EXTENSIBLE EMISSION MODELING:
A MEDIUM-CENTRIC APPROACH

Mark L. Akey
Hughes Defense Communications Company
1010 Production Road 10-49, Ft. Wayne, IN 46808

ABSTRACT

The DIS Distributed Emission Regeneration (DER) protocol family, and specifically, the
Electromagnetic Emission PDU, provides ample latitude and support to perform emitter, medium, and
sensor interaction modeling in a symbolic frequency and time domains. However, the Emission PDU’s
complexity and format bias developers toward a platform-centric as compared to medium-centric
approach. When new emissions, sensors, and media effects need to be added to an existing simulation,
often this platform-centric approach forces modification of very tenured code.

This paper develops a coherent API (Application Programming Interface) using an object-oriented design
that supports extensibility in emission modeling. Extensibility is achieved by coercing emission data
into a medium-centric format. The design supports a client-server relationship between a given medium
and its client sensors. Sensors are decoupled from direct association with an emission PDU; sensor
modeling concentrates only on enumeration, detection, classification, and localization within beam
patterns. Media, on the other hand, are directly associated with emission PDUs and carry the
responsibility for target clustering and obscuration, line of sight and earth curvature, propagation loss,
and emission jamming.

Extensibility of emission modeling is supported in three ways. First, modeling is extended via the
typical class hierarchy -- new sensors are derived from base sensors, new media are derived from existing
media. Second, the attachment of new sensors to media is straight-forward via the client-server (CS)
relationship -- a natural extension of the CS paradigm. Third, and again using the CS relationship,
processor load partitioning is spread across computer platforms without the modification of base code --
extending the life and utility of the existing code.

Finally, the API unifies within the medium the treatment of emission and dead reckoning (DR) based
sensors. Regardless of the source, emission or DR, treatment of the medium effect is the same.

BIOGRAPHY

Dr. Mark L. Akey received his BSEE, MSEE, and Ph.D. from Purdue University, West Lafayette, IN, in
1980, 1982, and 1985 respectively. He joined Hughes (formerly Magnavox) upon graduation helping to
establish the Decision support systems Applied Center of Excellence (DACE) as a pivotal internal
research and development group. To date, Dr. Akey has designed and implemented more than a dozen
decision support systems and simulations, and has published dozens of technical articles and refereed
papers.

EXTENSIBLE EMISSION MODELING:
A MEDIUM-CENTRIC APPROACH

Mark L. Akey
Hughes Defense Communications Company
1010 Production Road 10-49, Ft. Wayne, IN 46808

1.0 INTRODUCTION

The DIS Distributed Emission Regeneration (DER)
protocol family, and specifically, the Electromagnetic
Emission (EE) PDU, provides ample latitude and
support to perform emitter, medium, and sensor
interaction modeling in a symbolic frequency and time
domains. Near-signal level information captured
symbolically within the DER EE PDU describes
frequency spectrum, bandwidth, and signature, pulse
repetition rates, and beam patterns for an emitter
system. To ease the computational burden of
participating simulations, the sending (emitting)
simulation computer determines which simulation
entities are affected by the emission and packs their
identities into the PDU. Finally, multiple emitter
systems can be represented in a single DER EE PDU,
effectively lowering the simulation bandwidth
requirements between simulation systems. Thus, the
DER EE PDU supports a functionally complete
communication of emission information between
simulation systems to support the regeneration of near-
signal level emissions within the receiving simulation
systems.

However, the DER EE PDU does not represent an
emission-based simulation design on its own. It is
simply a communication structure sufficient to convey
emitter information. Too often, developers rush to
embody PDU structures at the core of their simulation
design without much forethought on the modeling
extensibility of that decision. Further complicating a
design’s extensibility is the recognition that legacy
code and simulation life-cycles carry a strong bias
toward platform-centered development.

This last point can be seen in the manned flight
simulator field. Many simulators are being upgraded
to become DIS-compliant and to operate with other
simulations/simulators. Beyond the entity state
update PDU, how do these heterogeneous simulators
interact with each other? Interaction is often
accomplished through their respective sensors. But
sensor simulation in the original simulators do not
model the emissive environment sufficiently to perform
this level of interaction. So developers create sensors
that can, and directly employ the DER EE PDU as the
basis for that interaction. The resulting emitter
simulation design is typically not extensible nor

scaleable across computing platforms due to this
platform- or sensor-centric approach.

The purpose of this paper is to develop and present an
emission-based simulation design that promotes
extensibility of emission modeling. It is accomplished
by first developing taxonomies for sensors and media,
and then using these taxonomies to discriminate
functionality between sensors and media. The design
decouples platforms’ sensors from direct response of
emission PDUs on the DIS network. Coupling is
accomplished through the media -- as it is done in the
physical world. Extensibility is thus enhanced due to
a natural partitioning of media and sensor functionality
and APIs. In large part, new sensors and media must
map to this partitioning and these taxonomies.

1.1 Modeling Requirements

Extensibility of emission modeling is the topic of this
paper. Any discussion of this extensibility or how it
is developed without a proper treatment of sensor
modeling or the partitioning of sensor and medium
modeling responsibilities would be remiss. This
section presents such a partitioning of responsibilities,
and in essence, provides taxonomies of both sensors
and media modeling requirements.

1.1.1 Sensor Modeling Effects. Sensors do at least
one of three gross activities well: detect, classify and
locate (DCL). They perform these activities with the
emissions presented to them via the medium in which
they sense. Sensors perform complex N-dimensional
analysis of these emissions over time and space to
provide detection, classification, and localization’.

Detect. Sensors have the ability to detect one or many
emissions at a given time and in a given direction.
This detection is accomplished in the midst of “noise”
which can be comprised of other emissions or even the
same emission. Often an emission is associated with a
platform leading to a direct, but implied, relationship.
For instance, detection of an acoustic subsurface
signature implies the detection of a submarine. This
implied association is important for a sensor to detect
multiple entities or sources. For instance, does the
receipt of two similar emissions imply single or
multiple platforms? Without knowledge of the
implied emission source, there can be no resolution of
the possible source numbers.

Classify. Sensors have the ability to classify one or
many emissions at a given time and in a given
direction. Often the classification process subsumes
the detection process when both processes use the same
N-dimensional emission data. Detection and
classification are instantaneous -- once an emission is
detected it is also classified.

There are at least two cases where detection and
classification exist as two separate processes. The first
case involves insufficient computational resources to
provide complete detection and classification in real-
time. A coarse filter or process is applied to the N-
dimensional emission data to detect a class of signals.
A finer, more computationally intensive filter or
process is then used to classify those emissions that
pass the detection stage. The second case involves the
use of “orthogonal” processes to discriminate the data -
- the detection feature set does not overlap the
classification feature set.

Localize. Sensors have the ability to localize one or
many emissions at a given time. In all cases,
localization is a function of a sensor receiver’s
kinematics relative to the emitting source, medium
emission propagation delay times, and received
emission power. Kinematics include position, aspect
angle, and higher-order kinematics such as velocity
(Doppler). Finally, localization is often improved by
beam forming, finer range gating, time averaging of
multiple signals and a knowledge of the emitting
source.

To reiterate, sensors perform detection, classification,
and/or localization (DCL) of emissions that are
presented to them by their associated media at their
receivers (antennae, arrays, etc.). Albeit gross, DCL
provides a taxonomy of sensor functionality, and helps
to guide the partitioning between sensor and medium
modeling. The next subsection exposes medium
modeling requirements.

1.1.2 Medium Modeling Effects. In its simplest
form, a medium conveys information’. It may convey
information from one or more sources to one or more
receivers. In more precise terms, a medium is
transmissive, reflective, and refractive. It has the
ability to transmit 0% to 100% of the information
emitted. In the case of 0% transmission, the
propagation loss is complete; in the case of 100%
transmission, the medium is lossless.

A medium is reflective -- emission power is reflected
back toward the emitting source or scattered randomly
(also viewed as propagation loss). Reflection is caused
at the boundary of different media (air-earth, water-
earth, air-water).

A medium is also refractive -- emission power incident
upon a media boundary is bent as it enters the other
medium. That is, some of the incident emission

power is reflected back from the media boundary and
some of the power is bent and transmitted through the
other medium. With the exception of gravitational
forces exerted by blackholes, all tactical medium
modeling effects can be described in terms of a
medium’s transmissive, reflective, and refractive
capabilities.

The following list summarizes the types of medium
modeling effects required of tactical simulations.

Line of Sight. This effect is the most common
requirement of tactical air simulations, and covers the
RF, visual, and IR consequences of attempting to
transmit power through rocks (terrain) and earth (earth
curvature). Rocks have a very low RF transmission
capability. Figure 1 illustrates line of sight effect with
the earth’s horizon.

Over the horizon

Figure 1. Line of sight example between two entities and the earth.

Propagation Loss. Second in the list of important
medium model requirements is the ability to simulate
propagation loss. Often this effect needs to consider
slightly denser or less dense forms of the medium such
as clouds (atmospheric) and ocean thermo-layers
(acoustics). Here, a more nominal value of
transmission is necessary.

Clustering/Obscuration. This effect is very similar
to the line of sight requirement. For instance, an
emitting source can be obscured by another platform
from a receiver. Conversely, an emission reflection
from an illuminated platform may be the emission that
a receiver detects and not a direct line-of-sight emission
from the source. Both transmissive and reflective
properties can be important for emission simulation in
these situations. Figure 2 illustrates the difficulty with
discerning multiple entities within a sensor’s beam.

Sensor ‘
\ Clustering/Obscuration

Figure 2. Difficulty with discerning more than one entity within a
sensor’s beam.

Multipath. Reflection of emissions from secondary
surfaces cause both constructive and destructive
interference at the receiver. Ghost reflections and
misplaced primary reflections are a common sensor
manifestation. Multipath reflections require the
medium to understand all of its media boundaries.
Transmissive, reflective, and refractive properties all
come to play in modeling multipath. In general, this
effect is very computationally intensive to model.

Multipath ® Sensor

Figure 3. Multipath receptions at sensor caused by terrain or other
media boundaries.

Jamming. Within a given medium, there is the
potential for jamming. Jamming is the overloading of
power at the receiver sufficient to obscure the detection,
classification, and/or localization of desired emissions.
The most commonly modeled jammers are in the RF
domain. But jamming can occur between friendly
platforms such as a wingman’s radar interfering with
ownship’s RWR (much more common in -earlier
equipment). Another source of jamming is good ol’
Sol in the IR and visual domains.

Spectral Warping. The previous effects deal with the
presence or absence of an emission at a receiver and its
total power. However, media have the potential to
warp the relative frequency signature of an emission.
In general, some frequencies pass through the medium
with little power loss. Other frequencies sustain
greater power losses. Water vapor is a great attenuator
of microwave frequencies, for instance. Thus, it is
possible for the medium to warp the spectral signature
of an emission and do so in a non-linear fashion.
These effects can be modeled within the current DIS
architecture, however, as spectral resolution increases it
becomes computationally expensive.

Summarizing, media effect the delivery of emissions to
sensors. They can limit the receipt of emissions

(transmissive), they can effectively re-position the
source relative to the sensor (reflective and refractive),
they can create multiple versions of a single emission
with different incident angles upon the sensor
(reflective/multipath), and they can non-uniformly
attenuate an emission's spectral content. Again, the
medium function taxonomy of transmissive, reflective,
and refractive capabilities help to discriminate
functionality between sensor and medium.

1.2 A Medium-Centric Approach

Most simulations cut their DIS sensor teeth on the
Entity State (ES) PDU. The ES PDU is the mainstay
of the DIS community; it brings a great deal of
integration in a single fell swoop. Diverse simulated
objects have the ability to interact with each other
across the network. On-board platform sensors use
local dead reckoning information to model DCL. For
scenarios with continuous emissions, there is little
need to implement and use the DER EE PDU. As far
as first generation simulations go, most would deem
“This is good”.

However, there are a number of reasons this first
generation interaction becomes inadequate. First,
realistic scenarios include transient emissions and
dynamically changing emissions. Sensor models that
use only dead reckoning information quickly lose their
realism. Second, there exists a dichotomy between the
treatment of dead reckoning based and emission PDU
based media effects. This dichotomy arises from the
separate code modules from where the emissions are
pulled. Third and due to this dichotomy, emission
model extensibility is hindered.

A medium-centric approach mitigates these problems.
A medium acts as a true medium by delivering
emissions to the sensors with transmissive, reflective,
and refractive effects. It also unifies the treatment of
dead reckoning and EE PDU based emissions. With
the taxonomies developed, extending the base
treatment of emissions both by the media and sensors
is simplified and manageable -- “This is better”.

2.0 EXTENSIBLE ARCHITECTURE
2.1 Architecture

Figure 4 illustrates a high-level instantiation of a
medium-centric architecture. The architecture
maintains a modeling separation between medium and
sensor. Media are responsible for transmissive,
reflective, and refractive effects on emissions as they are
presented to given sensors. Sensors are responsible for
the DCL portion of the emissions that are presented to
them.

Following a client-server (CS) paradigm, sensors
subscribe to appropriate media. This subscription
activity informs a given medium what sensors need
emission information and the type of emission

information they require: emission PDU based, dead
reckoning based, or both. The medium maintains a
coherent model of the emissive world using both
emission PDUs and dead reckoning “emissive” data.
Thus, there is no dichotomy in the handling of
medium effects relative to “source” and extensibility is
enhanced.

During simulation execution, medium processes
interact with the DIS stream to filter out incoming
emission PDU packets. Coupled with local dead
reckoning and ground truth information, the medium
model determines the resultant medium effect to the
emissions. Subscribed clients to the medium process
are passed the emission data either when they ask for it
(synchronously) or when an appropriate emission PDU
is received by the medium (asynchronously).

DIS Network

)

Acoustic
Medium

ASW Helicopter

Figure 4. An instantiation of the medium-centric architecture

Finally, this architecture allows for distributed
processing. There is no explicit requirement forcing
the medium model to reside on the sensor model or
platform model computer host. The architecture
obviates the need to rewrite modeling code as the
simulation models evolve and mature. This is
especially important as medium and sensor modeling
become more resolved; the processing requirements of
these models often consume their computer hosts.

2.2 One-To-Many Mapping

When created, the emission PDU is a compendium of
emissive information by the emitting entity platform.
The PDU may contain information about multiple on-
board emitters, where they are emitting (beam
information), and who is being illuminated (track/jam
entity identities). In short, the emission PDU is
centered around the emitting entity -- a one-to-many
mapping. It is the responsibility of receiving entities
to unwrap the emission PDU and determine if they

individually are being illuminated. Coining a soon-to-
be overused term, the emission data must be made
receiver-friendly -- a many-to-one mapping.

The architecture formalizes this transformation by
moving the mapping responsibility to the medium.
Incoming emission PDUs are received by a medium.
The medium dissects the emission PDU, transforms
the information into a receiver-friendly form, and passes
this information on to the sensor. The vehicle for the
emission data is called a Received Emission or
RecEmission for short. The RecEmission contains all
of the information relevant for a sensor to perform its
DCL (detect, classify, located) functionality.

The RecEmission also contains information on the
type of emission that it represents: emission PDU or
dead reckoning. Dead reckoning based emissions are
typically generated as a result of continuous or cyclic
emission events. They do not appear on the DIS
network as emission PDU; they must be regenerated
from shared emission databases and entity state
information. For example, submarine propeller and
cavitation noise in the acoustic domain can be derived
from entity velocity, perspective to “illuminated”
entity, position, and positions of articulated parts.
Here, there is no need to explicitly and cyclically emit
emission PDUs. The advantage with this type of
regeneration is lower consumption of DIS bandwidth;
the disadvantage is that this regeneration falls into a
grey area of the DIS standard. Aside from these
concerns, the RecEmission contains much of the same
information regardless of how it is created, via an
emission PDU or dead reckoning. The obvious
advantage is that medium effects are applied coherently
to either form and the sensor model maintains the same
interface to the medium. Thus, design and code
extensibility is enhanced.

2.3 Media Functionality

It is the responsibility of the medium to determine
what emissions are deliverable to its client sensors and
how their content may be affected. Again, media
capabilities are categorized as transmissive, reflective,
and refractive. These capabilities, the emissions in the
medium and other objects in the medium produce the
major tactical media effects at the sensor:

* Line of Sight,

* Propagation Loss,

* Clustering / Obscuration,
* Multipath,

¢ Jamming, and

* Spectral Warping.

Minimal modeling requires positions of the sensor and
the emitter. For instance, to model line of sight
obscuration due to the earth’s horizon, the model

needs the locations of the emitter and the sensor as
well as earth physical data. Propagation loss is
usually handled as a uniform loss of power in dBm per
meter; again the locations of the sensor and emitter
must be known to determine effective power at the
sensor receiver. Clustering and obscuration is also
concerned with the beam pattern and/or resolution of
the sensor. In this case, the medium must deal with a
number of entities. Multipath is conceptually easy to
model, but requires greater amounts of computational
capabilities. Here again, knowledge of other elements
in the environment is needed. Jamming is an
overpowering of sensors’ sensitivities or an increase in
the background emission noise sufficient to lose
emissions of interest. Tallying emission power at the
point of reception requires a knowledge of all
emissions within a sensor’s beam. Spectral warping is
simply a product of that summation spread over
different frequencies with different attenuations.

The important point is that for medium modeling to
perform realistically, for it to evolve and for the design
and coding structures to evolve with it, the medium
must be the focal point for all emissions before they
filter down to the medium’s client sensors. This
architecture provides that necessary focus.

One final point: it is not necessary for an emitter to
issue an emission PDU with the track/jam fields set.
In this case, the emitter sets the high density flag
within the PDU and sends it on its way. It then
becomes the receiving model’s responsibility to
ascertain the simulation worth of this emission PDU.
This architecture provides that mechanism via the
medium model. At the highest fidelity levels, the
medium model should ignore the track/jam entity
identification and determine which client sensors
should receive the emission PDU. A higher fidelity
regeneration model, thus could operate with lower
fidelity emitter models and produce simulation effects
compliant with the higher fidelity.

2.4 Emitter Functionality

Up to now, little has been said about the emitter
portion of the emitter-medium-sensor relationship.
This is for good reason. DIS emission regeneration and
this architecture require little of the emitter other than
to submit a DIS emission PDU into the DIS stream.
Obviously, the PDU must be constructed as mentioned
in section 2.2, a non-trivial task. But the bulk of
regeneration functionality is accountable at the
receiving end by the medium and sensor.

3.0 APPLICATION PROCESS
INTERFACE

Focusing on the interaction between the medium and
the sensor, this section details an application
programming interface. The term API is used loosely
here. The definitions are versed in terms of C++

objects. Public methods are defined for the medium
(Medium), sensor (Sensor), received emissions
(RecEmission), and emitter (Emitter) classes. This is
by no means a complete API between the sensor and
the medium; it contains only the major functional
interfaces.

3.1 Media Interfaces

The following public methods are part of the medium
class.

AddSensor(Sensor *s, Boolean async)

The AddSensor method adds a sensor to the called
medium. The medium checks the sensor for
compatibility with the medium frequencies using the
‘IsCompatible’ method. It returns false if there is an
incompatibility, else true. If successful, the AddSensor
method places the sensor in its client list and returns
true. If the ‘async’ parameter is true, then the medium
will notify the sensor immediately of newly received
emission PDUs.

RemoveSensor(Sensor *s)

The RemoveSensor method removes a sensor from the
called medium. If emissions are pending, they are
discarded.

NewEmission(PDU *e)

The NewEmission method is called by a local DIS
engine which dispatches emission PDUs to the
individual local mediums. From the medium’s sensor
client list, the medium checks each sensor for
detectability with the new emission. If the emission is
detectable, it creates a RecEmission and saves in it the
pertinent information from the emission PDU for each
sensor. If the sensor requests asynchronous update,
then the medium notifies the sensor via the sensor’s
‘NewEmission” method.

ScanMedium(Sensor *s)

The ScanMedium method effectively scans the medium
for contacts that the passed sensor can detect, classify,
and localize. The method returns a list of
RecEmissions that the sensor can “see” with its
current beam(s). This method determines the tactical
transforms on the currently stored RecEmissions for a
given sensor. These transforms include line of sight,
obscuration, propagation loss, multipath, jamming,
and spectral warping. Note that the medium doesn’t
truly limit their arrival at the sensor. The
RecEmissions are tagged according to the transpired
effects. This permits the modeling of clustered entities
at the sensor or composite burn-through in the midst of
broadband jamming.

IsCompatible(Sensor *s)

The IsCompatible method determines if the passed
sensor can sense within this medium via an

intersection of the sensor’s and medium’s frequencies.
If there is overlap, it returns true.

IsEmitterCompatible(Emitter *e)

This method determines if the passed emitter can emit
with this medium via an intersection of the emitter’s
and medium’s frequencies. If there is overlap, it
returns true.

3.2 Sensor Interfaces

The following methods isolate the major interfaces
with the medium. They do not address the more
general problem of what to do with RecEmissions
when the sensor receives them, i.e., DCL.

CanTrack(RecEmission *r)

The sensor’s ‘CanTrack’ method is called by the
medium to determine if this RecEmission can be
tracked by the sensor. Note that this is a coarse
filtering; frequency compatibility between the sensor
and RecEmission is checked. The method return true
if compatible, false otherwise.

CanBeJammed(RecEmission *r)

The sensor’s ‘CanbeJammed’ method is called by the
medium to determine if this RecEmission can jam the
sensor. Note that this is a coarse filtering; frequency
compatibility between the sensor and the RecEmission
is checked. The method returns true if compatible,
false otherwise.

EmissionKind(void)

The ‘EmissionKind’ method is called by the medium
to determine what type of emission regeneration is
suitable for this sensor (emission PDU or dead
reckoning based). Returns an enumerated type.

Scan(void)

The ‘Scan’ method is called by the sensor with its
update routine or as part of medium notification of a
new emission. In either case, the method calls the
medium’s ‘ScanMedium’ method to get a list of
RecEmissions that are available to the sensor. It is
within this base method that a sensor must perform the
tasks of detection, classification, and localization.

NewEmission(void)

The ‘NewEmission’ method is called by the medium
when a new relevant emission PDU is received by the
medium. This method prompts the sensor to perform
a scan.

CueSensor(void)

This method is called by the medium to determine the
sensor’s current beam patterns and directions.

3.3 RecEmissions

The following methods pertain to the RecEmission
class and are simply accessor methods. All information
is set by the medium in the ‘ScanMedium’ method.

BeamlIndex(void)

The ‘Beamlndex’ method returns the index of the
sensor’s beam that this RecEmission was detected.

IsColinear(void)

The ‘IsColinear’ method returns true if this
RecEmission exists behind another RecEmission that
is closer to the sensor and within the same beam.

IsJammed(void)

The ‘IsJammed’ method returns true if this
RecEmission is being jammed via an emitter.

ReceivedPower(void)

The ‘ReceivedPower’ method returns the raw emission
power of the RecEmission available at the sensor.

SNR(void)

The ‘SNR’ method returns the signal-to-noise ratio of
the RecEmission in the midst of other emissions
within the sensor’s beam. This value is an average
across all RecEmission’s frequencies within the beam.

4.0 USING THE API
4.1 Walk-Through Example

A walk-through of the functionality using the API is
often insightful. For discussion, assume a radar sensor
and an RF medium. Radars are active participants in
the RF environment; this one also has an emitter. The
radar is part of a ground site; there are numerous aircraft
in the area.

To begin, the radar requests service from the RF
medium (AddSensor). The medium replies that
frequencies are compatible and the sensor is made a
client. Next, the radar scans (Scan) the horizon. A list
of aircraft contacts are returned to the sensor. The
contacts or RecEmissions are created by the RF
medium. Using the dead reckoning (DR) database, a
candidate RecEmission is created for each DR entity.
Within the ScanMedium method, the medium uses
these candidate RecEmissions to probe the sensor’s
detectability of the entity via the sensor’s CanTrack
method. The medium also calls the sensor’s
CueSensor method to determine the sensor’s direction
and if the candidate RecEmission is physically
detectable (line of sight, etc.). The sensor uses the
returned contact list to further model the DCL portion
of the sensor.

Up in one of the aircraft, an RWR (radar warning
receiver) is notified by an RF medium (though not
necessarily the same RF medium object that the radar

uses) of a new emission (NewEmission). The RWR
scans (Scan) and receives a single RecEmission
originating from the ground-based radar. Using the
same protocol as the radar, this contact is filtered
against the RWR’s CanTrack and CueSensor
methods.

Both sensors use the same medium; each sensor is
supplied emissions from that medium. The radar
sensor receives internally generated RecEmissions; the
RWR receives emission PDU supported
RecEmissions. The protocol is identical; the logic is
clear. The ability to extend the design is straight-
forward.

4.2 Extensions

Now consider a simple sensor extension. A new class
of radars is created called ISAR (inverted synthetic
aperture radar). It has the ability to image ground and
surface targets from the air, but it has a much smaller
beam pattern. To create this new functionality, the
ISAR class has two new methods, CanTrack and
CueSensor, which override the functionality defined in
a common radar. When the medium calls the ISAR’s
CanTrack on ground-based targets, it will return true.
On air-based, it will return false. When the medium
determines if the candidate RecEmissions can be
physically seen (line of sight, beam patterns, etc.), it
will call the ISAR’s CueSensor method. As a result,
the ISAR illuminates much less volume than a
common radar, but provides a greater amount of
resolution detail for that smaller volume.

The same approach to extending base functionality can
also be applied to the media. Assume a frequency
range of RF that supports over-the-horizon travel. To
create this new medium model, a new class is created
that includes a new ScanMedium method. This
method leverages from the base ScanMedium and
augments it with over-the-horizon modeling. All other
methods remain the same; they simply perform with a
potentially greater list of contacts.

The use of an object-oriented language aids this
extensibility. But it is the architecture and design that
makes this level of extensibility possible. Without
overriding method capability, these extensions could
still be achieved via a number of approaches: table
look-up, function pointers, etc.

5.0 SUMMARY

This extensible architecture supports emission
modeling within the DIS framework. It provides
extensibility via 1) classic object-oriented design of the
real world elements; 2) the client-server relationship
between the sensor and medium; and 3) model
partitioning that allows distributed processing. The
approach is based on coercing the emission data into a
medium-centric format as compared to a platform-
centric format. And finally, the isolation of medium

and sensor taxonomies provides a base functionality
which new sensors and mediums can use.

This architecture has been used extensively in Hughes
over the past 4 years. As a testament to its
extensibility, the base sensor and medium code has not
been modified since 1994. Since that time, medium
and sensor code extensions account for three times the
size of this base code.

6.0 REFERENCES

" M. Schwartz and L. Shaw, Signal Processing:
Discrete Spectral Analysis, Detection, and Estimation,
McGraw-Hill, New York, 1975, pp. 148-264.

> G. Walter, Wavelets and Other Orthogonal Systems
with Applications, CRC Press, 1994, pp. 93-114.

’ D. Halliday and R. Resnick, Physics, John Wiley
and Sons, New York, 1966, pp. 1013-1146.

