

VIRTUAL WORLD ENVIRONMENT SIMULATION IN DISTRIBUTED
SIMULATIONS

 Xin Li, Mary Kruck, Henrik Lind and Dan Gilbert
 Lockheed Martin Information Systems

Bellevue, WA

ABSTRACT

In early applications of distributed simulation, battles occurred during mid-summer at high noon on a clear day
with just enough atmospheric attenuation to prevent the visual anomaly of seeing off the edge of the "world". The
Synthetic Environments (SE) Program, part of the Synthetic Theater of War (STOW-97) Advanced Technology
Concept Demonstration (ATCD), is developing an architecture and the processes to represent dynamic environments
with increased fidelity. Part of the SE Program is the Dynamic Virtual Worlds (DVW) effort, tasked to enrich the
virtual battlefield with a range of real-world environmental effects, such as clouds, battlefield smoke, vehicular dust,
natural and artificial illumination, and atmospheric transmittance.

This paper describes the work performed under DVW to advance the current state of the art in the visual
representation of environmental phenomena in virtual worlds. The implementation, known as the Virtual World
Environment System (VWES), provides the management and computation of environmental changes in the virtual
world. Physically-based environmental are incorporated into VWES, and provide a greater level of simulation
fidelity. In a Distributed Interactive Simulation (DIS) environment, VWES receives Environmental State Messages,
interprets the message data, executes the appropriate physical models, coordinates interactions among models and
contributes to the visual image accordingly.

The VWES architecture is designed and implemented such that it can easily be integrated into visual simulation
systems and can incorporate new physical models. The architecture includes two Application Program Interfaces
(APIs), one which allows the visual simulation application to provide environmental data to VWES and control its
operation, and one which allows VWES to communicate its results. A model registration mechanism provides a
flexible means of registering one or more environmental models on a per exercise basis.

VWES has been integrated into two visual simulation systems: the NPSNETIV.6 Stealth and the VISTAWORKS
ModStealth. Demonstration of the overall environmental simulation system is provided through interaction and
correlation with its Computer Generated Forces (CGF) counterpart, ModSAF, and other environmental servers
which issue environmental updates via the DIS network.

BIOGRAPHIES

Dr. Xin Li is a Real-time Software Engineer. He received his Ph.D. from the University of Central Florida and his
M.S./B.S. in Computer Science from the Academic Sinica of China and the Northwest University of China. Dr. Li
developed physically-based soil models while at the Institute for Simulation and Training. Since joining Lockheed
Martin, Dr. Li led the effort to implement an interactive bulldozer demonstrating a real-time dynamic terrain
capability on an image generator.

Mary Kruck is a Systems Engineer with a B.S. in Mathematics from California Polytechnic State University. She
has participated in the development of air and ground-based simulation systems, and is currently leading the
Dynamic Virtual World effort.

Henrik Lind is a Systems Engineer. He received his M.A. in Mathematics from the University of Washington, and
an MSEE and BS in Physics from Carnegie-Mellon University. Since joining Lockheed Martin, Mr. Lind has
participated in visual system software development and interactive game development.

Dan Gilbert is a Real-time Software Engineer with a B.S. in Electrical Engineering from the State University of New
York at Buffalo. He has developed simulation software for various aircraft, and is currently the key developer of the
Environmental Data Base employed by VWES.

The DVW Group can be reached at Lockheed Martin Information Systems, 13810 SE Eastgate Way, Suite 500,
Bellevue, WA 98005, (206)957-3214 (Email: dvw@lads.is.lmco.com).

VIRTUAL WORLD ENVIRONMENT SIMULATION IN DISTRIBUTED
SIMULATIONS

 Xin Li, Mary Kruck, Henrik Lind and Dan Gilbert
 Lockheed Martin Information Systems

Bellevue, WA

INTRODUCTION

The Synthetic Theater of War (STOW) is a major
application of the Defense Advanced Research Project
Agency’s (DARPA) initiative in Advanced Distributed
Simulations (ADS). One component of this
application, Synthetic Environments (SE), seeks to
advance the simulation of environmental effects in
visual and computer generated forces (CGF)
simulations. The goal of the SE Program is to extend
simulation capabilities such that virtual battles may be
fought under a wide range of environmental conditions
including variable time of day, obscuration, local
illumination and dynamically changing terrain.
Further, these capabilities are to be employable within
heterogeneous simulation platforms participating in
distributed simulation exercises.

The Dynamic Virtual World (DVW) project is one
element of the Synthetic Environments Program. It is
responsible for the development of environmental
effects, primarily atmospheric effects, for visual and
CGF systems. This paper describes the visual
implementation of DVW, the Virtual World
Environment System (VWES).

VWES FEATURES

VWES provides an environmental modeling
framework which can be tailored to individual visual
simulation applications and individual simulation
needs. It is designed to be easily integrated, providing
an encapsulated modeling capability with simple, well-
defined interfaces. A primary design goal has been an
open architecture with no platform dependencies.

The VWES Framework

The VWES framework focuses on the visual
simulation application interface and flexibility in the
environmental modeling to be performed for a given
simulation exercise. The interface allows the visual
application to control environmental modeling
capabilities, communicate required environmental data,
and receive visual descriptions of environmental
objects. Environmental modeling can be adapted to
individual simulations through mechanisms for
registering environmental models and controlling their

processing. Figure 1 illustrates the VWES
Framework.

Visual Simulation System
(VSS) Application

Environmental
Models

VSS Application
Interface

V
W

E
S

Environmental
Simulation

Figure 1 The VWES Framework

The visual application interface has two components:
the “front-end” (VWES) Application Program Interface
(API), and the “back-end” (VWES Agent) API. The
VWES API allows the visual application to initialize
VWES processing, update state information, control
model execution, and terminate processing. The
VWES Agent API allows VWES to communicate its
results to the visual application and query the
application for view and terrain surface information
needed by modeling activities.

The integration of VWES into a visual application is
reasonably straightforward. The developer incorporates
VWES API function calls within the body of the
visual application and develops a package (a VWES
Agent) to translate the visual descriptions provided by
VWES (via the VWES Agent API) into a form
understood by the image rendering software.

In the simplest of integrations, the developer need only
insert function calls to the basic VWES API
initialization, message processing, update and
termination functions. The incorporation of message
processing function calls is conditioned upon the
environmental models which may be registered, or
rather the data upon which these models depend. More
elaborate integrations may use environmental modeling
control functions whose use is optional and left to the
discretion of the integrator. The VWES model control
functions allow individual models to be activated and
deactivated during the simulation, and allow a model’s
processing characteristics (level of detail, update rate
and fidelity) to be controlled. These functions are

intended to be used for scene control/load management
and are effective only when a registered model supports
such a capability.

The VWES concept of model registration allows any
number of environmental models to be employed, and
permits the visual application to perform their (the
environmental models’) initialization, update and
termination through a small number of VWES API
function calls. Model registration is performed on a
per execution basis with models being identified by a
text file. A user selects models for registration based
upon simulation exercise requirements, and the
capabilities of the host platform/Image Generator (IG).

The model registration process identifies to VWES, a
set of software functions and dependencies for each

model. The functions are associated with events which
identify when each function is to be run e.g., at
initialization, when environmental data is received, etc.
The dependencies define the conditions under which
the model is to be run e.g., when a wind direction
change is detected, or when a battlefield obscurant is
instanced.

The VWES Architecture

Five functional areas comprise VWES: the VWES
API/Environmental Simulation Manager (ESM), the
Modeling Simulation Manager (MSM), the Model
Library, the Environmental Data Base Manager
(EDBM), and the VWES Agent API (VWES Agent).
Figure 2 illustrates the VWES architecture.

 VWES API

VWES Agent GDB

Environmental
Models

• Queries
• Environmental Object
 Visual Descriptions

V
W

E
S

Environmental Simulation Manager (ESM)

Modeling Simulation
Manager (MSM)

Environmental Data
Base Manager (EDBM)

EDB

Model Library

CSSMCOMBIC Others

VWES Agent API

• Environmental Messages
• Entity State Messages
• Environmental Model
 Directives

• Status

ILUMA

• View Information
• Terrain Information

Figure 2 The VWES Architecture

Implemented through the Environmental Simulation
Manager, the VWES API performs the overall
management of environmental simulation activities and
associated data structures. The ESM is supported by
the Model Simulation Manager which manages
modeling activities, including model registration. An
internal data structure, the Environmental Data Base
(EDB), contains pertinent environmental data. This

data is managed by, and accessible through, the EDB
Manager and its EDB API.

As previously mentioned, VWES itself does not
provide all functionality needed to visualize the
environmental objects/characteristics it models. A
“VWES Agent” is needed to translate generic
visualization data provided by VWES (via the VWES
Agent API) into a form usable by the target IG.

Additionally, this VWES Agent is the means by
which VWES accesses view and terrain information.
Conceptually, the “VWES Agent” can be viewed as an
implementation of the VWES Agent API.

Each of the VWES functional areas is discussed in
further detail in the following sections. Interested
readers are referred to [Lockheed Martin Information
Systems (LMIS), 1996] for additional information.

ENVIRONMENTAL SIMULATION MANAGER

The Management of VWES

At initialization, ESM instantiates environmental
models through a call to the MSM which registers
models and establishes operational and data
dependencies. Once models are registered, they are
initialized along with the internal EDB, view
information, communication with the VWES Agent,
and utility services. All of these operations are
achieved through a single call to the VWES API
initialization function.

During the simulation, ESM's function is to keep the
models updated with environmental changes to the
virtual world, and maintain synchronization with the
target IG. ESM monitors the current position of the
eyepoint, maintaining the environmental state for the
region of interest. Updates to the EDB, or movement
of the eyepoint to a new geographic region, cause the
state data, and geographically referenced update flags to
be updated. These update flags indicate the
environmental data type (e.g., temperature) which has
changed. They are passed to the MSM, which triggers
models dependent upon the changed data.

Additional operations performed by the ESM include
assuring platform- dependent information in the
Graphical Data Base (GDB) is current, synchronizing
with the IG and resetting update flags once all
environmental models are finished processing the new
information.

At termination, ESM de-registers all environmental
models and de-allocates all data structure memory
associated with VWES software components.

Communication with the Visual Simulation
Application

Two types of messages are recognized and processed
by the ESM: environmental state messages
(ENV_MSG) and entity state messages (ENT_MSG).

The ENV_MSG carries information describing
environmental conditions: temperature, humidity, rain
rate, wind velocity, cloud state, the current time, etc.
Coordinates are associated with each data set to define
the geographical location to which the data applies. In
addition, the ENV_MSG may describe environmental
events occurring in the virtual world. These include
flare, smoke plume and vehicular dust instances. These
differing types of information are grouped into records,
known as environmental variants which form a part of
the DIS environmental PDU [Neff, Haque and Shanks,
1995] from which the environmental state message is
derived.

The ENT_MSG describes the state of a simulation
entity, including entity id, type, location, velocity
and current status. This data is used for creating,
modifying and eliminating vehicle dust plumes.

When an environmental condition changes, or an
object is instanced, the visual application passes
information to the ESM through the VWES API.
Models are invoked to process the information, update
the EDB, and/or produce visual descriptions. Consider
for example, the receipt of an Environmental PDU
describing cloud state changes. The information is
passed from the visual application and a registered
weather model is triggered to process the data. ESM
updates the EDB and through the MSM, triggers the
Cloud Scene Simulation Model (CSSM). CSSM
determines if the updates are significant, and, if so,
executes, producing liquid water content distributions.
This data is communicated to the VWES Agent,
which translates it to semi-transparent polygons and
submits the polygons to the IG for rendering.

Scene Content Control

ESM allows any number of environmental models to
be employed and permits the visual application to
control each registered model’s operation. Through the
VWES API, the application is able to access model
names and ids, and activate and deactivate each model
at any time during a simulation.

ESM also provides the application with a scene
content control mechanism to manage computational
resources and IG load according to variable simulation
requirements. A set of VWES API functions allows the
application to instruct environmental models to switch
levels of detail, run at different update rates, or change
modeling fidelity levels. If a model is not capable of
reacting to these control adjustments, no changes in
processing occur.

MODELING SIMULATION MANAGEMENT

Environmental models in VWES are self-contained and
configurable according to simulation requirements.
Models are bound by software wrappers added to
support control and satisfy performance constraints.
Models exchange information with the EDB and the
VWES Agent. They identify environmental data
dependencies and event handlers to process
environmental information and produce visual
representations.

The Modeling Simulation Manager utilizes a model
registration mechanism that allows VWES to provide
visual applications with an open architecture under
which any model can easily be incorporated. This
section describes how VWES manages environmental
models.

Model Registration

A model registers itself to the MSM by providing
information such as its name, trigger time, event
handlers, and environmental data dependencies. A
trigger time specifies how often the model wishes to be
updated. Event handlers are software functions which a
model wishes to be executed when specific events
occur (e.g., when the system is initialized,
uninitialized, updated each simulation loop, or when
environmental conditions change).

There are nine events recognized by the MSM:

Table 1 Environmental Modeling Events

EVENT DESCRIPTION
INITIALIZE System Initialization
UPDATE System Update*
PROC_ENV_MSG System Receipt of an

Environmental Message
PROC_ENT_MSG System Receipt of an

Entity Message
RERUN System Detection of an

Environmental Data
Change

SET_LOD System Adjustment of
Model Level of Detail

SET_UPDATE_RATE System Adjustment of
Model Update Rate

SET_FIDELITY System Adjustment of
Model Fidelity

CLEAR System Termination
* Generally each simulation frame.

A model may register as many event handlers of each
event type as it desires. When an event occurs,

functions associated with the event type are executed in
the order in which they were registered.

Environmental Data Dependency Management

When a model registers, it identifies a set of
environmental sensitivities, i.e., environmental data
dependencies. When any dependent data are updated
in the EDB (within a region of interest specified by the
ESM), event handler(s) registered with token RERUN
are invoked to update visual description(s).

The MSM maintains variables used to manage data
dependencies. A variable pair is defined for each
environmental data type on which models depend.
The first variable, TOTAL_DEPENDENTS, defines
the total number of registered, active models which
depend on the data type. This variable is used to
establish an initial value for the second variable,
CURRENT_DEPENDENTS. CURRENT_
DEPENDENTS is used to track the number of models
which need to operate on the updated data. When
environmental data is updated, update flags are set and
CURRENT_ DEPENDENTS is set to the value of
TOTAL_DEPENDENTS. Subsequently models are
triggered, and upon a model’s completion,
CURRENT_DEPENDENTS is decremented. When
all models are complete, CURRENT_DEPENDENTS
is zero, indicating that the update flags may be reset.

This approach allows an order-independent execution
of models processing environmentally sensitive data. It
assumes however, that models have equal chance to
access the data. In other words, models should be
synchronized.

Scene Content Management

The MSM supports scene content management by
providing functionality to instruct models to run at
specified levels of detail (LODs), update rates, or
fidelity levels. As previously noted, a model may be
deactivated or activated through the MSM during run-
time, allowing alternative methods to be employed for
modeling environmental objects.

The Model Library

VWES currently supports 11 environmental models;
Table 2 identifies each model’s registration name and
the environmental object/characteristic it models. The
models themselves are too complex to describe
completely. This section provides a brief overview of
each model; references provide additional information.

Table 2 VWES Supported Environmental Models

Model Name Environmental
Object/Characteristic

CSSM Clouds
COMBIC Obscurants
ADVANCED_COMBIC Advanced Obscurants
ILUMA Global Illumination
LOWTRN Haze
BEERS_LAW Haze
FLARE Flares
VDUST Vehicular Dust
SIMPLE_WEATHER Uniform Weather
OBSERVED_WEATHER Observed Weather
GRIDDED_WEATHER Gridded Weather

CSSM - The Cloud Scene Simulation Model is
an empirical cloud simulation model developed by
The Analytic Sciences Corporation (TASC). It
simulates realistic, high-resolution clouds based on
large-scale weather conditions [TASC, 1994].
Stochastic field generation techniques and convection
physics are used to convert weather data into liquid
water content.

COMBIC - The Combined Obscuration Model for
Battlefield Contaminants was developed by the Army
Research Laboratory (ARL) [Hoock, Sutherland and
Clayton, 1987]. It is a comprehensive model for
battlefield obscurants which produces time histories of
an obscurant's envelope within which it assumes a
Gaussian mass distribution. The model is capable of
simulating 30 different obscurant source types, viewed
by any of seven sensors. To allow real-time update of
obscurants, efficient modeling and visualization
algorithms have been developed by Northrop
Grumman Data Systems [Gardner and Li, 1996].

ADVANCED_COMBIC - Advanced COMBIC is
an extension of COMBIC which applies terrain-
following and variable, local wind effects to obscurants.

ILUMA - The Natural Illumination Under
Weather Conditions model was developed by the
Army Research Laboratory (ARL) [Duncan and Sauter,
1993]. It is used to predict global illumination under a
fairly wide range of sky and weather conditions. The
model accepts meteorological data including: sun and
moon position, moon phase angle, high-, middle-, and
low-level cloud types and amounts, and the presence of
fog or precipitation.

LOWTRN - The LOWTRAN atmospheric
model, developed by the U.S. Air Force Geophysics
Laboratory (AFGL), provides low spectral resolution
(up to 20 cm-1) transmission and/or background
radiance of atmospheric paths [Pierluissi and

Maragoudakis, 1987]. The transmittance along an
atmospheric path is considered a function of the total
amount of absorbing or scattering species along the
path. Atmospheric conditions on which calculations
are based include aerosol, rain, cloud extinction,
pressure, temperature, and water vapor density.

BEERS_LAW - A simple closed form
approximation for transmittance (e -ext_coeff*range).

FLARE - Unlike other models, the illumination
flare model is not physically-based and does not react
to environmental changes with the exception of time-
of-day. The model controls flare motion, burn
behavior and illumination characteristics. Provided
with information such as initial position, velocity,
color, illumination cone angle and light intensity, the
model derives the characteristics of an animated
sequence and local illumination effect.

VDUST - Supported by COMBIC, VDUST
models dust plumes along a path behind a moving
ground vehicle. The model inherits the physically-
based features of COMBIC while taking into account
vehicle attributes and soil characteristics.

VWES currently supports three weather models. The
weather model’s purpose is to respond to
Environmental State messages, detecting changes to
the environmental state and modifying the EDB
according to geographic region and propagation
mechanism.

SIMPLE_WEATHER - Applies weather
uniformly across the virtual battlefield.

OBSERVED_WEATHER - Applies weather
uniformly about a specified observation point.
Observation points are assumed to have a circular
region of influence of radius R.

GRIDDED_WEATHER - Applies weather
locally, i.e., the weather is spatially variant.

ENVIRONMENTAL DATA BASE
MANAGEMENT

To remain abreast of environmental changes occurring
in the virtual world, VWES maintains environmental
state information in a data structure known as the
Environmental Data Base. The EDB is managed by
and accessible through the EDBM which provides API
functions to store, detect, and retrieve data.

The EDBM maintains spatially variant environmental
data (e.g., temperature, precipitation, etc.), as well as
data treated as uniform over the simulation region
(e.g., sun and moon position, current time).

Spatially variant data, known as Atmospheric Data,
are maintained in a grid structure. For each grid node,
a data set is maintained; this data set describes the
current environmental state for a corresponding
geographical point. Uniform data, known as Global
Data, is stored in a simple data structure.

Configuration of the gridded EDB is very flexible.
Extents, resolutions, and initial data values are
specified through an EDB API function call initiated
by the ESM during initialization. The EDB may be
configured as a 2-D or 3-D data base, with the extents
in each dimension being independent of the others.
Grid cell resolutions in each dimension are also
independent of each other, allowing for non-square or
non-cubic grid cells. The geometry of the EDB is
selected prior to run-time, and can be configured in
such a manner as to cover the entire virtual battlefield,
while providing the best fidelity to performance
tradeoff.

For most exercises, a single level of detail data base
ensures adequate environmental fidelity. However, it
may be desirable to represent some portions of the
virtual battlefield at a higher resolution, for example, a
tactically important area of an otherwise nondescript
desert. The EDB satisfies this requirement by
allowing specified locations of the data base to be
represented at multiple levels of detail. LODs may be
added or removed in real-time. Expanding a grid cell
into multiple LODs allows VWES to access
environmental data at varying resolutions for the
corresponding region. Each finer LOD is derived by
dividing the "parent" grid cell into eight "children".
This scheme of multiple LODs for specific regions,
versus the entire data base, is referred to as a hybrid
oct-tree.

LOD 0

cell x resolution = init_x
cell y resolution = init_y
cell z resolution = init_z

shaded cells expanded to next LOD

shaded cell expanded to next LOD

LOD 1

cell x resolution = init_x / 2
cell y resolution = init_y / 2
cell z resolution = init_z / 2

LOD 2

cell x resolution = init_x / 4
cell y resolution = init_y / 4
cell z resolution = init_z / 4

Figure 3 VWES Hybrid Oct-Tree

The EDB API allows the ESM or environmental
models to update portions of the data base by
specifying the affected location (origin, extents, LOD),
a bit mask indicating the data type(s) to update, and
the new data values. In the hybrid oct-tree structure,
changes to the data are propagated from the point of
update to other levels of detail. Modifications to the
finest resolution are downsampled to update coarse
resolutions; data input at a coarse resolution is
duplicated to update fine resolutions.

Atmospheric Data updates are performed through the
use of the EDB API “set data” functions. Updates can
be distributed across the gridded EDB via two distinct
mechanisms.

The first mechanism propagates uniform data values
across a geographic region for a specified data type(s).
VWES weather models SIMPLE_WEATHER and
OBSERVED_WEATHER use this mechanism to
update the EDB. The SIMPLE_WEATHER model,
in which Atmospheric Data is uniform across the
simulation region, specifies the entire data base as the
affected geographic region. The OBSERVED_
WEATHER model, which affects a circular region of
influence around an observation site, specifies the
geographic point location of the observation site as the
affected region and sets a special propagation flag. The
propagation flag instructs the EDB to distribute the
updates to all grid cells determined to be within the
site’s region of influence.

The second mechanism propagates varying data values
for a single data type across a geographic region. The
GRIDDED_WEATHER model uses this mechanism
to update the EDB.

Global Data are updated through a separate EDB API
function. This function requires only a bit mask
indicating the data type(s) to update and the new data
value(s).

The EDB provides a means by which ESM can detect
environmental changes that affect registered models. In
support of this capability, each grid cell of the EDB
includes an "update flag" bit mask; each bit
corresponds to an individual, unique data type. The
appropriate update flag bit is set when a data type value
for the grid cell is updated. The EDB API provides a
function that retrieves and logically ORs the update
flags of all grid cells for a specified region. A
corresponding API function is provided to reset update
flag bits. The Global Data structure maintains update
flags which indicate changes to global data types.
Similar API functions are provided to retrieve/reset
global update flags.

Finally, the EDB allows ESM and the environmental
models to retrieve environmental data associated with
specific locations. Atmospheric Data is retrieved by
specifying a desired geographic point, an LOD, and a
bit mask indicating the data type(s) to retrieve. The
EDB traverses the data base and retrieves the requested
data from the appropriate grid cell. Data from the
closest valid grid cell is retrieved for queries whose
geographic point lies outside the defined dimensions of
the EDB. A similar API function is provided for
retrieving Global Data.

THE VWES AGENT AND ITS API

The VWES Agent is the platform-dependent
component associated with VWES. It is used to (1)
Generate visual representations in a format
understandable by the target IG, (2) Interface to a
Terrain Data Base (TDB), and (3) Obtain graphical
view parameters. The VWES Agent is developed as a
result of integrating VWES into a visual simulation
application. It is generally perceived to consist of three
sub-modules: VWES_AGENT_VIS, VWES_
AGENT_TDB, and VWES_AGENT_VIEW.

Generating the IG Representation (VWES_
AGENT_VIS)

VWES_AGENT_VIS accepts generalized graphic data,
translating the data into calls to the IG graphics
library. It provides the functionality to display each of
the environmental objects/characteristics modeled
within VWES. This currently includes: smoke,
clouds, flares, and characteristics which are a function
of time of day (e.g., sun angle, sun light intensity
(diffuse [aka direct] and ambient [aka scattered] light),
lunar illumination, sun and moon representations, sky
color, directional horizon glow, and spline-based,
colored haze, and local illumination (for flares)).

VWES_AGENT_VIS functionalities for processing
environmental objects/characteristics are not necessarily
independent; they may interact with one another. A
prime example is the derivation of sky characteristics.
Realistic sky representations are a function of time of
day AND haze characteristics. VWES_AGENT_VIS,
as we’ve chosen to implement it, re-generates sky
characteristics if either the time of day or haze
characteristics have changed. This implementation is
supported by our separation of VWES_AGENT_VIS
into (1) data gathering and (2) data rendering
operations. During data gathering, VWES sends
updated time of day and haze information to
VWES_AGENT_VIS. This data is combined to
create appropriate sky characteristics which is then
rendered.

Since rendering time can be large compared to data
gathering time (depending on scene complexity), we
have chosen to employ jointly accessible data buffers.
The graphics data buffers are filled during data
gathering, and sent to the IG during data rendering.
Thus, multiple VWES_AGENT_VIS calls can be
made by VWES before the graphics process is able to
render the data. Only the latest data appears in the
image.

The VWES Agent API (VIS) enforces a rigid
separation between environmental model data and the
data used by the IG to render images. In support of the
data gathering/rendering scheme described above, the
API includes functions to “set” data as it is gathered,
and to “update” data to be rendered. To render
polygons representing smoke and clouds, for example,
the following occurs.

Each time VWES generates new polygon data, a “set”
function is called. This function copies polygon data to
local (VWES_AGENT_VIS) buffers, and adds data
needed for rendering, but does no rendering. Instead, a
flag indicating the data has changed is set. The
“update” function interprets the “changed data flag”,
sending the polygon data to the IG, clearing the flag,
and resetting the data buffers.

Interfacing to a Terrain Data Base (VWES_
AGENT_TDB)

VWES accesses the visual simulation system's Terrain
Data Base to obtain geographic information, including
data base origin, Universal Transverse Mercator
(UTM) designations, extents, and terrain elevations.
The associated interface, the TDB API, consists of
functions to retrieve general TDB information and
terrain characteristics. Note that not all visual system
terrain data bases provide the information identified
above. In those instances, the developer may provide
the data through a text file or some other means.

For optimization, our implementations return multiple
elevation values for a single query (specifying multiple
reference points). The method by which queries are
handled is dependent on the data base used, and the
underlying architecture of the data base and target IG.

Obtaining Graphical Parameters [VWES_
AGENT_VIEW]

The VWES Agent API (VIEW) provides ESM and the
physical models with standardized access to graphical
configuration information. Information available
through this API includes clipping planes, eyepoint
location and orientation, viewing vector, field-of-view
angles, and frame update rate. VWES stores view
information in the Graphics Data Base (GDB) which is

initialized by ESM and updated each simulation frame.
Changes to the IG's software configuration do not incur
interface modifications.

VWES maintains the GDB through queries to the
visual application. View information is available to
VWES components through the VWES Agent API
(VIEW) and is used to bound visual representations.
For example, smoke plume polygons are removed from
processing if they fall outside the field of view of the
eyepoint.

DESIGN ISSUES

Several issues have arisen during the VWES design
process. Some are the result of attempting to define a
generalized VWES Agent API usable by many
heterogeneous visual systems. Others stem from the
implementation of VWES Agents for multiple visual
systems. The following sections address design issues
raised during our development efforts.

Interface Content

What data should be included in the interface, and
what form should it take? In answering this question,
we analyzed the types of objects we wanted to represent
and identified the basic image primitives most likely
to be used. Further we identified the descriptive
information needed to describe these primitives to
various IG platforms and the most reasonable means of
referencing environmental objects to be rendered. We
noted that it is desirable to be able to reference an
environmental object that is comprised of multiple
primitives (such as a smoke plume) by a single
reference identifier.

In practice, we found much commonality between the
two systems into which we’ve integrated VWES, the
VistaWorks ModStealth and the NPSNETIV.6
Stealth.

VWES Agent Functionality

In developing a VWES Agent, operations supporting
efficient image rendering, and visual system limitations
must be identified. Operations not performed by the
system into which one is integrating should be
performed by the VWES Agent. Visual system
limitations must be “worked around”, or VWES
Agent functionality must be limited to only that which
can be supported by the visual system.

Two examples which affect efficient image rendering are
polygon sorting and object persistence. Both of the
systems into which VWES has been integrated execute
on a Silicon Graphics Inc. (SGI) platform. SGI

platforms require semi-transparent polygons to be
rendered back-to-front. In the VistaWorks ModStealth
VWES Agent, no sorting is performed; all necessary
sorting is performed by VistaWorks. In the
NPSNETIV.6 Stealth VWES Agent, the Agent
performs the sorting, as NPSNET provides none.

Does the IG retain a memory of each polygon from
frame to frame, or does it begin each frame anew? The
former holds for the VistaWorks ModStealth, the latter
for the NPSNETIV.6 Stealth. In the VistaWorks
VWES Agent implementation, a pool of graphical
objects is maintained by the Agent. As new polygon
data is received, it is bound to existing graphical
objects, or new objects are allocated. The binding of
VWES data to graphical objects changes from frame to
frame, but objects are not de-allocated between frames
which would be expensive and needless. Unused
graphical objects in a given frame are deactivated. In
NPSNETIV.6, graphical objects are not persistent, but
are supplied anew each frame.

In some cases, visual system limitations may mean
that VWES data may not be used at all or that the data
may be used indirectly. Consider, for example,
illumination flares. The VWES Agent API describes
illumination flares as an animated sequence of textured
polygons. Some visual applications, such as the
NPSNETIV.6 Stealth, allow independent control of
the animation; this control has been built into the
NPSNETIV.6 VWES Agent. The VistaWorks
ModStealth provides no such control. The
VistaWorks Agent uses the initial flare data to trigger a
VistaWorks-controlled animation sequence.

Limited IG Capabilities

Since not all IGs provide the same capabilities, the
VWES Agent may need to provide functionality to
compensate for these limitations. One example is the
processing of local illuminations. Some IGs limit the
number of local illuminations which may be active at
any one time due to the computational expense of
modeling them. The SGI hardware supports eight (8)
local illumination sources; one is allocated for global
illumination (the sun), leaving seven (7) for
representing such things as illumination flares. Since
distributed interactive simulations impose no limits on
the number of active flares, the VWES Agent is
responsible for managing the allocation of local
illumination sources to active flares.

WHAT’S AHEAD

As this paper is written, VWES is in its fourth
development phase. Enhancements expected to be
implemented during this phase include sea state and
wave modeling, additional explosions and weapons

effects, and IR Sensor modeling. Additional efforts
focus on the coordinated (with other Synthetic
Environment programs) development and integration of
hydrology modeling, visual appearance, and weather
modeling. Finally, overall VWES performance will be
measured.

CONCLUSION

The need for enhanced simulation of environmental
elements is clear. The uses and planned uses of
simulation in the training of personnel, the
development of tactics, and the evaluation of weapon
systems is expanding. As such, these simulations
must be comprehensive and well representative of
today’s battlefield. DVW and the other Synthetic
Environment programs are furthering the realistic state
of the battlefield and increasing the usefulness of
simulation in today’s defense environment.

ACKNOWLEDGMENTS

The technical development described herein was
performed under the DVW contract, sponsored by the
DARPA, the U.S. Army Topographic Engineering
Center, and the Defense Modeling and Simulation
Office.

REFERENCES

[Duncan & Sauter, 1993] Duncan, L.D. and
Sauter, D.P., "Natural Illumination Under Realistic
Weather Conditions", Technical Report, Army
Research Laboratory, White Sands Missile Range,
NM, 1993.

[Gardner & Li, 1996] Gardner, G. and Li, X.,
"Physically-based Battlefield Obscurants in Distributed
Interactive Simulation", The proceedings of IMAGE
Conference '96, Phoenix, NM, 1996.

[Hoock, Sutherland & Clayton, 1987] Hoock,
D., Sutherland, R. and Clayton, D., "Combined
Obscuration Model for Battlefield Contaminants
(COMBIC)", ASL-TR-00221-11. U.S. Army
Atmospheric Sciences Laboratory, 1987.

[Lockheed Martin Information Systems
(LMIS), 1996] Lockheed Martin Information System,
"System Description Document for the Virtual World
Environment System (VWES)", Technical Document,
1996.

[Neff, Haque and Shanks, 1995] Neff K.,
Haque S. and Shanks G., “Revision of the
Environmental PDU”, Paper 95-13-054, Summary
Report: The 13th Workshop on Standards for the
Interoperability of Distributed Simulations, Vol. 1,
1995

[Pierluissi & Maragoudakis, 1987] Pierluissi,
J.H. and Maragoudakis, C.E., "Atmospheric
Transmittance/Radiance Module LOWTRN",
Technical Report, TR-0221-4, Electrical Engineering
Department, The University of Texas at El Paso,
1987.

[TASC, 1994] TASC, "Atmospheric Scene
Simulation Modeling and Visualization", Technical
Report, Contract No. F19628-93-C-0203, Electronic
Systems Center Air Force Materiel Command, 1994.

Figure 4 Cloud Simulation

Figure 5 Obscurants Simulation

