications of a starting
population. The only feedback available
to an adaptive strategy is the value of the
process performance measure (fitness).
A Genetic Algorithm is highly applicable
to multimodal and multidimensional
search spaces in which no a priori
information is required.

4. SCENARIO SEARCH METHOD

We propose a high-level master-save
interface architecture for intelligent control of
scenario generation in distributed interactive
simulation (Figure 2).

The interface module (master module)
processes information concerned with the
global tactical picture. It has afull access and
control of those attributes of each simulation



platform that are essential for interaction
between platforms during the simulation
process. We cdl such attributes -- global
attributes, in contrast to - local attributes. The
global attributes mainly represent various
parameters  obtained from Sensor
environments. The globa attributes are
highly interdependent (e.g., correlated sensor
readings between two simulator platforms).

A generation engine is responsible for
global attributesinitialization and control. It
works in a semi-automatic fashion. Some
parts of global attributional representation are
supplied by users (User Defined Globa
Control) and some parts are automatically
tuned. The tuning processis considered to be
an optimization problem. We propose to use
Genetic Algorithms optimization techniques
[Holland, 1975] to optimize global
attributional representation.

5 GENETIC ALGORITHMSBASED
GENERATION ENGINE

Genetic  Algorithms, (Figure 3) as
optimization and adaptation techniques,
maintain a constant-sized population of
candidate solutions known as individuals [De
Jong, 1988]. Theinitial seed population can
be chosen randomly or on the basis of
heuristics. At each iteration, known as a
generation, each individual is evauated and
recombined with others on the basis of its
overall quality or fitness in solving the task.

The expected number of times an individual
is selected for recombination is proportional
to itsfitness relative to the rest of population.
The power of a genetic algorithm liesin its
ability to exploit in ahighly efficient manner
information about a large number of
individuals. The search underlying Genetic
Algorithmsis such that breadth and depth are
baanced according to the observed
performance of the individuals evaluated so
far. By adlocating more reproductive
occurrences to above average individuals, the
overall effect isto increase the population's
average fitness. New individuals are created
primarily using two genetic recombination
operators known as crossover and mutation.
Crossover operates by selecting a random
location in the genetic string of the parents
(crossover point) and concatenating the initial
segment of one parent with the final segment
of the other parent to create a new child. A
second child is simultaneously generated
using the remaining segments of the two
parents. Mutation provides for occasiona
disturbances in the crossover operation by
inverting one or more genetic elements
during reproduction. This operation ensures
diversity in the genetic strings over long
periods of time and prevents stagnation in the
evolution of optimal individuals. The
individuals in the population are typicaly
represented using a binary notation to
promote efficiency of the genetic operations
and application independence.
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Figure 3. Genetic Algorithms

A Genetic Algorithm is very effective at
finding optimal solutions to a variety of
problems. It performs especialy well when
solving complex “real world” problems
because it does not have many of the
limitations of traditional techniques. Dueto its
nature, a Genetic Algorithm will search for
solutions without regard to the specific inner
working of the problem. This ability lets
Genetic Algorithms perform well on large,
complex scheduling problems, the design of
communication networks, nuclear plant fuel
configurations, financial portfolios
management, and various small engineering
problems.

The following considerations motivated usin
the choice of Genetic Algorithms as the
interface generation engine:

» Genetic Algorithms do not require
gpecification of many parameters
(usualy a user specifies only the

population size, crossover and mutation
rate, and stopping criterion).

» The search space, as considered in our
proposed architecture, is highly multi-
modal. That is, there exist many
optimal/suboptimal  solutions. Genetic
Algorithms search techniques are very
efficient in such a search space.

» Thesearch spaceisalso highly multi-
dimensional, thus vyielding a very
complex search problem (Distributed
Interactive Simulations may involve
thousands of objects with hundreds of
attributes). Genetic Algorithms search
techniques are very efficient in searching
complex representation spaces.

In the proposed approach Genetic Algorithms
search the space of possible mission rehearsal
scenarios to find the most optimal scenario for
the exercise problem based on their proximity
to predefined scenario classes and
specifications that have been initially set up by
the instructors/system managers. An example
would be “A scenario classHard” (Table 1).

ATTRIBUTE VALUE
Al ->Number of moving objects 21010
A2 ->Number of static objects more than 2
A3 -> Behavior type object 1 type C
A4 -> background type type A

Table 1. An Example of the Criteria Table.

This proximity is measured by numerically
expressing closeness (distance) to a criteria
table, in other words, how close does the
user's desired scenario match previously
defined scenarios created in  previous
exercises. The criteriatable would have been
built as part of the acceptance of the proposed
interface architecture, or built when the system
became operational by the user. It describes
initial specifications for a given scenario and
defines the scenario category to be generated.
The entries of the criteriatable are rules that
describe the conditions for various scenario
class parameters. A scenario class can be
expressed by alarge number of rulesthat form
a digunctive normal form (DNF) data



structure. For the Table 1 example the
corresponding rule is expressed as follows:

Scenario Class “ Hard” if
[A1=2.101 &[ A2> 2] &[ A3="“C" |&[A4=" A" ]

An individual scenario in the population of
scenarios is then evaluated and recombined
with others on the basis of its overall quality
and/or fitness to the current problem, the
desired level of quality and/or fitness having
been established during system design and
refined during user operation. This processis
iterative, and the expected number of times a
scenario is selected for recombination is
proportional to its fitness relative to the rest of
the population. By allocating more reproductive
occurrences to the above scenarios (relative to
guality and/or fitness) an overall increase in
the population's average fitness is achieved.

The result is consistently different scenarios,
thereby preventing the scenario user from
"gaming" the system. The Russian submarine
that was at some location in the last exercise
may now be an Iranian submarine, or may not
be there at all, just asin the real world.

For the instructors/system managers, the
process of scenario generation is greatly
simplified by requiring only one simple process
of determining what opponent is desired and
giving "orders' to the desired forces (User
Defined Global Control module in Figure 2).
The system would then begin the process of
automatic generation scenario across all
platforms. This process leads to generation of
all local simulation attributes (Figure 2) that
now can be transmitted to individual platforms.
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The scenario encoding/decoding used to
represent scenarios consists of an ordered list
of fields together with the look-up tables
which indicate how bit strings are to be
decoded to produce information about a
given scenario. Figure 4 depicts a smple
example of a possible encoding/decoding
scheme. All objects are encoded as a
concatenated string of bit fields. Each field
represents objects parameters and behavior.
It consists of sub-fields that describe the
object, itsinitial position, path, events, and
timings. Accordingly each sub-field is further
divided into sub-parts that describe the object
in agreater detail. Finaly, the shortest, non-
dividable fields are mapped to different
pieces of information by using various look-
up tables.

6. CONCLUSIONS

A high-level  master-dave  interface
architecture for intelligent control of scenario
generation in  distributed  interactive
simulation has been presented in this paper. It
addresses the complexity problem of current
and future networked simulation systems. It
is based on aprinciple that utilizes Genetic
Algorithm  search techniques. Genetic
Algorithms efficiently search the scenario
space and generate close to optimal scenarios.
The generated scenario performance measure
is calculated based on a distance measure to a
predefined scenario. The presented approach
has been developed and is currently being
experimentally implemented by Datamat
Systems Research, Inc.

REFERENCES

Bala, J., B.K. Gogia, “Genetic Algorithms
Based Scenario Generation Approach For
Simulated Worlds,” International  Joint
Conference on Artificial Intelligence (1JCAI)
Workshop on Entertainment and Al/Alife,
Montreal, Canada, August 18, 1995.

Baa J and Gogia, B.K. “Direct
Manipulation Interface for Flight Training
Simulators: A Rapid Scenario Generalization
and Optimization,” Nava Air Systems
Command (NAVAIR) PMA205, Phase |
Final Report, January 1995.

Barr, T. and Clark, K., “ Scenario Preparation
of DIS” Proceedings of the 14th
Interservice/Industry Training Systems and
Education Conference, 1993.

De Jong, K., “Learning with Genetic
Algorithms: An Overview,” in Machine
Learning, Vol.3, 121-138, 1988.

Feiner, S. and Beshers, C. “Worlds Within
Worlds: Metaphors for Exploring n-
Dimensional Virtua Worlds.” Proceedings
of 3rd Annual Symposium on User Interface
Technology, Snowbird, Utah, 1990.

DEFINITIONS

ACM Association for Computing
Machinery.

ADPA American Defense
Preparedness Association.

DIS Distributed Interactive

Simulation.

MASTER-SLAVE A two modules control
architecture, where a
master moduleis an entity
controlling aslave module.

REFORGER Return of Forces To

Germany.





