ClIG SCENE REALISM: THE WORLD TOMORROW

Michael A. Cosman, Robert L. Grange
Evans & Sutherland Computer Corporation

Salt Lake City, Utah

ABSTRACT

In recent years there have been remarkable advances in the rendering of realistic imagery by sophisticated software
running on ultra-high-performance compute engines. Technology now makes it possible to incorporate these exotic
lighting, shading, and texturing processes into a true realtime computer image generation (CIG) system. This paper
reports on work being done to combine advanced rendering algorithms and historical simulation capabilitiesinto a
new open system that provides the best of both worlds. Particular emphasis is given to improving edge quality, tex-
ture sharpness, lighting and shading flexibility, and the way both opaque and transparent surfaces interact in a dy-
namic visual scene. The system incorporates many new rendering capabilities that have never before been accelerated
in hardware. Higher performance, lower development and recurring costs, and widely scaleable price and performance
can be achieved through adoption of industry standards in processors, operating systems, and graphics application
program interfaces (APIs). A modular approach allows system configurations for workstation or image generator ap-
plications.

ABOUT THE AUTHORS

Michael A. Cosman is a Research Scientist working with the Architecture group at Evans & Sutherland Computer
Corporation. He has been involved in the development of CIG agorithms and architectures at E& S for over twenty-
two years. He has authored or coauthored numerous technical papers for I/ITSEC and other simulation conferences.
Mr. Cosman holds a bachelor’s degree in physics from Brigham Y oung University.

Robert L. Grange is a Product Director working with the Graphics Systems group at Evans & Sutherland Computer
Corporation. He has been involved in engineering management, business development, and technical marketing in
the simulation industry for the past nine years. Mr. Grange holds a bachelor’ s degree in electrical engineering from
Brigham Y oung University.



ClIG SCENE REALISM: THE WORLD TOMORROW

Michael A. Cosman, Robert L. Grange

Evans & Sutherland Computer Corporation

Salt Lake City, Utah

INTRODUCTION

Historically, the market for computer-generated graph-
ics has been characterized by two very different per-
formance paradigms. In the deterministic realtime
simulation world, the approach is to build systems
that do a few very important things well, al “at
speed,” in predictable mixes, and geared toward a
fairly tight peformance specification that doesn't
permit frame-time variability. In contrast, the work-
station world wants the richest possible smorgasbord
of graphics features and is willing to settle for sig-
nificant performance hits that accrue as users pick and
choose features and modes. Computationa frame time
isa“dependent variable,” and users live with highly
variable update rates that seldom approach real time.

Most graphics system architectures have traditionally
been driven by applications that trade off image qual-
ity and processing time. General-purpose graphics
workstations achieve high image quality and special
effects by using a variable update rate that allows as
much processing time per frame as required. Consis-
tent, deterministic update rates can only be approached
by significantly derating specified capacities, thus de-
creasing the feature density and the simultaneous ef-
fectsthat can be processed. Deterministic realtime
applications have typically required special-purpose
image generators in order to provide simultaneous
synthetic-environment-rendering capabilities, includ-
ing ahigh level of realism, fully interactive, predict-
able, realtime performance, smulation of awide vari-
ety of sensors, static and dynamic nonlinear image
mapping, calligraphic lights, and correlation of vis-
ual, sensor, and nonvisual environments.

Over the last decade, general-purpose processors have
increased in performance at an accelerating pace, and
application-specific integrated-circuit (ASIC) and
memory technologies have allowed continual minia-
turization of graphics-processing circuitry. While
genera-purpose workstations aren’t powerful enough
to perform all of the simultaneous requirements of a
realtime image generator in addition to traditional
nonrealtime rendering, a common modular architec-
ture with different configurations can meet the needs
of both markets.

This paper discusses an architectura approach that
uses maximum commonality of hardware and soft-

ware and builds on a foundation of industry standards
to provide the best of both worlds. Particular empha-
sisis given to innovative improvements in image
quality, texture sharpness, realistic lighting, pixel-rate
shading, and transparency. The approach provides the
traditional image generator features listed above, in-
cluding terrain morphing, layered fog, global texture,
and depth-complexity management along with work-
station-class shading flexibility, reflection and envi-
ronment mapping, OpenGL™ graphics compliance,
and high-quality order-independent scene processing.
This architecture also incorporates many new render-
ing capabilities that haven't been accelerated in hard-
ware before.

ARCHITECTURAL CHARACTERISTICS

Thisradically new modular architecture allows vari-
ous system modules to be combined either as awork-
station or as an image generator. All configurations
will have the same feature set, user interface, 2D win-
dowing, and 3D graphics acceleration and will run the
same or different applications. The primary difference
isthe inclusion of arealtime module and an operating
system in the image generator configurations that al-
low deterministic realtime performance as well as
nondeterministic and mixed-mode operation as re-
quired.

Benefits of Standardization

A major shift is occurring in the computer industry
that is forcing a change from a vertical integration
model to a more horizontal one. Where vendors tradi-
tionally have developed their own proprietary proces-
sors, operating systems, 1/0O, graphics acceleration,
etc., many are now using industry-standard proces-
sors, busses, operating systems, and graphics applica-
tion program interfaces (APIs) to the largest extent
possible. In graphics and other applications, deve-
opment is instead focused on specific areas of com-
petitive product differentiation.

The huge global growth of the computer industry has
narrowed the pack of core technologies significantly.
Those that have emerged, survived, and thrived to be-
come standards enjoy the benefit of huge financial war
chests with which to continue technological ad
vancement. By comparison, the few remaining pro-
prietary technologies continue to lose ground as



shrinking markets deplete essential development capi-
tal even as the complexity of these technologies, both
software and hardware, demands increasing resource
commitment.

Those who ride the standards wave will reap a con-
tinuing technology windfall as the volume market
propels development while reducing costs. This new
architecture leverages several “best of breed” tech-
nologies. Early adoption of these technologiesis al-
lowing this new architecture to achieve higher per-
formance, lower development and recurring costs, and
widely scaleable price and performance. These tech-
nologies also allow increased focus on fundamental
graphics performance issues.

Four Winning Choices

The Intel Pentium® Pro will provide the computa-
tional horsepower for all general-purpose computing,
including the operating system, realtime system, and
geometry processing functions. This strategy includes
current and future industry-standard bus architectures.

Microsoft's Windows NT™ will be the man-machine
interface and the operating system when deterministic
realtime performanceisn’t required. Windows NT™ is
rapidly overtaking Unix in al its variations and
emerging as the 32-bit operating system.

Wind River Systems VxWorks® will be the operat-
ing system for simulation applications that require
deterministic realtime performance. VxWorks® has
emerged as a proven, mature, high-performance sys-
tem that has a long and successful track record.
VxWorks® runs in the reatime module, while
Windows NT ™ simultaneously provides the human
interface.

OpenGL" will be the 3D graphics API. The use of
industry-standard windowing, graphics, and operating
system software means that alarge and growing body
of applications written with OpenGL"™ will drop
transparently onto the new architecture and run effi-
ciently.

The balance of this paper reports on a number of ad-
vances in rendering technology that provide perform-
ance never previously available at realtime rates. First
isadiscussion of list-priority and depth-buffer render-
ing architectures in broad terms and an exploration of
their relative cost and performance characteristics, in-
cluding some particularly vexing depth-buffer image-
quality problems. Then a new multisample depth-
buffer architecture that addresses these issuesis dis-
cussed. Lighting, illumination, and shading are dis-
cussed next, and the benefits of pixel-rate illumina-
tion are established. Bump-mapping is introduced, and
some important extensions to layered-cloud process-
ing are discussed. Finally, a number of texture-quality

issues are explored and important new rendering capa-
bilities are introduced.

TWO RENDERING PARADIGMS

In general, today’ s graphics systems incorporate two
very different processes for rendering 3D imagery.

List Priority

If the application (i.e. the user) iswilling to sort the
visual environment so that al polygons can be
submitted in visual-priority order, the rendering
hardware can employ semianalytic processes to filter
and antialias scene details. This requires that the
environment be sortable (not always possible unless
some congtraints are applied) and that it contain
information to assist the realtime sorting process—a
significant complication of the modeling step. The
runtime benefits of the list-priority algorithm are
considerable, however, and such approaches are still
used in many applications today.

The list-priority approach is particularly economical
because scene buildup is largely an accumulation
process. As each polygon is rendered, the system al-
ready knows how much of it is occulted by prior
scene elements and can compute its contribution to
the display video directly. As the polygon is proc-
essed, it contributes to an accumulating “occultation
mask” that records which portions of the image plane
are dready covered. After it is processed, nothing
more needs to be remembered about it. Furthermore,
as portions of the screen are fully covered, they can be
removed from consideration as subsequent polygons
are submitted—a mechanism that can save significant
processing time. List-priority mode can be imple-
mented with an absolute minimum of frame-buffer
memory and can produce unsurpassed image quality.
Such systems were pioneered in the late 1970s
(Schumacker 1980).

Depth Buffer

Asvisual environments grew in complexity, making
them sortable became progressively more difficult and
constraining. Meanwhile, advances in technology
made some alternative order-independent approaches
practical. One, the z- or depth buffer, has become
somewhat of a standard, and nearly all current graph-
ics systems support it to some extent (Catmull
1974). A depth buffer solves the hidden-surface prob-
lem by computing the distance, or depth, from the
eye to each scene element at each pixel (or subpixel).
As scene elements are rendered, the system saves only
the winning (i.e. closest) scene element’s contribu-
tion at each pixel or subpixel. After all scene ee-
ments have been rendered, the pixels or subpixels are
converted into display video. One particular benefit of



a depth buffer isits ability to render two polygons
that pierce each other—a situation encountered regu-
larly in many applications.

A depth buffer first converts the continuous polygo-
nal representation of the scene into pixel- or subpixel-
size quanta of color information, each with an associ-
ated depth or distance. Image quality is a function of
the number of these quanta, or samples, associated
with each pixel. Extremely cost-sensitive applications
like home video games might use only one sample
per pixel, while most realtime simulation applica
tions require at least four subpixels, and significant
image quality improvement can be obtained all the
way up to 16 subpixels per pixel, where image qual-
ity compares favorably with the front-to-back analytic
rendering process.

Cost and Performance | ssues

The number of subpixelsis an important cost driver,
because each subpixel must remember, a a mini-
mum, the depth and color of the winning polygon
fragment it saves. Considerable additional information
isalso required if the system is to support a graphics
API like OpenGL™, with immediate-mode graphics,
multiple image planes, and double buffering. Large
memories are expensive and difficult to access at cur-
rent rendering speeds, so these systems are rarely con-
figured to do more than four subpixels and can’t de-
liver multisample image quality that's as good as
sorted mode. Users are forced to choose between poor
image quality and the tremendous effort required to
sort a complex visual environment into front-to-back
order—atask that isn’t always possible.

Depth buffers use subpixel distance values to decide
what to keep at each subpixel. Inadequate computa-
tional precision will result in erratic subpixel “pop-
throughs” of scene details that are close together in
the depth direction. But users and applications rou-
tinely (and necessarily) model surfaces that are copla-
nar—a problem that the depth buffer cannot solve at
all. Special mechanisms must be brought into play to
force the depth buffer to render the required result.
Many of these mechanisms arise from obscure appli-
cation-specific problems and must be carefully coor-
dinated with the basic depth-buffer process.

Depth buffers have another fundamental problem that
affects image quality. Only one scene detail can claim
each subpixel, so the only way to represent transpar-
ent objects is to disable a portion of their subpixels
before rendering them—in effect, shooting them full
of holes where more distant scene details can show
through. This approach is called screen door transpar-
ency. The number of levels of transparency is limited
by the number of subpixels per pixel, so there are
usually only afew discrete levels of transparency,

with large steps between them. Where the user in-
tended to see a smoothly varying transparent effect,
either from texture or varying vertex values, he sees
instead coarse contours of transparency. If the trans-
parency is changing dynamically, he sees distracting
“pops’ between these few levels.

Transparent surfaces rendered this way interact
strangely with other scene details. Whenever atrans-
parent surface occults another transparent surface, the
combined effect is usually incorrect and often bizarre.
For example, if two polygons that have the same
level of transparency are overlapped, the second one
will be invisible where it is occulted by the first.
This is because they both have the same hole pattern.
Imagine a pilot looking through his wingman’s can-
opy at athird jet. Thethird jet’s canopy will be miss-
ing—eliminated by the matching transparency of the
wingman’s canopy.

Furthermore, all polygons that are rendered behind a
transparent polygon will suffer a significant degrada-
tion of edge quality, because only a portion of the
subpixelsis available for edge filtering—a problem
that gets very bad very quickly with decreasing num-
bers of subpixels. For example, if transparency is
used to model athin cloud of battlefield smoke, all
scene details (including targets) behind the smoke will
have poor edge quality, affecting both detection and
identification. Small scene details that would other-
wise behave adequately can be intermittently hidden
and exposed as they move between the holes in a
transparent polygon.

A NEW MULTISAMPLE ARCHITECTURE

A unigue new architectural approach addresses both
the economic and visual issues of multisample depth
buffers. Subpixel information in the depth buffer is
stored in a compressed form that requires far less total
memory than current multisample approaches. The
nature and organization of this information support
full-speed resolution of complex subpixel occulting
geometries, including interpenetrating polygons and
overlaid transparencies. The total amount of required
frame-buffer memory is greatly reduced and is no
longer a significant function of the number of sub-
pixels. Because the number of subpixels has little
effect on the cost, size, or complexity of the system,
this approach provides 16 subpixelsfor all configura-
tions, providing excellent image quality.

Area Sampling

The number of subpixels and the algorithm used to
choose them have alarge bearing on the resultant im-
age quality, particularly edge antialiasing. A typical
approach is to distribute the subpixelsin a uniform
grid over the pixel and choose them with a point-



sampling approach; i.e. a subpixel is assigned to a
polygon if it lies on the polygon. Point sampling
tends to capture subpixelsin groups if the edge of the
invading polygon is aligned with rows, columns, or
diagonals of the subpixel pattern, so it behaves poor-
est on edges that are aligned with the horizontal or the
vertical—critical orientations for most applications.
Subpixels are assigned using a form of area sam-
pling—an approach that matches the subpixels more
closely with the actual polygon geometry. Area sam-
pling allows a polygon to “invade and conquer” a
pixel in asequence of single-subpixel increments.

Analytic Occultation

As polygons are rendered into each pixel, the new ar-
chitecture computes an analytic occultation solution,
expressed as an intersection edge where the new poly-
gon potentially pierces any previously stored poly-
gon. Most of the time, of course, this process de-
clares either the new or the prior polygon the sole
winner of any contested subpixels. When they do oc-
cur, polygon interpenetration edges are rendered with
the same quality as regular edges. This part of the
system also implements a robust coplanarity solution
and several other mechanisms that ensure proper han-
dling of things like point lights. There is also a
mechanism for skipping large portions of a polygon
when there is no chance of its appearing in the related
pixels. This recoups much of the pixel fill-rate effi-
ciency of the list-priority approach.

Continuous Transparency

Transparency is now a continuous property defined by
a number between 0 and 1, not the highly granular
effect achieved by shooting holes in the subpixel
mask. This continuous value is used to calculate an
accurate cumulative effect during the resolution of
pixel shading. For example, if two overlapped poly-
gons each are 40% transmissive, the area of their
overlap will be 16% transmissive (the product of 40%
and 40%), and the color of this overlap will be the
proper blend of the closer and the farther attenuated by
the closer. Any of the polygons that occupy a pixel
can be transparent. Also, the edge quality of polygons
behind a transparency is unaffected by the transpar-
ency. The shade of the polygon is attenuated, but it
still getsits full complement of subpixels for edge
antialiasing. In the formation example, this means
that the canopy of jet number three will be properly
rendered and that all the polygons of jet number three
will be rendered with full edge quality.

The older screen-door form of transparency is sup-
ported for compatibility with other systems and for
use with fade level of detail, which requires pair-wise
complementary screen-door masks.

A PRIMER ON ILLUMINATION

A lot of the visual impact of today’s blockbuster
movies depends on computer-generated creatures and
effects. These in turn depend on advanced illumination
and shading processes. As these capabilities migrate
into realtime hardware, users will want to understand
alittle more about how they work.

Light

The appearance of scene details depends on the nature
of the light that illuminates them and on how they
redirect that light to the viewer. Surface composition
plays an important role here because the redirected
light is afunction of several surface-material charac-
teristics, including color, roughness, and shininess, in
addition to the relative geometry of surface, light, and
viewer.

Emissive light is created by a scene element itself.
Night and dusk scenes are richly populated with point
lights and luminous polygons that represent emissive
light sources. They light themselves, but not other
nearby scene surfaces, so they aren't treated as general
illumination sources.

Ambient light comes from everywhere, hits every-
thing, and is scattered equally in all directions. Be-
cause its effect doesn’'t depend on surface orientation,
things viewed under ambient light are flat and feature-
less, with no sense of shape. Ambient illumination
represents the cumulative effect of all illumination
sources after their light has been bounced around by
all the scene elements.

All other illumination sources have positions some-
where in the simulated world, so the light from each
of them approaches a surface from a particular direc-
tion and travels a particular distance. The surface redi-
rects this light in two important but fundamentally
different ways.

Diffuse light comes from a particular light source,
hits asurface, and is scattered equally in all directions.
Its effect depends on the orientation of the surface to
the light source, so things viewed under diffuse light
show shape and orientation.

Foecular light comes from a particular light source,
hits the surface, and is reflected. Its effect depends on
the orientation of the surface both to the light source
and to the viewer. Specular behavior imparts a strong
sense of shape to scene features. This effect can be
amplified by a surface parameter called the specular
exponent, which controls the “shininess’ of the sur-
face. This particular formulation was developed by
Phong, and is called the Phong illumination model
(Phong 1975).



A complete lighting environment might consist of a
number of illumination sources, each contributing to
the final shade of scene details. Each illumination
source can have its own characteristics, including
color, intensity, location, pointing direction, beam
width, and range attenuation. The location of an illu-
mination source has a strong effect on the visual be-
havior of a surface because of the way it affects the
relative orientations of the light, surface, and viewer
and the range used for attenuation.

Surface Characteristics

Scene elements are modeled with surface coefficients
that define how they respond to ambient, diffuse, and
specular light and if they emit their own light. In
general, the color of a polygon is multiplied by the
color of the incoming light and the corresponding co-
efficients to compute the combined effect, and this
must include any polygon color variations due to tex-
ture. Specular highlights are reflections, so they re-
tain the color of the light source.

The surface orientation of a polygon is specified by
unit-length surface-normal vectors associated with
each vertex. The degree of alignment of these vectors
with the incoming light determines the amount of
diffuse light that is scattered, the amount of specular
light that is reflected, and the reflection direction.

Flat and Smooth Shading

First-generation graphics systems employed ex-
tremely simple shading and illumination algorithms.
Typically, asingleillumination source (the sun) was
placed at infinity, and the brightness of scene surfaces
depended on the angle between each surface and the
sun. This brightness was applied uniformly across the
surface, so changes in appearance only happened at
the edges between surfaces. This approach required
only a single illumination computation per polygon
and was called flat shading.

In 1967 Wylie, Romney, Evans, and Erdahl pioneered
the use of interpolated shading (Wylie et al. 1967).
Shading values are computed for each vertex of a
polygon and then interpolated across the interior of
the polygon for each pixel. The orientation of the sur-
face at each vertex is defined by a surface-normal vec-
tor, and if a continuous mesh of polygons (e.g. the
fuselage of an aircraft) shares surface-normal vectors,
the resulting surface appearance is “smooth;” that is,
the interior polygon edges disappear. The first graph-
ics system that used smooth shading, a capability that
has since become universal in the industry, was intro-
duced in the early 1970s.

Limitations of Interpolated Shading

Interpolated shading istypically used with a fairly
simple illumination model, usually consisting of just
ambient, diffuse, and emissive terms. Most of the
time, shading changes due to these three terms vary
dowly with surface geometry and are adequately cap-
tured by evaluation at the vertices. For years the base-
line illumination model in the realtime simulation
world has been a combination of emissive, ambient,
and diffuse effects, usually with a single directional
light source infinitely far away—the sun.

As the lighting environment gets more complex, in-
terpolated shading begins to show its shortcomings.
If alight sourceis close to a scene element, shading
gradients can become very steep because some ver-
tices are much farther away from the light than
others, and their illumination is more sharply attenu-
ated due to range. For the same reason, the relative
direction from the light to each vertex (and hence to
each surface normal) can change greatly, resulting in
large variations in shading. Specular behavior, which
changes rapidly with viewing geometry, will always
create steep shading gradients. Since the illumination
at any vertex affects the illumination across the entire
polygon, the dynamic artifact is large swingsin sur-
face brightness as vertices move relative to light
sources and specular highlights. Systems that employ
interpolated shading with complex lighting environ-
ments must subdivide scene elements into nearly
pixel-size polygons to suppress these artifacts. An-
other disadvantage is that if texture is applied to the
surface, it will erroneously affect the specular high-
light because the specular behavior will be encoded
into the vertex shade before the individual textured
pixels are computed.

Phong Shading

In 1975 Phong developed a process called normal-vec-
tor interpolation shading, or Phong shading. He found
that much more accurate visua results can be
achieved if the surface orientation isinterpolated for
each pixel prior to the application of the illumination
model. With Phong shading, much more eaborate
illumination models can be used without distracting
visual artifacts. Pixel-rate surface-norma interpola
tion aso makes bump-mapping possible (Blinn
1978).

Theterm “Phong shading” has unfortunately been
used to describe systems that use the Phong illumina-
tion model but only do vertex-rate illumination proc-
essing. They employ sophisticated lighting models,
but fall prey to all the distracting visual artifacts of
interpol ated-shade approaches.



Figure 1 illustrates the various components of theil-
lumination equation. Each sphereis constructed from
240 triangles, of which about 120 are front faced and
visible—a comparatively low budget. Each shows the
combined effect of ambient light and the illumination
from two nearby light sources—a dim one to the
right and above each sphere, and a brighter one to the
left and below. The spheres have afairly high degree
of shininess, which is evidenced by the small specular
highlights. Both spheres use the same Phong illumi-
nation model, but the sphere on the right is rendered
with pixel-rate illumination cal cul ations—true Phong
shading—while the sphere on the left is rendered with
vertex-rate illumination calculations. The network of
Mach bands on the left sphere reveals the underlying
polygonal facets and errorsin the location and shape
of the specular highlights. The bright lower-left high-
light is missed because no polygon vertex falls
within it, and the dim upper-right highlight is exag-
gerated for the opposite reason. The sphere on the | eft
can be made to look like the one on theright if it is
subdivided into about 16,000 polygons.

Figure 1: Phong Lighting and Shading

PIXEL-RATE ILLUMINATION CALCULATIONS

A lot of complex calculations are required to produce
an image like the sphere on the right. Figure 2 shows
some of the geometric relationships involved. Asa
polygon is rendered into pixels, the system computes
the location (e.g. in “world” coordinates) where each
pixel ray hitsthe polygon. It already knows where the
viewer and the light sources are. It constructs vectors
from the pixel/polygon intercept to each light source
and from the intercept to the eye. Floating-point math
is used at this point because the dynamic ranges are
so large.

Light sources can be directiona and are attenuated
with distance, so the system first computes the range
from the light to the polygon and uses a second-order
polynomial to compute the attenuation for that range.
Therange is reciprocated and used to construct a unit-
length polygon-to-light vector. This vector and the
light-direction unit normal are used to apply off-axis
attenuation if the light is directional (i.e. alobe or
beam of light.) The range from the eye to the poly-

gon is also computed and used to construct a unit-
length polygon-to-eye vector. The system has already
interpolated the vertex surface normals to a unit-
length surface normal at the pixel intercept, including
the effects of smooth shading and bump-mapping. It
now reflects the eye vector about the surface normal
to construct a unit-length reflection vector.

Il light ,
source Image

pIane* v

eye

view ray pixel

Figure 2: Light/Polygon/Eye Geometry

Figure 3 shows these four unit-length vectorsin a
“side” view. The diffuse illumination from the light
iscontrolledby L - N (L “dot” N, or the vector sca-
lar product of L and N), and the specular illumination
iscontrolled by (L - R)S, where sis the specular ex-
ponent. The light has its own color, so the color
multiplication and mixing generaly involves three
components everywhere. The effects of additiona
light sources are computed and accumulated just as
above.

I light
source
\
\ surface
N normal
reflected R
eye vector e
7Y
E -
—surface

Figure 3: Lighting Unit Vectors

Biting the Bullet

These calculations must be done for every pixel for
each light source that affects the polygon. Dedicated
silicon that performs these computations at high-per-
formance realtime rates has been developed, and the
process has been integrated with other the technol o-
gies discussed in this paper. This approach extends
the much richer lighting “recipe” historically reserved
for the nonrealtime world to reatime applications.
The recipe includes a very flexible strategy for com-
bining ambient, diffuse, specular, bump, and texture
effects on surfaces, and the lighting environment it-
self can contain many illumination sources with their
own individual spatial and luminance characteristics.
The realtime software can optimize performance and



flexibility by forming “on-the-fly” associations of
illumination sources and polygons in various combi-
nations.

Some Practical Advantages

Two common applications illustrate the power and
utility of this new capability. In the civil aviation
training community, users demand accurate depiction
of the illumination of the runway and airport environs
by aircraft landing lights. In the past this illumina-
tion problem has been solved with 2D image-plane
approaches requiring special hardware. Today this
problem is solved more accurately by simply posing
light sources on the wings and fuselage of the simu-
lated aircraft with appropriate |obe characteristics and
range-attenuation parameters. Since illumination
sources can move, steerable lobes are automatic. The
effects of multiple landing lights are mapped properly
onto all scene details, and this approach accurately
portrays the effects of range, surface orientation, and
surface-illumination characteristics—things not easily
accomplished with a screen-space 2D approach.

Battlefield illumination by flaresis a particularly dif-
ficult problem for interpolated-shade approaches.
Terrain and festures underneath a descending flare
must be carved into ever-smaller polygonsin order for
vertex-rate calculations to yield acceptable results.
Typically this means that a few database areas where
flares will be allowed must be predefined and given
special modeling attention. But the pixel-rate illumi-
nation approach doesn’t depend on polygona subdivi-
sion to control shading artifacts, so it allows flaresto
be used anywhere in a database without prior special
attention.

BUMP-MAPPING

Texture helps a polygonaly simple model appear
visually complex by supplying opacity and color
variations. Theillusion falters when texture is in-
tended to represent shape variations, because the illu-
mination effects are “frozen” into the texture map and
don’t respond to changes in the realtime lighting con-
ditions. In 1978 Blinn demonstrated a solution to this
problem. His method, caled bump-mapping, uses
texture to affect the appearance of a surface by modi-
fying its surface orientation, pixel by pixel, prior to
the application of an illumination model. By operat-
ing through the illumination process, bump texture
supplies the same apparent surface-shape detail that
would otherwise require thousands or millions of
pixel-size polygons. Bump-mapping requires alot of
complex pixel-rate computations, so it has remained
in the software domain—until now.

A bump-texture map contains values that define the
local “tip” or “tilt” to be applied to the surface-normal

vector. Typically, there are two signed val ues associ-
ated with each bump texel that define the forward or
backward tilt in each of the two texture directions. A
bump map is created by processing a height map into
local tilt vectors, usually by computing local height
differences in the two map directions. A bump map
has levels of detail just like any other MiPmap and is
interpolated or blended just like any other texture.

When bump texture is applied to a polygon, the user
must tell the system what directions to consider as
the two texture axes at each vertex. These surface-tan-
gent vectors are transformed along with the other ver-
tex information, clipped if necessary, interpolated to
the pixel level, and ultimately arrive in the bump
hardware expressed in the same 3D coordinate system
that the illumination will be computed in. Bump tex-
tureislooked up and interpolated to define the instan-
taneous surface-normal tip values at the pixel. These
scalar values are multiplied by the interpolated sur-
face-tangent vectors to transform them into the coor-
dinate system of the polygon and are added to the in-
stantaneous surface-normal vector, tilting it in the
intended direction.

When this tilted surface-normal vector isused in the
illumination calculations, the perturbations applied to
it by the bump texture cause variations in shading.
These variations affect the diffuse and specular illu-
mination terms and create a compelling illusion of
surface “bumpiness.” Theillusion hangs together re-
markably well because the texture causes a well-be-
haved, spatially stable, coherent modification of the
pixel-by-pixel surface orientation, much like the one
that would be gotten from using actual polygons to
model actual bumps. As the surface, the observer, or
the lights move about, the resultant shading changes
are accurate portrayals of a solid underlying “physical
model.” Theillusion is so compelling that the viewer
usually ignores the lack of silhouette roughnessin
bump-mapped objects.

Figure 4 shows how a bump map changes the appear-
ance of the 240-polygon sphere discussed earlier. The
bumps are clearly “innies,” and they tessellate con-
tinuously over the surface of the sphere in spite of the
relatively coarse underlying polygonalization. Because
the vertices of the sphere properly share surface-nor-
mal and surface-tangent vectors, there is no hint of
internal polygonal boundaries. The position and
brightness of the two specular highlights are properly
represented, and the bump motif itself is perspectively
compressed at the periphery of the sphere just as real
polygona bumps would be.



Figure 4: Bump-mapped Sphere

Since bump texture has its own mipP level of detail,
the bump illusion functions over wide ranges. Severa
bump textures can be combined on a surface, just like
any other texture. Bump texture can be given texture
motion to creste compelling dynamic effects like
lakes or oceans. It can also be sharpened by any of the
static and dynamic sharpening modes discussed in this

paper.

LAYERED CLOUDS

In the flight-simulation world, one important re-
quirement is the accurate depiction of the visual ef-
fects of ground fog, layered fog, and layered clouds. A
number of approaches have been used over the years
to simulate layered clouds. The use of a textured,
transparent polygon is an obvious first hack and
works tolerably for a cloud layer viewed from a dis-
tance. It does, however, pose alarge pixel fill-rate
burden and a potential hit on image quality, especially
if the system can't support a large number of
smoothly varying transparency levels. More impor-
tant, it can't provide the visual effects of approaching,
entering, and operating inside a cloud layer of finite
thickness, since the visibility “attenuation” is a fixed
property of the polygon and not an exponential func-
tion of actual view-ray/layer interaction. The visual
effect doesn’'t respond properly to either range or view
angle and never overcomes the strong impression that
thisisjust a polygon, not a distributed, layered at-
mospheric effect.

Some advanced image generators have incorporated a
more robust approach that uses dedicated hardware
rather than transparent polygons. A cloud density pro-
file specifies the visibility range at a number of alti-

tude changepoints between the ground and the strato-
sphere and is used to compute the net obscuration due
to clouds or fog along each pixel view ray. Cloud
layers are implied in those altitude regions with re-
stricted visibility ranges, and the eyepoint enters, tra-
verses, and exits these regions in awell-behaved, con-
tinuous manner. The approach uses the same pixel-
rate exponential formulation that regular fog uses, so
it provides continuous and imperceptible gradations of
visibility. Layered cloud effects are automatically
added to all scene details as they are rendered, without
any performance penalty and without the fill-rate bur-
den of first processing alarge, transparent polygon.

The approach described above provides extremely ac-
curate visual results, but it doesn't provide for lateral
variationsin either cloud color or cloud density. A
way to provide both of these has recently been devel-
oped. Cloud color texture provides important spatial
cues by providing a sense of proximity, direction, and
speed. Cloud density texture provides the visual ef-
fects of thin or patchy layers. Both these effects can
be used simultaneously on a cloud layer, and the full
cloud model can include severa of these layers. Fig-
ure 5 shows a runway motif under a thin ground-fog
layer that exhibits both color and density modulation.

Figure 5: Patchy Fog Layer

Textural effects are applied to a cloud layer in away
that allows the pilot to gradually and progressively
enter alayer while the textural cues smoothly transi-
tion from a“distant” to a“local” effect. Thereis no
sense of a*“texture plane” that is suddenly penetrated,
and there are no sudden changes in the visual effects
that would be associated with such atransition. While
the observer isinside alayer, local visibility is still
modulated by cloud texture, providing a natural scud
effect and accurate obscuration of formation aircraft,
for example. The effects of different cloud layers are
computed and concetenated properly so that layers
don’t interact in unexpected or unnatural ways. For
example, a pilot can look through several patchy
cloud layers and see the proper parallax effects of the
different layers and the ground moving by. As before,
thereis no fill-rate hit because there are no cloud
polygons to render.



IMPROVING TEXTURE

Texture has become the main medium for conveying
the visual message. A complex texture motif applied
to afew polygons can represent a realistic, detailed
structure or vehicle. Texture is used to vary intensity,
color, and transparency across a polygon, to cut or
crop a polygon to a sharp-edged but irregular shape,
and even to control the selection of other textures
across a polygon. Texture capabilities have been a
major area of industry R&D.

For the first time, the somewhat diverse texture re-
guirements of the simulation and workstation graph-
ics worlds have been integrated. This new technology
provides a full set of OpenGL"-compliant texture
modes while retaining important simulation-specific
capabilities like global terrain and edge-contour tex-
ture. Texture antialiasing is now handled by pixel-rate
analytic computations of the instantaneous texture
gradients—an approach that properly supports texture
stretch and shear and makes possible some valuable
new rendering modes. Many of these modes are aimed
at giving texture the sharpness and perspective behav-
ior formerly achievable only with polygon edges.

Texture Sharpness On Oblique Surfaces

Premature loss of texture detail on oblique surfacesis
a fundamental computer-graphics problem that has
existed since texture was discovered. A number of
software solutions have been explored that were either
inadequate or intractable.

The Problem

Aliasing isageneral term applied to awide variety of
image quality problems. The term aliasing refers to
high-frequency image content masquerading as low-
frequency stuff. Texture aliasing occurs whenever ad-
jacent screen pixels step over or miss adjacent surface
texels—that is, when the projected pixel footprint
gets larger than the texels that are on the surface of
the polygon. When this happens, some texels are en-
tirely missed by the pixel-computation process. Their
intermittent presence or absence shows up as scintil-
lation, breakup, or crawling of the texture motif.

Figure 6 illustrates this effect graphically. It shows a
repeating runway-like texture motif that continues for
some distance on a horizontal ground plane. The hori-
zontal field of view is approximately 50 degrees—
typical of an out-the-window display. Texelsin the
foreground are about the size of pixels, so the motif
is accurately displayed. Farther away, texels get
smaller than pixels and some of them get missed by
the rendering process. Near the horizon, so many
texels are skipped that the motif is unrecognizable.

Under motion, all these artifacts scintillate wildly,
making the scene unusable.

Figure 6: Texture Aliasing

To prevent texture aliasing, graphics systems employ
amultiple-level-of-detail strategy called mIP texture
(Williams 1983). Each successive texture level of de-
tail consists of fewer, larger texels that cover the
same area of the polygon. Typically, for each coarser
(lower) level of detail there are one-fourth as many
texels, each twice as long and twice as wide as those
at the previous (higher) level of detail. The value of
each coarser texel is derived by filtering the finer
texelsit replaces.

projected
pixel
footprint

pilot's
7 = eye
required pixel
texel size / \
surface image
\ . plane
perspective '/
texel shape pilot's view

Figure 7: Projected Pixel Geometry

Figure 7 helpsillustrate the geometric relationships
involved. Asthe polygon is scanned into pixels, the
footprint of each projected pixel is cast onto the
polygon and measured. Unless the polygon is being
looked at head on, the footprint will be stretched in
some direction. If the long dimension of the stretched
footprint is amaller than atexel, the underlying texels
can be used directly to color the pixel. Asthe long
dimension of the footprint gets larger than atexel, the
system switches or blends to the next coarser texture
level of detail (and its correspondingly larger texels)
to find the underlying texels that are larger than the
footprint. This process continues through all the
available texture levels of detail as the projected pixel



footprint gets larger. The width of the projected pixel
footprint is afunction of range, while the length of
the footprint is a function of both range and angle of
incidence.

Figure 8: Runway With mIP Texture

Figure 8 shows the same runway motif rendered with
aMiptexture map. The artifacts are gone, but a new
problem is now evident. Textural detail is progres-
sively lost in the background and is entirely missing
near the horizon. It doesn’t alias, but it still doesn’t
work.

The problem illustrated by Figure 8 is fundamental to
the texture-rendering process. Since MIP maps gener-
ally contain sgquare or nearly square texels, the level of
detail that will be selected for display is the level
where the texel size is approximately the length of
the pixel footprint. Thisis so pixel stepsin the foot-
print “length” direction won’t skip over texels and
cause scintillation or aliasing. As viewed on the dis-
play, these texels will appear to be approximately a
pixel widein their perspectively “squished” direction,
but will be morethan a pixel long in the other direc-
tion. They will, in fact, be many pixelslong, in the
same length-to-width ratio as the original projected
pixel footprint. As aresult, the texture motif will ex-
hibit pixel-size detail in its perspectively compressed
direction, but become extremely fuzzy in the or-
thogonal direction.

Texture detail in the horizontal direction is progres-
sively lost for pixels nearer and nearer the horizon.
The problem is dramatic, because surfaces don’t need
to be very oblique before pixel footprints become
fairly elongated. The horizontal degradation shown in
Figure 8 will alwaystrash the top half of the image
no matter what the altitude, because the effect depends
only on the angle of incidence of each pixel view ray
with the surface.

The projected pixel footprint aspect ratio is the recip-
rocal of the sine of the angle of incidence of the view
ray and the surface. At the horizon this value is infi-
nite; at 5 degrees below the horizon, the footprint as-
pect ratio is over 11; at 10 degrees below the horizon
(about half-way to the bottom of the image) the ratio
is still nearly 6. For this typical out-the-window

situation, most of the runway texture visible to a pi-
lot who islanding is unacceptably fuzzed out. Thisis
one reason why civil airline usersinsist on a polygo-
nal representation of the runway surface and mark-
ings—atextural representation would be unusable for
critical scenarios.

The Kludge

In certain specialized situations, modeling strategies
can be used to partly compensate for this fundamental
problem. For example, if the driver of acar is con-
strained to remain on and drive down aroad, the road
can be decorated with atexture motif that has been
stretched along the direction of travel. It will function
better if the observer looks down the road and worse if
the observer looks across the road—a compromise
that may be acceptable in some cases.

The Solution

A robust process for correcting this problem in its
most general form has been developed. The solution
is applied by dedicated hardware within the pixel-proc-
essing portion of the image generator. This hardware
determines, on a pixel-by-pixel basis, an optimal tex-
ture-sharpening strategy. Because the sharpening
process uses pixel clock cycles, the strategy is only
applied to polygons marked for sharpening, is used
only on those pixels that can be sharpened, and is
subject to global control by the realtime software. A
typical strategy isto use excess fill-rate capacity to
provide sharpening—a useful employment of the left-
over frame time that otherwise goes unused in many
applications.

The process can be applied to any polygon, at any
orientation, with repeating or nonrepeating texture
and is compatible with all types of texture, including
global terrain and bump texture. The algorithm takes
into account the size and shape (stretch or shear) of
the applied texels and the required and available tex-
ture levels of detail. It won't waste time trying to
sharpen texture where the projected pixel footprint is
mostly square or if it is already using the highest-
resolution texels available. When the sharpening
mode is active, the system is able to relax the mip
level of detail, typically so that texels the width of
the projected pixel footprint (rather than its length),
can be used.

Figure 9 shows this process in action, and the im-
provement in texture sharpnessis dramatic. The run-
way motif is now crisp and sharp clear to the horizon,
with no staircasing, breakup, distortion, or scintilla-
tion. A pilot landing on this runway will see uniform
image sharpness from hisfinal turn to touchdown and
taxi. When he gets to the terminal area all the tex-
tured polygons of the 3D structures will be similarly



improved and hence more realistic. Modelers will use
far fewer polygons modeling such scenes because now
texture can do the job and provide true photorealism.
They won't need arcane strategies like highly
stretched texture, won’t have to constrain where the
viewer can look or travel, and won't need to compro-
mise database accuracy to hide edge-on fuzziness.

Figure 9: Texture Sharpening

Constructing Sharp Edges

Texture is often used to cookie-cutter polygons into
complex shapes—a way of trading polygon load for
fill-rate load. Another related use is the construction
of sharp-edged color motifs like lettering on signs.
With mip texture maps, the behavior of such motifs
in the distance is quite acceptable. However, when the
viewer gets close to these motifs, texels get much
larger than pixels, and the sharpness of the color or
occultation boundary is lost. OpenGL™ includes a
sharpening mode that partially addresses this need. An
alternate mode maintains the sharpness of these
boundaries even when texels become many pixels
large. Unlike earlier “contour” texture strategies, this
mode doesn’t require a special map or intensive map
preprocessing, but works with ordinary Mip textures.
The process guarantees that the sharpness of the re-
sulting edge is properly coordinated with pixel size to
prevent crawling or scintillation. Figure 10 shows a
map rendered as an intensity modulation and then in
the sharpen mode. Even coarse motifs are captured and
rendered with surprising sharpness using this feature.

Figure 10: Sharp-Edged Texture

Improving Texture Stylization

Another texture improvement was originally born out
of the need to provide better global terrain texture.
Many applications require the decoration of large areas
of terrain skin with a continuous photographic or
photorealistic motif that correlates with red-world
source material. Since few users can afford to acquire,
process, store, and use small texels over large areas,
these databases are typically built with fairly coarse
texels of perhaps one to several meters. This means
the user will often be looking at terrain texels that are
much larger than his pixels.

When texels get lots bigger than pixels, two visual
problems arise. The texels get fuzzy and don't provide
adequate optical flow (a situation that can be im-
proved by the addition of a generic fine-detail texture),
and the bilinear blending used to render the texture
motif causes distracting stylization errors. Figure 11
shows this effect on a typical photoderived motif
where the texels are so large they are just barely ade-
guate to capture the details of an urban area. Much of
the detail in this arearuns obliquely through the tex-
ture motif and is highly linear because it represents
roads, sidewalks, houses, and other man-made things.
Bilinear blending renders the diagonal detail as regu-
larly jagged staircases—an effect that is spatialy
stable (i.e. it doesn’t alias under motion) but aestheti-
caly jarring.

"

Figure 11: Bilinear Texture Blending

The stylization problem is fundamenta to the bi-
linear-blending process. The texture lookup is done
by casting a view ray from the eyepoint through the
pixel and out onto the textured surface. The integer
portions of the 2D texture coordinates are used to find
the texel “quadrangle” bounding the view-ray inter-
cept. The fractional portions of the coordinates estab-
lish the precise position within this quadrangle. The
texture value used to shade the pixel is a bilinear
blend of the four bounding texels, using the fractional
parts of the coordinates as the weights. In general, all
four texels contribute some effect to the pixel, except



when the view ray hits one of the quadrangle bounda-
ries.

The new approach includes a specia biplanar blending
mode that can be selected instead of bilinear blending.
This mode considers the bounding quadrangle to be
two triangles, where the direction of the diagonal cut
is selected by a bit stored with each texel. The filter
process looks at the direction of the diagonal cut and
which triangle the view-ray lands in and performs a
planar interpolation from the three texels of the
bounding triangle. The rule bit for each texel is com-
puted when the texture is acquired and processed into a
MIP map. In general, the rule bit is set to select the
diagonal cut that makes the center of the quadrangle
match the source material most closely. Full-color
texels contain a single rule bit that is used with all
three color channels. All the texels at every mip level
of detail contain rule bits.

Figure 12: Biplanar Texture Blending

Figure 12 shows the scene in Figure 11, using the
same texture map but with the rendering mode set to
use the rule bit. Most of the diagonal features are ren-
dered with smoother, more continuous edges and
many small details that were broken up by the bi-
linear stylization seem to have congedled back to-
gether. The rendering as a whole seems “quieter” and
more solid, even though numerical analysis of the
image reveals that it has more contrast and detail. In
addition, linear motif details that are aligned with the
texture aren’'t degraded by the use of the biplanar
mode. While originally developed for global terrain
texture, biplanar blending can be used with any tex-
ture, repeating or not, on any polygon a any

orientation. There is no performance hit, since this
mode runs at full speed. The rule-bit generation proc-
ess has been kept in software to optimize flexibility.

CONCLUSION

This paper has highlighted work being done to create
amodular, scaleable architecture that can be used in
both workstations and image generators. This archi-
tecture combines the user friendliness of a graphics
workstation with the determinism of arealtime image
generator and is built around industry-standard hard-
ware and software. Emphasis has been on innovative
new features that solve problems or minimize short-
comings in current architectures as well at those that
enhance scene realism. These features include high-
resolution areabased multisampling, continuous
transparency, pixel-rate Phong shading, multiple il-
lumination sources, bump texture mapping, textured
layered clouds, texture sharpening on oblique surfaces,
sharp-edged texture, and improved texture stylization.

REFERENCES

Blinn, J. F. 1978. Simulation of Wrinkled Surfaces.
S GGRAPH 78, 286-292.

Bui-Tuong, Phong. 1975. Illumination for Compu-
ter-Generated Pictures. CACM, 18(6):311-317,
June.

Catmull, E. 1974. A Subdivision Algorithm for
Computer Display of Curved Surfaces. Ph.D. The-
sis, Report UTEC-CSc-74-133, Computer Science
Department, University of Utah, Salt L ake City,
Utah, December.

Schumacker, R. A. 1980. A New Visual System Ar-
chitecture. Proceedings of the 2nd I/ITEC Confer-
ence, November.

Williams, L. 1983. Pyramidal Parametrics. SG-
GRAPH 83, 1-11.

Wylie, C., G. W. Romney, D. C. Evans, and A. C.
Erdahl. 1967. Halftone Perspective Drawings by
Computer. FJCC 67, Thompson Books, Washing-
ton, D.C., 49-58.





