DIS Logger Interchange Format (DLIF-95)

Draft Standard
Mike Garnsey Keith Green
STRICOM DA
Orlandoe, FL Alexandria, VA
Chris Kennedy Jesse Lieu
Concurrent AcuSoft
Berkshire, UK Orlando, FL.
Greg Schow Scott Smith
STRICOM IST
Orlando, FL. Orlando, FL.
Doug Wahrenberger
Loral ADS
Orlande, FL

ABSTRACT

The proliferation of incompatible simulation data recording formats in the Distributed Interactive Simulation (DIS)
community has consistently been a burden to implementors of DIS, to analysts, and to operational DIS sites. In
response to this situation, the co-authors of this paper developed and implemented a prototype standard datalogger
interchange format at the I/ITSEC 1994 DIS interoperability demonstration. Feedback from this I/ITSEC 1994
event has resulted in the revision of the prototype format into the current DIS Logger Interchange Format (DLIF-95)
draft standard. DLIF-95 is intended to provide the mechanism for the entire DIS community to archive and
exchange recorded simulation data efficiently and with confidence. This paper describes the DLIF-95 draft standard,
the rationale behind its creation and the lessons learned in its implementation

AUTHORS’ BIOGRAPHIES

Mr. Mike Garnsey has been a project engineer at the United States Army Simulation, Training and Instrumentation
COMmand (STRICOM) since June of 1991. He is involved in numerous DIS-related RDT&E activities, including
DIS networking and protacol architecture research, development of distributed data-logging and session monitoring/
management techniques of DIS exercises, and DIS compliance and interoperability testing research. Mr. Garnsey
holds a Masters of Science degree in Simulation Systems from the University of Central Florida, and a Bachelor of
Science degree in Computer Engineering from the University of South Florida.

Keith Green is a Programmer and Analyst with the Institute for Defense Analyses (IDA) in Alexandria, VA. Keith
holds a Masters of Engineering degree in Engineering Math and Computer Science from the University of Louisville
in Louisville, KY. He has six years of experience with SIMNET and DIS and has been programming for almost 20
years.

Mr. Chris Kennedy has been a member of Concurrent Computer Corporations Engineering division for 11 years. He
is a project manager responsible for several internal Research and Development projects involving distributed
computing technology. He has worked on projects involving OSI standards, client/server application development
for real time environments, and more recently on the development of DIS applications. Mr. Kennedy holds a
Bachelor of Technology (Honours) degree from Brunel University, West London, United Kingdom.

Mr. Jesse Lieu, President and founder of AcuSoft, Inc. received his Bachelor of Science degree from the University
of Taiwan and his MSEE from the University of Florida. He has more than 10 years experience in the design and
implementation of simulation systems. In addition, to his duties as President of AcuSoft, Inc., Mr. Lieu is also the
Chief Technical Officer of the company. In this capacity, Mr. Lieu directs the technical efforts of the AcuSoft system
and software engineers. His simulation experience covers an extensive list of DIS related projects, the most current

being the ADST STOW/PRAIRIE WARRICR 95 Exercise which utilized several AcuSoft Developer's Tools to
include a Loral/AcuSoft ADST I project, the After-Action-Review (AAR) System STRIPES.

Mr. Greg Schow has been a praject engineer at the United States Army Simulation, Training and Instrumentation
COMmand (STRICOM) since March of 1994. While at STRICOM he has worked on developing DIS applications,
Such as timestamping, a common database standard and DIS testing. Mr. Schow holds a Masters of Science degree
in Industrial Engineering from Texas A & M University and a Bachelor of Science degree in Electrical Engineering
(Minor in Physics) from the University of Portland, Portland, Oregon.

Scott H. Smith is Principal Research Associate at IST. He received an M.S. in Computer Science from the
University of Central Florida in 1981. He is currently Project Manager for the TRIDIS project and Program Manager
for DIS related activities at IST. His research interests lie in the areas of DIS, CGF, and Human/Computer
Interfaces.

Doug Wahrenberger is currently employed on the Advanced Distributed Simulation Technology (ADST) contract
for the US Army Simulation, Training, and Instrumentation Command as the delivery order manager for
Architecture and Standards. Mr. Wahrenberger has over twenty two years of experience in the fields. of space
telemetry and command systems, C3I systems engineering, networked simulation, and. simulation software
engineering. He holds an M.E.E. degree in Electrical Engineering and has completed his course work for a Ph.D.
(ABD) in communications engineering from the Catholic University of America.

DIS Logger Interchange Format (DLIF-95)
Draft Standard

THE PROBLEM

A datalogger is a computer with associated software (called a datalogger program, or just 'datalogger’ for short)
which records the network packets from a simulation exercise to a file on disk or some other medium. Whether the
data within a datalogger file is rigorously analyzed for research or used to replay. the events of a simulation exercise
for demonstration or After Action Review (AAR), it is usually an important record of a DIS activity. There are
many occasions when the availability of recorded simulation traffic for data analysis and review is critical to the
success of a simulation exercise or experiment. In the case of training exercises, data analysis of the network
packets comprising the exercise has the potential to assist.with the process of After Action Review. And when
simulation is used as a tool in:the evaluation of tactics or doctrine or as a guide in the materiel acquisition process,
it is imperative that a complete record of the simulation experiment be maintained for analysis and archival
purposes.

Unfortunately, there are numerous datalogger file formats currently being implemented at various organizations active
in DIS. The incompatibility between the different formats, however, prevents the convenient exchange of both the
recorded simulation data and the associated data analysis tools between organizations. Instead of focusing DIS
software development activities on enhanced data review and analysis tools, many DIS sites expend considerable
time writing software routines to convert datalogger files into a format they are familiar with. Additionally, a site
does not always know what format a particular file was originally logged in, which makes:the problem more
difficult. As more organizations become active in DIS and develop their own datalogger formats, this file exchange
problem will only get worse.

ORIGINS

In September of 1994, STRICOM formed a “tiger team” composed of a diverse group of government, industry and
academic DIS logger file format activists. Applying the Internet community’s philosophy of “rough consensus and
running code”, the immediate goal of this logger file format team was to baseline a logger file format for
implementation at the 1994 I/ITSEC DIS interoperability demonstration — with the ultimate goal being to evaluate
and promote this I/ITSEC-94 logger file format as an interchange format for adoption by the DIS community. A
substantial amount of DIS network traffic at I/ITSEC-94 had been archived in the prototype 1994 DIS Logger
Interchange Format (DLIF-94). Lessons learned from implementation and usage of this format have resulted in the
revision of the prototype format into the current DLIF-95 format. The DLIF-95 format has been successfully
presented as a proposed DIS standard datalogger interchange format to the Fidelity Management and Usability
(FMU) Working group at the 12th DIS Workshop on the Standards for the Interoperability of Distributed
Simulation. Currently, DLIF-95 is in the process of being forwarded as a draft standard for incorporation into the
IEEE 1278 DIS standard. DLIF-95 is being implemented at major DIS events such as the Prairie Warrior ‘95
exercise, and is planned for use at the 1995 I/ITSEC DIS demonstration and, with modifications for multicast, in
the STOW exercises.

DLIF OVERVIEW
The general requirements of the DLIF-95 file format are as follows:
. Al fields are in network byte order (most significant byte first --otherwise known as “big endian”).

o All numerical fields are set to OxFFFF(FFFF), signed or unsigned, if they are not supported, or have no
real value assigned to them.

. ASCII string fields use the "C" convention of terminating with a null character (so that "no value available"
is specified by having a null character in the first byte).

. All Major Data Components (File Header, Each Segment, File Trailer) must be 64-bit aligned.

The DLIF-95 file format (Figure 1) consists of three major components: the file header, one or more segments, and
the file trailer consisting of an index of the segments. As figure (1) illustrates, all segments begin with a header, but
the frame portion of a segment may be located either before or after the index portion of the segment. The format is

designed to accommodate both low-level data link Iayer network packets, as well as high-level-only DIS types of
simulation PDU data.

File Header File Header
Seament 0 HEADER | Segment 0 HEADER
Segment 0 FRAMES Segment 0 INDICES

Segment 0 FRAMES
Segment 0 INDICES
Segment n HEADER ___Segment n HEADER
Segment n FRAMES Segment n INDICES
Segment n FRAMES
Segment n INDICES
INDEX of Segments INDEX of Segments

Figure 1: DLIF-95 Overview

The following is a more detailed description of these three major DLIF-95 components:

1. The file header (Figure 2) contains fixed length text fields to document various-aspects of the recorded
DIS data file, such as: the simulation exercise name, data recording site, and terrain database name. The file header

component also includes a variable length text field at the end of the file header to capture any data deemed pertinent
to describing the recorded DIS data file.

DLIF DIS Information

| " DLIF Time information_

_DLIF Time Inforamation™] Time Zone
DLIF Net Information MinuteWestOfGMT DaylightSavingTime
DLIF File Link (32 bit int) (32 bit U _int)

Notes Time Resolution

Var Length {32 bit Inf)

Start Time
(64 Dbit timeval)

Stop Time

(64 bit timeval)
Virtual Start Time
(64 _bit timeval)
Virtual Stop Time
{64 Dbit timeval)
Start Time String

Magic Number
{16 char)

Major Version # Minor Version #

(16 bitU int) | (16 bit U int)

Header Length {24 Char,YYYY:MM:DD:HH:mm:ss)
(32 bit U int) Stop Time String
Segment Length (24 Char YYYY:MM:DD:HH:mm:ss)
(32 bit U _int) Virtual Start Time String
Original File Name (24 Char,YYYY:MM:DD:HH:mm:ss)
(256 char) Virtual Start Time String

(24 Char YYYY:MM:DD:HH:mm:ss) |

DLIF Net Information -

DLIF DIS Information . Ethernet Info
— — - Data Link Type e
Site ID # Host ID# (32 bit U_int DIS Transport Type
516 bit U intz 516 bit U int! Capture Length /’ (32 bit int)
Host Name (32 bit U_int) Transport Info
(64 Char) Data Link Inf (244 bytes)”
Exercise Name (248 bytes) UDP Info
(64 Char) Other Info
Terrain Name (512 Char) Number of UDP Por}
(256 char) (32 bit int)
Tester Name Port Number
(64 Char) (U int 16[16])
Site Name DLIF Link Information
(64 Char)
Volume Number
Trial Description

256 ch

(128 Char) (286 char)
Previous Volume File Name
(256 char)
Next Volume File Name
(256 char)

Figure 2: DLIF-95 File Header Structure

2. File segments (Figure 3), which may be fixed or variable length, consist of three components: the segment
header, the segment frames and the segment indices. All segments start with a header, but the order of the segment
frames and the segment indices is left to the implementer. The general segment requirements are as follows:

. Segments must be 64-bit aligned
. In a segment, the INDEX may appear anywhere in the segment.
. INDEX portion has to be contiguous.
. INDEX portion has to be 64-bit aligned.
. The DATA portion has to be contiguous,
. The DATA portion has to be 64-bit aligned
. Actual DATA frames may not straddle segments.
. DATA record shall be packed: no padding, if the data record contains the network frame at the Data Link
Level.
. DATA record shall be packed and 32 bit aligned if the data record contains only Application Layer Level
data.
Segment Size Segment typg Offset to Start|Offset to Start of
index hodv Frame
(32 hit) (32 _hirt) (22 bhit) (32 hit)
Number of Frame] Number of Fra| Start time of this Segmen
Seament prior to this Seq
(32 hit) (32 hit) (64 hit)
Seqg isti
Referencqd # Droppl# Colligioh gia # runk
for all Frame Frame O
Segment (16 bit) (16 bitX16 bit)(16 bilt)
Pointers Erame 1 Erame
| |l ast Frame
\ r l ast Index
Framg Initia Padding for Fi»
Time Stamp Data Offset Tvype | Lenath segmernt size ar
(64 bit) (32 bit) (16 bltX16 bit) 8 byte alignm
IsSimulatior] FrameProto| Recordi
Tvne
(1 bit) (7 bit) (8 bhiil)

Figure 3: DLIF-95 Segment Structure

3. The file trailer (Figure 4), which contains the segment index list, is of fixed length. The fixed length limits the
aumber of segments to 1024, but this limitation is outweighed by the ease of verifying the ends of files afforded by
a fixed length field.

Number of
Magic Number recorded
Segments
(128 bits) (32 bits)
Segment 1
Pointer to Top of
Segment 2 . (# bytes from top of the
32.bits
Total Size of Segment
(in # bytes)
32 bits
Recorded Time of the
Segment X Record Data Frame in Segment
(64 bits)
Enumerated Type
of Segment X (default =
(32.bits)
Segment 1024

Figure 4: DLIF-95 File Trailer Structure

RATIONALE FOR THE DLIF-95 APPROACH

When the DLIF Tiger team first came together there was a division over whether to use fixed length or variable
length segments in the files. Variable length was favored, because of its flexibility, while fixed length was favored for
its robustness. Other issues were: What size should segments be? In what order should the data be organized?
How are unused fields dealt with? DLIF-95 has taken these issues into account and attempted to address these and
other issues to create a flexible and robust interchange format.

The Requirement to Segment the File

Network packets are of variable length, and because of the way DIS uses networks, there are a lot of them. Unless
packets are concatenated, many gigabytes of available storage will be wasted in buffering smaller packets to the
largest packet size. This concatenation makes the packets difficult to find, especially in a large file. There are
several ways in which log files are read. The most common is to locate a particular packet (by time, packet number,
etc.), and from there, read sequentially until some other point (usually when the area of interest has passed, or the
end of the file has been reached). To facilitate searching, segmentation was introduced, breaking the file up into self
contained segments such that the segment houndaries were easily locatable. Coarse grained searching can then
quickly yield the segment in which a particular packet is stored, and then a fine grain search within the segment
will yield the packet itself. A segment would have a header, which contains structure information about the segment
(where the packets are in the segment etc.) and index information (packet numbers, timestamp information etc.)
about the packets in the segment.

The Fixed vs. Variable Segment Debate

The main purpose of a DLIF file is for interchange, i.e. moving files from one system to another, which involves
some sort of transport mechanism (tape, floppy, network, etc.). All forms of transport introduce a risk of
corruption, some less than others. It was thought that most forms of corruption would be localized to particular
parts of a file (i.e. most of the file would be intact, but there may be a few small areas where there were
corruptions). If the corruption occurred at a segment header most of that segment would be Jost. If the segments are

of variable length, and the length field had been corrupted, the remainder of the file would be lost. If the segments
were of fixed length, then cnly the single segment would be lost.

There are also processing advantages to fixed length segments. During replay, if records are of fixed length, the
replay program knows in advance the size of the segment, and can therefore ensure that a buffer of the correct -size is
available to receive the data. ‘Also, when it comes to read a segment, it does not have to read it in two hits (the
first to read the segment header, which will contain the size of the segment, and the second to read the rest of the
segment). When writing a file (while logging), a datalogger can select a segment size that best matches the buffering
within his system to achieve the optimum memory to file data transfer performance.

Fixed length segments do, however, waste some storage space (as a packet cannot straddle segments), and it can
impose implementation constraints that are not required for variable length segments. An implementation may fix
the number of packets per segment, and without waisting any storage or having to further manipulate the data, write
it to the storage medium. Thus, by using a buffer big enough to hold the data frames, even if they were all the
maximum size (Maximum-Transfer-Unit-size x number-of-data-frames + segment-header-size + segment-index-size),
packets can be streamed into the buffer, until.the packets per segment limit is reached, and then the used portion of
the buffer is written to the file. As memory is now fairly inexpensive, sacrificing 1 or 2 megabytes for programming
simplicity and the subsequent performance advantage can be well worth the investment.

Most of the advantages of fixed length segments has been addressed for variable length segments by adding a trailer
to the file. The trailer contains indexes to all the segments in the file. There is still a problem though, if the file is
on a streaming device (such as magnetic tape), because the trailer is at the end of the file, the program has to stream
the tape to the end to read the trailer before starting the normal processing of the file. However, since the purpose for
the trailer is to speed random searches, this may not be an issue, since tapes are not random access devices.

In order to allow maximum flexibility to the implementors, a segmentation strategy was adopted that supported
both fixed and variable length segments. Thus the implementor may:choose to log to a file with either fixed
segment sizes or variable segment sizes. For the most part, it does not matter to an analysis tool or a replay tool
what segment strategy is used in the file.

There is a disadvantage with using the trailer system to identify the segment structure of the file. Should the
datalogger crash, (hardware failure, power fail etc.) the trailer will not have been written, so the data already
captured will not be easily recoverable. Also, a common file corruption is truncation. As the trailer is at the end of
the file, it is more vulnerable. The trailer information can, however, be regenerated by reading the segment headers
sequentially (for variable length segments), or randomly (for fixed length segments).

The 64 Bit Alignment Requirement

Analysis, as noted above, is a common use of logfiles and logfiles are probably read more often for analysis than
replay. The reality of current computer technology is that numerical values need to be properly aligned —i.e.a 16
bit integer must begin on a 16 bit boundary, a 32 bit integer on a 32 bit boundary, etc. As an aid to efficiency, the
DLIF has attempted to ensure all numerical values are properly aligned within a segment, by forcing vital data areas
onto 64 bit boundaries. Without this, data from the file would have to be copied from the read area, - into another
(properly aligned) area before it is accessed. In some cases, even the data in captured packets can be relied upon to
be properly aligned.

The main reason 64 bit boundaries were chosen (rather than 32 bit boundaries) is that alihough current computers
generally read information in 32 bit increments, there are already some that use 64 bit words. Without impairing
current machines, the DLIF-95 format allows for a seemless jump to the next generation of computers.

LESSONS LEARNED

When the DLIF Tiger Team first came together, the overriding design requirements for a standard datalogger file
format were flexibility and ease of implementation. To that end, the experimental /ITSEC 1994 datalogger file
format (DLIF-94) had a variable length file trailer. However, software implementation experience of this flexibie
trailer format structure resulted in the revised DLIF-95 format adopting a less flexible but more easily implemented

fixed length file trailer. In general, since DLIF-95 has evolved from rough consensus and compromise between this
paper’s co-authors, the following flexibility vs. implementability issues are being debated:

1.

2.
3.

-

o~ @

Should the timestamp in the data frame index be changed from 64-bit absolute time to 32-bit relative time
(relative to the beginning of the appropriate segment).

Should the file trailer be changed from a fixed number (1024) to a variable number of segment records

Is the 32-bit pointer limitation of DLIF-95 (restricting individual DLIF-95 file sizes to a maximum .of 4
gigabytes) acceptable.

Should the ordering of the major DLIF structures to accommodate the reading to and/or writing from streaming
tape media be changed?

Should a DLIF compression scheme be implemented and, if so, how?

How should multicast network protocol information be recorded (currently being addressed by STOW)?

Can the archival information be improved to better support DLIF file merging from multiple sources?

Who is the cognizant authority for issuing enumerations for fields in the DLIF file (version number, etc)?

CONCLUSION

The DLIF-95 standard, while it is neither perfect nor complete, is sufficient to meet the needs of most datalogger
users: analysts, developers, operational, and site personnel. There are unresolved issues, such as the variable or
fixed length segments argument. The general concensus, however, is that, while this is an important issue, it
should not prevent the DIS community from adopting a standard that works and offers many tangible benefits. An
interchange format will facilitate sharing of information, services, and analytic capabilities among disparate sites; it
may assist in file archival for historical analysis; it opens the door for standard analytic capabilities at all sites; it
allows sites to share demos easily; and it facilitates interoperability testing and with other testing.

References

Garnsey, Mike; Green, Keith; Kennedy, Chris; Lieu, Jesse; Schow, Greg; Smith Scott; Wahrenberger, Doug, “DIS
Interchange Format Proposed Standard”, 12th DIS Workshop Proceedings, March 13-17 1995, pp. 249-254.

Juliano, Mark, "Standard DIS Data Logger Format”, 11th DIS Workshop Proceedings, September 26-30 1994, pp.
127-131.

Green, Keith L., "A position Paper for Standard Datalogger Formats”, 10th DIS Workshop Proceedings, February
12 1994, pp. 545-555.

Appendix A

Field Size
(bytes)

DLIF-95 File Header Structure

284

File Info

Magic Number - 16-character asray

Major Version # - 16-bit unsigned integer

Minor Version # - 16-bit unsigned integer

File Header Length - 32-bit unsigned integer

Maximum Segment Size (in bytes) - 32-bit unsigned integer

Original DLIF-95 File Name - 256-char array

644

DIS Info

Site |D # - 16-bit unsigned integer

Host ID # - 16-bit unsigned integer

Host Name - 64-char array

. Exercise Name - 64-char array

Temain Name - 256-char array

Tester Name -~ 64-char arvay

Site Name - 64-char array

Trial Description - 128-char array

140

Time Info

Minutes West of GMT - 32-bit integer

Daylight Savings Time - 32-bit integer

Time Resolution - 32-bit integer

Start Time - 64-bit timeval structure

StopTime - 64-bit timeval structure

Virtual Start Time - 64-bit timeval structure

Virtual StopTime - 64-bit timeval structure

Start Time Text - 24-char array

Stop Time Text - 24-char array

Virtual Start Time Text - 24-char array

Virtual StopTime Text - 24-char array

768

Network Info

Data Link Type - 32-bit enumeration

Max (non-sim) packet capture size - 32-bit unsigned integer

Data Link Info Record - 248 byte data structure

Other Network Info - 512-char amray

516

Volume Link
Info

Volume # of this DLIF-95 file - 32-bit unsigned integer

File Name of Previous DLIF-95 Volume - 256-char array

File Name of Next DLIF-95 Volume - 256-char array

T

Notes

variable length character array

Total DLIF-95 File Header Structure Size = 2352 + T bytes

T= 1232 + (Ne512) bytes

where N = number of additional 512-byte Notes space blocks desired

Field Size
(bytes)

DLIF-95 File Segment Structure
(Option #1: Frame Data followed by Index
Data)

40

Segment Size - 32-bit unsigned integer

Segment Type - 32-bit enumeration

Byte offset to top of Index Data from top of segment
32-bit unsigned integer

Byte offset to top of Frame Data from top of segment
32-bit unsigned integer

Number of Frames in this Segment
S egment 32-bit unsigned integer

Header

Total Number of Frames before this Segment
32-bit unsigned integer

Start fime of this Segmeant - 64-bit fimeval structure

dropped packets - 16-bit unsigned integer

¥ collisions - 16-bit unsigned integer

giant packets - 16-bit unsigned integer

runt packets - 16-bit unsigned integer

Frame #1 Variable Size Record

bed
ZK, + P+ P_| Frame Data
i=1)
Frame #n Variable Size Record
Padding
Index Record #1 for Frame #1
nx16 index Data

Index Record #n for Frame #n

Vi
Total Segment Size = 40 + ZKI +P. + P+ (nel6) bytes

i=1

n = number of frames in this segment
Pr= Frame Data padding to the 64-bit alignment (0-7 bytes)

P = padding for fixed-segment-size DLIF-95
implementations (64-bit aligned)

PF=f§n',Ki /8]e8 ZK
i=1 i=1

P_= Fixed Segment Size - (40 + ZKI +P_+(ne16)) bytes

i=1

[x] =1+ largest integer < x

Fi?gdtfsi)ze DLIF-95 File Segment Structure
Y (Option #2: Index Data followed by Frame
Data)

Segment Size - 32-bit unsigned integer

Segment Type - 32-bit enumeration

Byte offset to top of Index Data from top of segment
32-bit unsigned integer

Byte offset to top of Frame Data from top of segment
32-bit unsigned integer

Number of Frames in this Segment
40 Segment 32-bit unsigned integer

Header

Total Number of Frames before this Segment
32-bit unsigned integer

Start time of this Segment - 64-bit timeval structure

dropped packets - 16-bit unsigned integer

collisions - 16-bif unsigned integer.

#giant packets - 16-bit unsigned integer

runt packets - 16-bit unsigned integer

Index Record #1 for Frame #1

nx 16 - Index Data

Index Record #n for Frame #n

Frame #1 Variable Size Record

a
ZKI + P+ P_| Frame Data
i=1

Frame #n Variable Size Record

Padding

Total Segment Size = 40 + il{, +P, +P +(ne16) bytes

i=1
n = number of frames in this segment
Pr= Frame Data padding to the 64-bit alignment (0-7 bytes)

P, = padding for fixed-segment-size DLIF-95
implementations (64-bit aligned)

PF=FEK,. /8]e8 - ZK
i=1 i=1

1
P_ = Fixed Segment Size - (40 + ZK +P +(ne 16)) bytes

i=1

[x] =1+ largest integer < x

Field Size
(bytes)

DLIF-95 Segment Frame Record Variable Length Structure
(Data-Link Level Network data)

Ki

Network Frame Data at the Data-Link Level

(packed data without padding)

K, = Total Frame Record Size {(bytes)

Field Size | DLIF-95 Segment Frame Record Variable Length Structure
(bytes) (Application-Layer Only data)
D; Application-Layer only portion of Network Frame Data
(packed data without padding)
Pi Padding to 32-bit alignment

K = Total Frame Record Size =D, + P; bytes

D = length of packet data in bytes

P; = padding te the 4-byte alignment in bytes

P

'—=I.Dx/4_|‘4-D§

[x] =1+ largest integer < x

Field Size DLIF-95 Segment Index Record Structure
(bytes) (Data-Link Level Network data)
8 Frame Data Time Stamp - 64-bit timeval structure
Byte Offset from top of Segment to start of Frame Record
4 32-bit unsigned integer
2 Frame Type - 16-bit enumeration
2 Original Length of Frame Data - 16-bit unsigned integer

Total Segment Index Record Structure Size = 16 bytes

Field Size DLIF-95 File Trailer Structure
(bytes)

Magic Number - 16-character array

20 Trailer Header Total number of Segments Used - 32-bif unsigned integer

Byte Offset from Top of File to Top of Segment #1
32-bit unsigned integer

20 Segment #1 Length (in bytes) of Segment #1 - 32-bit unsigned integer

Index Record Segment #1 Start Time - 64-bit timeval structure

Segment #1 Type - 32-bit enumeration

Byte Offset from Top of Fiie to Top of Segment #1024
32-bit unsigned integer

20 Segment #1024 Length (in bytes) of Segment #1024 - 32-bit unsigned integer

‘Index Record Segment #1024 Start Time - 64-bit timeval structure

Segment #1024 Type - 32-bit.enumeration

Total File Trailer Structure Size = 20,500 bytes

Appendix B

DLIF-95 Terminology

Application-Layer Only Data - The portion of transmitted data unit which excludes the transport (UDP) and lower
layer header information.

Data Frame - Data on a network appear as discrete units called Protocol Data Units (PDUs) or Data Frames. A
Data Frame may contain Application Layer Only data or Data-Link Level Network Data.

Data-Link Level Data - Transmitted data unit including the Transport and lower layer headers (UDP header, IP
header and MAC header).

Data-Link Type - This field in the file header defines the data link type used during capture. The only currently
defined values for this field is 1, which indicates that the data link layer is Ethernet, 2 for FDDI and 3 for ATM.

Datalogger - A computer (with associated software) which records the data units, transmitted on a network by
systems from a distributed simulation exercise, and stores them in a file.

Datalogger Program - The software portion of a Datalogger. (Sometimes the datalogger program itself is called
the ‘datalogger’.)

DIS Transport Type - This field indicates the transport type of the DIS packets in the file. The currently defined
value for this field is 1 for UDP/IP.

DLIF-95 - DIS Logger Interchange Format vintage 1995.
Dropped Packet - A data unit that has not been captured, or has been discarded for reasons other than filtering.
Exercise Name - Name, in human readable text, given to an exercise.

File Header - Initial portion of a DLIF-95 logfile which contains general information about the contents of the

Logfile.

Giant Packet - A data unit that is bigger than the biggest permitted, i.e. a number of bits (or bytes) greater than the
maximum transfer unit of the medium. .

Host ID # - A unique number that identifies a particular host system at a particular site.
Host Name - Name , in human readable text, that uniquely identifies a particular host system on the network.

Index Data - Portion of segment which contains index, information about the transmitted data units in the Frame
Data portion of the segment.

Logfile - A file containing data captured from the network during a distributed simulation exercise.

Magic Number - The initial bytes of a file which uniquely identifies the files "type". A DLIF file has the first 16
bytes set to the ASCII string "#!DIS-Datalogger”.

Major Version Number - A number which uniquely identifies the type of the DIS logger file. For the DLIF-95
format, Major Version Number is 5.

Maximum Transfer Unit (MTU) - The largest unit you can transfer over a given segment. (For example, Ethernet
MTU is approximately 1500 bytes. FDDI is approximately 4096 bytes, I think.) If you have a 'packet’ of data bigger
than that to transfer, then you have to rely that your packet driver (or your application or SOMETHING) has to do
segmentation of the packet at the sending end and reassembly at the receiving end.

Minor Version Number -A number which uniquely qualifies which variation of the logger type identified by the
Major Version Number. The MinorVersion Number for DLIF-95 file is 0.

Multi-volume logfile - A sequence of files (volumes) which together form the complete record of the data captured
by a single Datalogger.

Network Order - The order in which data appears on the network (i.e. most significant byte and the most
significant bit at the smallest address).

Packet Capture Size - Largest packet that may be captured from the network. This depends on the medium from
which the data was captured.

Packet Collisions, Number of Packet Collisions - A characteristic of the Ethernet protocol, which occurs when
more than one host on the network attempts to transmit data at the same time.

Protocol Data Unit(PDU) - See Data Frame.
Runt packet - A data unit that is smaller than the smallest permitted.
Segment - A discrete portion of a DLIF-95 logfile in which contains the captured data.

Segment Header - Initial portion of a Segment which contains general information about the data held in the
segment.

Site ID # - A unique number that identifies a particular site connected to the network.

Site Name - The name, in human readable text that uniquely identifies a particular site.

Start Time (File, Segment, Frame) - The real world (wall clock) time of the start of the exercise.

Stop Time Stop Time - Real world (wall clock) time of the end of the exercise.

Terrain Name Terrain Name - The name, in human readable text, given to the terrain used in the exercise.

Tester Name - The name, in human readable text, of the operator of the Datalogger.

Time Resolution - The structure used to timestamp packets contains two 4 byte integers. The first indicates
number of seconds since the start of January 1, 1970. The second is fractions of a second. The resolution of the
fractions is determined by the Time Resolution field in the file header. The value of the fraction can be determined
by multiplying the fraction field by 10 to the power of the Time Resolution value (i.e. if the value of the fraction is
234, and the Time Resolution is -6, the value of the fraction is 0.000234).

Trial Description - The description, in human readable text, of the purpose/disposition of the exercise captured in
the logfile.

UDP Port Number - These fields in the UDP Information structure in the file header indicate which UDP poris
contain DIS data frames.

Virtual Start Time - Virtual world time of the start of the exercise.
Virtual Stop Time - Virtual world time of the end of the exercise.

Volume Number - Number which identifies the position of an individual file within a sequence of files that make up
a Mulii-volume logfile.

Appendix C
Subscribing to the Mailing List

To subscribe to the mailing list, send an email message to listserv@proto.ida.org with no subject line and a single
line in the body of the message which says: subscribe loggers <First Name> <Last Name>, where <First Name>
and <Last Name> are your real name. For example, if George Washington wanted to subscribe to the group, he
would send an email with the message body saying:

subscribe loggers George Washington

Thereafter, if George wished to send email to all participants in this group, he would send his messages: to
loggers@proto.ida.org. Note: It is polite to include your name in messages to the group, since the list server will
remail the message to the participants with its own name, and no would otherwise know who sent the original
message. ‘

We are currently discussing collecting sample datalogger files against which to test datalogger implementations.
For information regarding these developments, please subscribe to the aforementioned mailing list.

