FRAMEWORKS - COTS INTEGRATION THROUGH ENCAPSULATION

Paula Renfro and Neal Walters
Loral Federal Systems
Manassas, Virginia

ABSTRACT

Loral Federal Systems is exploring the use of an
Integration Services Architecture, ISA, as the basis
for integrating Information Technology, IT, systems
which are predominately COTS-based. The primary
objective of the ISA is to lower the lifecycle costs
associated with COTS systems. The ISA must
address several dimensions of COTS integration
including process, control and data. The ISA must
also accommodate change. The system users must
be isolated from the continuous impact of change in
today’s systems - changes associated with
technology, COTS product end-of-life and business
rules to name three.

In the past we have implemented COTS-based
systems using ad hoc “glue code” architectures and
found those architectures to be deficient in many
ways. After giving consideration to developing our
own ISA framework we have decided to proceed by
adapting a commercially available application
development and runtime environment to integrate
COTS and non-COTS functions. This paper defines
the requirements for an ISA framework and addresses
the work required to encapsulate COTS applications
in a commercial runtime environment.

AUTHOR BIOGRAPHIES

Paula C. Renfro is an Advisory Programmer in the
Federal Systems Integration Laboratory at Loral
Federal Systems in Manassas, Virginia. She is
currently responsible for all SNAP development tasks
for the lab. Prior to its acquisition by Loral, she
worked for IBM commercial and Federal Systems
Divisions for 20 years. Most of her career has been
spent in all phases of the development of software
systems for both federal and commercial customers.
Her prior experience includes a wide variety of
application areas including tools development,
banking transactions, data model development, and
multimedia applications. She received her B.A. in
Mathematics from Spelman College in Atlanta,
Georgia.

Neal L. Waiters is a Senior Engineer in the Federal
Systems Integration Laboratory at Loral Federal
Systems in Manassas, Virginia. In 1993 Mr.
Walters was one of the first professionals in IBM to
be recognized as a “Certified Systems Architect”.
Mr. Walters is currently responsible for systems and
software architecture of new systems in both the

* Information - Technology and ‘real time combat

systems domains. Prior to its acquisition by Loral,
Mr. Walters worked for IBM commercial and Federal

. Divisions for 28 years. Recent publications include:

* Using Harel Statecharts to Model Object-Oriented
Behavior®, Software Engineering Notes, Oct 1992
and “An Ada Object-Based Analysis and Design
Approach’, Ada Letters, July, 1991. Mr. Walters
received a BEE from the University of Virginia in
1960 and an MSEE from NC State University in
1970.

FRAMEWORKS - COTS INTEGRATION THROUGH ENCAPSULATION

Paula Renfro and Neal Walters
Loral Federal Systems
Manassas, Virginia

INTRODUCTION

Current project trends are tending to maximize the
use of Commercial Off The Shelf, COTS, and
minimize new - software - development. The
development of systems' with- a high content of
commercial hardware and software are likewise
becoming more prevalent in the Federal marketplace.
Much of the emphasis on COTS solutions is driven
by the need to lower the cost and deployment time of
new systems to meet reduced budgets. Increased
focus on information system technology to reengineer
the government also coniributes. to the COTS
emphasis. These systems require an architecture that
supports open system standards and accommodates
the use of COTS products.

In the past the tendency has been to integrate COTS
applications in an ad hoc manner, creating glue code
as the need for it is discovered, to permit applications
to interface with each other and external interfaces,
passing control and data, implementing business
processes, and standardizing user interfaces. This
system structure is illustrated by Figure 1. Each glob
of glue is unique to the set of interfaces between a pair

of applications, and may require frequent modification
as business needs and technology changes. Because
this type of system is expensive to change and
support, other mechanisms are preferred.

The purpose of this paper is to define an architectural
approach for integrating COTS software applications.
This architecture addresses COTS integration in
terms - of process; data, control, presentation and
environment. We believe this approach will lower
the lifecycle cost and risk of COTS integration and
support.

CHALLENGES OF INTEGRATING
COTS-BASED SYSTEMS

Information Technology, IT, systems focus on data -
the movement of data, the security of data, the
integrity of data. These systems usually have large
data bases which tend to be distributed, often
geographically. The systems are often :-built from
legacy systems requiring the applications within the
system to interface with both new and old data and
applications. An IT system must manage all business
data and information as a consistent whole, providing
the required system functionality regardless of where

External §
Interface

data elements are stored and the data storage
technology used to store them.

When using COTS applications to implement an IT
system it is important to recognize the challenges of
COTS-based systems and design the system to
mitigate these challenges. A set of COTS
applications never provide the exact functions
required for a given system. The COTS
applications either provide a subset of the
functionality required, duplicate functions found in
other applications or provide functions not required at
all. COTS applications are usually not designed to
interoperate with each other. The data used in COTS
products is stored on a variety of media including flat
files, commercially available DBMSs and proprietary
data bases. The sharing of data between disparate
COTS applications is only one of the challenges of
integrating COTS-based systems. It is impossible
to control or coordinate upgrades to COTS products.
Changes in any one COTS application can have an
affect on the system as a whole. It is a frequently-
voiced opinion that most COTS applications are not
“Ada friendly”, a requirement in some Government
systems. In order to mitigate the challenges of
COTS-based systems it is crucial to isolate the
COTS applications from each other and the system
data. This will help insure changes in any one
application do not ripple through the entire system.
This application encapsulation also allows the
system to be able to take advantage of changes in
technology and withstand the inevitable COTS
application end of life.

To ensure customer satisfaction, the system must
provide a consistent look and feel across COTS
applications. Access to information and services for
the customer should be based on the customer’s
needs and the business process. Access should not
be driven by the individual COTS applications.

New IT systemns can benefit from a workflow
management approach to effectively route and
distribute information among cooperating tasks in a
business process. These tasks can be manual,
automated or automated with human assistance. The
workflow facilitates the integration of COTS
applications by removing the responsibility of
routing and distributing the data from the COTS
products themselves or requiring COTS-specific glue
code to accomplish this routing. The design of the
workflow must be driven by the business rules and
goals and be independent of the specific application
implementations that comprise the system. The
system must also be able to adapt to changes in the
business rules over time with minimum impact to
the overall architecture.

Thus, the challenge for the Integration Services
Architecture, ISA, framework is to provide the
mechanisms to integrate COTS products, legacy
software and data and newly developed software in the
same system. The system must appear to be a
homogeneous design to the users even though it may
contain many heterogeneous hardware and software
entities.

INTEGRATION FRAMEWORKS

When applied to integration mechanisms the term
“framework” has been used inseveral ways'.. In
this paper framework, in the context of an ISA,
refers to the integrating mechanisms and services for a
COTS-based system.

Over the past five years the hoped for productivity
breakibroughs using CASE tools met the reality of
integrating disparate tools. . A significant amount of
work has been done and numerous papers written to
define integration frameworks: for CASE tools.
Examples of work in this area include the
NIST/ECMA Reference Model’, IEEE Standard
1175, and the NGCR PSE Reference Model’. These

- models and . standards - propose integration

mechanisms for tools. Borrowing from the types of
integration mechanisms suggested for CASE tools,
we suggest the following mechanisms be provided
by an ISA framework for COTS-based systems:

Process Integration,

Data Integration,

Control Integration,
Platform Integration, and
Presentation Integration.

@1 Lo o

Process Integration

Process integration describes how application
software, support services and humans interact as a
system to implement the defined business goals. In
this definition a process consists of “process steps”
which are the elemental units of work performed by
the system. Good process integration occurs when
entities of the system cooperate efficiently to
accomplish process steps without duplication or
omission. A major key to implementing process
integration in a system is sufficient recognition and
control of the process steps. The process step control
mechanism is an Event Manager. The Event
Manager has no knowledge of the business goals but
works with a Process Manager who does. When the
Event Manager recognizes the completion of a step it
initiates (zero or more) other steps based on direction
of the Process Manager.

Data Integration

The goal of data integration :is to provide all the
entities of the system with a seamless, accurate and
understandable representation of the data which is
appropriate to their accomplishment of the process
steps they perform. Mary Shaw' writes about
system integration: “Large software systems are often
integrated from pre-existing systems. The designer of
such a system must accommodate very different -
often incompatible - conceptual models,
representations, and protocols in corder to create a
coherent synthesis.” Even through Ms. Shaw was
- not directly dealing with COTS-based systems, the
“pre-existing systems” in her statement accurately
reflects the influence of COTS on a system solution.
Data integration has four facets:

» Interoperability - is a measure of how common
the data view (structure and/or schema) is
among the system entities. Interoperability can
be good with the use of a single, common,
shared file system to poor with a common data
interchange format.

s Consistency - is a measure of the semantic
integrity of data as understood by the entities of
the system. An example of poor semantic
integrity: a “labor-month” may represent. 160
hours of labor to one software application and
172 hours to a different software application.

® Redundancy. System entities are well integrated
if there is little duplicate data and automatically
derived data in the system. Redundancy
jeopardizes data consistency and leads to refresh-
time problems.

s Synchronization - represents the temporal natare
of the data such that cooperating entities may
work concurrently on the same data. Time,
events or conditions may - require data
synchronization in a system.

Control Integration

Control Integration is accomplished by the Event
Manager and System Services (e.g. Operating
Systems, DBMS). The control mechanisms perform
communication services, time management, software
invocation, data retrieval, security and other services.
Good control integration occurs when there is a
uniform, cooperative structure of control through out
the system. "All non-exception events are managed to
accomplish the business goals of the system.

Platform or Environment Integration

Simply stated, platform integration occurs when the
- entities of the system have no dependence on the
underlying hardware and its associated software (e.g.

operating systems). This is a common goal in
today’s distributed, heterogeneous, open systems.

Presentatien Integration

The goal of presentation integration is to improve the
efficiency of the human users of the system -by
reducing the cognitive load of those users. This is

- accomplished by :-

® Reducing the number of interaction - and
presentation paradigms,

e Providing interaction and presentation paradigms
that match the user’s cognitive models,

o Meeting the user’s response time expectations,

o Ensuring correct and useful function : and
information is available to the user, and,

» Hiding the system implementation mechanisms,
especially those mechanisms subject to lifecycle
technology change, from the user.

In a COTS-based system which uses : different
products to interface with the human user there will
likely be “lock and feel” differences between
application sessions. (The notable exception is
applications written for a common environment such
as MicroSoft Windows™). In such a system, the
goal of presentation integration is to give the users a
common navigation:system for signing on, checking
security, starting and stopping applications, and
performing customized functions. . This common
navigation system should have the same look and feel
regardless of hardware platform, operating system or
location in the system. The basic presentation
should not have to change when technology
insertions are done at a later time. Training updates
for using the system should only have to address new
function, not changes to the navigation system.

THE ROAD TO AN ISA FRAMEWORK

In early 1992, Loral Federal Systems began
development of the Launch Team Training System
(LTTS) for NASA. This system would increase the
competence of the shuttle launch team engineers
through multimedia training. LTTS was to be a self-
paced Interactive Computer Based Training System
{CBT) supporting courseware authoring, management
and delivery within a clieni-server environment. The
system to be developed would integrate COTS
hardware and software products to create a seamless
environment.

The configuration proposed consisted of 21
workstations running OS/2. COTS integration was
required for navigation between products (presentation

integration) and between the Authoring tocl and the
database (data integration). The integration of the
COTS products relied completely on OS/2- which
provided the services necessary to integrate the data
from the disparate COTS products. As a result, very
little glue code was developed:

In 1992, the number of products running on OS/2
were limited and capabilities were slow tc migrate to
the operating system. Approximately six months
into development, the Authoring product announced
a DOS/Windows upgrade that greatly improved the
capabilities of the product. The upgrade for the OS/2
version, however, was not available nor expected to
be available by the time LTTS would be in
production. In addition, two other COTS products
were announced which ran under DOS/Windows, but
pot OS/2. These two products also significantly
enhance the capabilities of the system. The
customer, understandably, wanted to be able to take
advantage of these improvements in technology.
Because of a requirement that the system support a
wide variety of vendor and third party software
products, it was necessary to move to a Microsoft
Windows environment. - Although the change in
operating system did not effect the hardware for
LTTS, all but one of the COTS products and six
months of development work had to be discarded.

The architecture and development team redesigned
the system to mitigate the effects of COTS upgrades
and to ensure that the COTS products were isolated
from each other and the operating system. To this
end a framework was designed which consisted of a
standard interface and wrappers for the Authoring tool
and the database. The standard interface encapsulated
the data. The interface was designed to insulate the
courseware from the physical and logical structure of
the database and from the underlying operating
system. The wrappers converted the data to and from
this standard interface. The implementation of a
framework allowed the outward operation of the
system to be unaffected by changes in the Authoring
tool or the database over the life of the system and
thus the system could remain “state-of-the-art”.

Although the framework developed for LTTS was a
major step in COTS integration, there were a few
shortcomings. The framework was specific to LTTS
and therefore not transferable to any other system.
Also a major portion of the software developed for the
framework supported the communications and
database access services specific to the Novell LAN
and the Netware SQL Server Database. The
framework would be improved by encapsulating these
services. The development of the framework for
LTTS helped define the requirements for an ISA
framework.

REQUIREMENTS FOR AN ISA
FRAMEWORK

This section addresses requirements for the ISA for a
COTS-based IT system. These requirements are
based on the integrated software development
reference models discussed earlier and our own
experience in integrating and supporting COTS-based
IT systems for a variety of customers, applications
and environments. Both the framework for software
development integration and ‘- the framework for
COTS-based IT systems have similar needs for the
underlying integration mechanisms. The major

* difference between the two is an emphasis on

function in the software development framework
versus the emphasis on data in the IT framework.
The broadly stated requirements for the IT framework
are:

The framework must accommodate distributed,
scaleable, client-server architectures. One significant
trend in the 1990s is distributed processing.
Workstation capacity can be added in small,
economical, and powerful increments. Workstations
provide advanced interactive, graphic interfaces
required by business process applications. A
distributed architecture provides a practical means of
integrating existing heterogeneous components.

The framework must provide Control Integration
mechanisms that will enable Process Integration.
The basic framework services must include event
monitoring and event control. The detectable events
must include: time of day, elapsed time, creation of
data, movement of data, access to data, creation of a
message, receipt of a message, asynchronous human
action, application exceptions and system exceptions.
Ideally the Process Manager can be defined and
changed through graphical tools that depict the
desired workflow of the system. The workflow
model should show all entities (software and humans)
of the system and the work items (data) they need to
complete their process steps.

The framework must accommodate data integration
through commercial database management systems
and ASCII flat files. IT systems typically manage
large volumes of data in mass storage that persists
beyond the duration of the users sessions. Much of
the data in a “new” IT system is often retained from a
previous system. The framework should provide a
database mapping facility. This will enable COTS
and non-COTS applications to access and manipulate

data that other entities have created. Multiple
mappings of data should be supported.

Today’s IT systems must plan ahead for technology
insertion in the context of computing power and
storage media. The framework should provide
portability across widely accepted hardware platforms,
operating sysiems, windowing systems, databases,
and open system standards. The framework should
also provide a published application programming
interface, API, for new application development.

FRAMEWORK IMPLEMENTATION
Make or Buy ?

To the authors’ knowledge there is no commercial
product which is marketed as a COTS integration
framework and addresses the requirements listed
above. Even those products marketed for tool
integration such as SoftBench™ from Hewlett
Packard, do not- address all the integration
mechanisms required for an IT system, especially
those for data. - Therefore we were faced with the
decision - make an ISA from scratch; or, buy a
commercial product and enhance it to support COTS
application integration.

Make an ¥ISA. New development would ensure total
control of all aspects of the ISA - functionality,
schedule, technology and change cycles. The risks
associated with lost of control of a commercially
based ISA would be alleviated. Dependencies on
vendor schedules could be eliminated. A consistent
look and feel to the system could be ensured during
system design. However, long and often costly
development cycles are the down side of new
development. Developing major parts of ISA such
as communication services would “reinvent the
wheel”. Our experience with LTTS has shown that
a newly developed ISA would cater to the first large
project using it, adding customizations that would be
unnecessary and unwanted by other systems.

Buy an ISA. Even though there is no COTS
integration framework being marketed there are
commercial products that address many of the
requirements of the ISA. The candidates we have
looked at are listed below. Most of the candidate
products are marketed as (rapid) application
development tools/environments. The disadvantages
of using a commercial product as the foundation for
the ISA is basically a loss of conirol. All the
challenges associated with using COTS applications
also apply to using a COTS-based framework.

Vendors change their products on irregular schedules;
a new release may not be upward compatible with the
previous release; old releases are not supported after a
few months; and, vendors can go out of business.

The following paragraphs give a brief description of
the :commercial products we considered for the
foundation for the ISA framework. These products
provide development environments and/or tools for
application development. Many of these :products
interface to popular DBMSs and Graphical User
Interfaces. Many provide standard communication
services. Some of these products incorporate or
interface to word processors and spread sheet type
applications. The descriptions of these products is
based upon information obtained from the vendor,
and is provided without independent evaluation or
validation by the authors or Loral Federal Systems.

SNAP and Workflow - Template (WFT) fiom
Template Software®. SNAP is an object oriented
development environment which supports distributed
and client/server architectures, rules-based
applications through the use of an inference engine
and migration to a variety of platforms. WFT is a
tool for the development of enterprise-wide
production workflow systems. WET enhances and
complements SNAP in the automation of complex
business processes. SNAP is primarily intended for
new C application development, but provides a
mechanism integrating with any language that can be
linked to C code. SNAP also provides an API so
existing systems can call and interact with SNAP
objects.

Universal Network Architecture Services (UNAS)
from TRW® . UNAS is intended primarily for Ada
real-time systems. A software architecture tool,
SALE is available with UNAS for defining the
system topology. UNAS rapidly produces the
system middleware (communications and other
services) after the system topology is defined.
UNAS does not have provisions for incorporating
COTS software applications.

UNIFACE Six from Uniface Corp’. UNIFACE Six
provides an integrated development environment for
creating technology-independent client-server
applications. UNIFACE Six provides a set of tools
to define, store, and maintain the enterprise model as
well as the ability to rapidly generate applications
that utilize an integrated model repository.
UNIFACE Six supports many commercial database
systems and hardware platforms. UNIFACE Six is
primarily an application building toolset versus a
COTS integration framework.

FOUNDATION from Andersen Consulting®.
FOUNDATION provides a methodology and tools
for building host based or distributed client-server
applications. API services include Dynamic Data
Exchange, Environment Loader, Error Handler,
Program Front Ends and Shared Data Manager.
Foundation provides a message-based architecture
that provides many communication services to the
applications. FOUNDATION is primarily intended
for new C and COBOL application development, not
COTS integration.

FactoryLink IV Software (FLS) from United States
Data Corp’. FLS is a real-time application and
technology enabler software system for configuring
scaleable, platform-independent applications in an
open, heterogeneous environment. USDC provides
application Modules to perfoom the system
functionality. FLS interfaces to most of the
commercial database products and supports many
communication protocols. The application domain
for FLS is Production Control, as opposed to IT.
There are no provisions for incorporating COTS
application software.

Galaxy Application Environment from Visix .
Galaxy is a multi-platform application development
environment designed specifically for constructing
large-scale commercial applications. = The API
supports both a kernel-based architecture and a fully
distributed client-server model. Galaxy provides
network-independent services such as hypertext help
and inter-application communication. Galaxy has
no direct provisions for COTS software product
integration.

Genesis Systems Integrator from MTI Financial
Systems, Inc''. Genesis provides the means for
disparate systems to work together in ways which
were not necessarily envisaged by the constructors of
these systems. Genesis accesses a database
containing a description of the messages produced by
every application on the network, the messages(s) to
be produced and delivered to other applications.
Genesis is entirely configured via its database. New
translations can be accommodated with writing new
programs. Support for COTS application programs
is unknown.

Conclusion

We conclude that using a commercially available
product as the basis for the COTS-based ISA
framework is the right choice. We believe the risks
and costs of starting with a commercial product are
less than starting a new development.

We have chosen SNAP™ and WFT from Template
Software as the foundation for our candidate COTS
ISA Framework. SNAP provides the basic
integrating mechanisms for data, control, presentation
and platform. SNAP supports most of the major
RDMS including Sybase™, Oracie™, and Informix™,
the Open System Standards and the defacto standards
of VMS, MicroSoft/Windows™, and Windows/NT™.
Ind additon SNAP supports the Intel X86 processors
and many of the Unix-based processors. A Process
manager can be implemented using the workflow
template. The Workflow Template provides
graphical tools to define tasks and the movement of
data throughout the enterprise. SNAP/WFT also
interfaces with several IDEF tools to define business
rules and data schemas. However, SNAP does not
support Ada and has no direct support for COTS
integration. SNAP does provide an API to support
the integration of C and C++ legacy software. Our
plan is to build “wrappers” to interface the COTS
application products to the SNAP APL. Each COTS
product must have a personalized wrapper. See
Figure 2.

Application wrappers provide another layer of software
between the API and the COTS product. The wrappers
insulate the application from the rest of the system and
help establish application independence from changes
in the system. Equally important, a wrapper protects
the rest of the system from changes, e.g., a new
version or a replacement application . The wrappers
provide the mechanism for integrating COTS
products. In general the wrappers will:

* Provide hooks to interface to the ISA event
manager, detecting application actions and
change of state,

¢ Perform data transformations unique to that
application, and

¢ Map the application’s
dependencies to the ISA.

environmental

SUMMARY

There are many challenges associated with building
systems from COTS products. System integrators
and customers alike have underestimated the effort to
address these challenges over the last several years.
At Loral Federal Systems our early implementations
of COTS-based systems were naively architected.
Custom code was developed as needed to link
products together; the solution was driven by
functional requirements rather than business rules and
goals; and, the solutions were customized for specific
hardware platforms and operating systems. In
retrospect these architectural “shortcuts” made
changes to the system more costly.

Our experience with LTTS and other applications has
lead us to better ways to integrate COTS-based
systems, especially in the domain of Information
Technology where the majority of all software and
hardware in the system is COTS. We have defined
the requirements for an Integration Services
Architectural Framework which addresses the specific
needs for COTS integration. We have decided to
implement the ISA using a commercial product as
the foundation. We chose SNAP™ and Workflow
Template from Template . Company for that
foundation. We believe the key to adapting the
foundation product to be a general COTS ISA is in
the design of wrappers that encapsulate each COTS
application product, isolating it from system changes
and vice versa. Over the next several months we will
continue to refine the definition and design of
wrappers in the context of the API provided by
SNAP.

REFERENCES

{1] Wallnau, K., Feiler, P., Tool Integration and
Environment Architectures, Technical Report,
CMU/SEI-91-TR-11, Software Engineering Institute,
Pittsburgh, Pa., May, 1991

[2] Reference Model for Frameworks of Software
Engineering Environments, Technical Report ECMA
TR/55, 3rd Edition, August, 1993

[381 Reference Model for Project — Support
Environments; Version 2.0, September 2, 1993

[4] Shaw, M., Software Architecture for Shared
Information Systems, Technical Report, CMU/SEI-
93-TR-3, Software Engineering Institute, Pittsburgh,
Pa., March, 1993

[5] Template Software, Inc.; 13100 Worldgate Drive,
Suite 340, Herndon, VA 22070-4382. (703) 318-
1000

[6] Rational, Inc., 4041 Powder Mill Road, Suite
200, Calverton, MD 20705. {(301) 937-4900

[7] Uniface Corp., Bay Colony Corporate Center,

. 1000 Winter Street, Suite 1600, Waltham, MA

02154. (617) 890-1615

[8] Andersen Consulting FOUNDATION - Suite
2004, 69 West Washington St., Chicago, IL 60602.
(800) 458-8851

[9] USData Corp., 2435 N. Central Expressway,
Richardson, TX 75080. (800) 527-0593

[10] Visix Software Inc., 11440 Commerce Park
Drive, Reston, VA 22091. (703) 758-2702

[11] MTI Financial Systems Inc., 335 Madison
Ave., 11th Floor, NY, NY 10017. (212) 557-0022

Integration Services Architecture Framework

I Presentation I

Wrapper I

Wrapper l

Wrapper

l Applicatio

Control

Applicatio:

Control

Applicatio

lj

I Control I

I Process I

Figure 2

