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ABSTRACT
For computer generated forces to be useful in training
environments, they must exhibit a broad range of skill
levels, competency at their assigned missions, and
comply with current doctrine. Because of the rapid rate
of change in Distributed Interactive Simulation and the
expanding set of performance objectives for any
computer generated force, the system must also be
modifiable at reasonable cost and incorporate
mechanisms for learning.  The requirements pose an
intricate set of challenges because the system must
satisfy reasoning and fidelity requirements as well as
performance requirements.  To address these
circumstances, we developed a set of general
requirements for aircraft computer generated forces and
used them to guide our specification of a generalized
architecture for aircraft computer generated forces.  In
this paper, we present a component-wise decomposition
of the system and describe the structure of the major
components of the computer generated force decision
mechanism.  We illustrate the application of this
architecture by presenting its application to the design
of an aircraft computer generated force, the Automated
Wingman.
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INTRODUCTION
Practical development of intelligent entities for
distributed interactive simulations and advanced
distributed simulations requires addressing a wide
variety of issues related to knowledge engineering,
information structure, decision making, scalability, and
system software architecture.  To date, the  majority of
systems have addressed these problems only in passing
because of the need to meet program schedules.
Additionally, the need for realism in the simulation
environment as well as real-time performance
considerations, have forced many systems to adopt ad
hoc, non-scaleable solutions to these problems to
achieve real-time performance.
The requirements for intelligent computer generated
forces (CGFs) stem from the need to reduce operational
costs while providing a realistic training and analysis
environment that operates in real-time.  Allow us to
briefly review and summarize these requirements here,
we will return to them in greater detail later in the
paper.  CGF requirements address the need for
modifiability, high fidelity representations, adaptable
decision mechanisms and behaviors, and automated
incorporation of past reasoning into the decision
process.  The CGF must also exhibit multiple skill
levels for classes of entities, graceful degradation of
reasoning capability under system stress, an easily
expandable modular knowledge structure, and adaptive
mission planning.  For example, the capability of
multiple skill levels would provide pilot behaviors for
aircraft entities at different skill levels.  This would
provide rookie, expert, and ace levels of pilots within
the same battlespace, which should make for better
training and analysis.  Additionally, the entity should
have a complete set of behaviors for the type(s) of
missions it must perform, but not all behaviors need to
be crafted to the same level of fidelity and quality.
Merely considering individual entity behaviors is not
sufficient.  Issues related to complex inter-entity
behavioral interactions, such as the need to maintain
formation, must also be considered.  Because CGF
performance must continually adapt to new
requirements, the system should be customizable by
users in the field and be adaptable to new weapon
systems, vehicles, and tactics.  The CGF should be
able to respond to unforeseen circumstances with an

acceptable response and be able to deal with uncertain
information.  Because of the need for increased
complexity in the virtual battlespace, the CGF should
exhibit complex, realistic behavior patterns within the
battlespace during the course of its mission and be able
to adaptively change mission parameters during the
course of a mission in response to events.  Finally,
these capabilities should be embedded in an extensible,
explicable, layered software architecture that has well
defined locations for reasoning and knowledge storage.
In this paper, we will review necessary background
material driving aircraft CGF requirements and
background concerning a methodology of addressing
these requirements.  The foundations and motivations
for aircraft CGF requirements, their implications, and
their importance are then discussed.  A means for
successfully addressing these requirements is presented.
The paper closes with a summary of our approach and
our assessment of needs for future development.

BACKGROUND
This section discusses the topics of Distributed
Interactive Simulation (DIS), current aircraft CGF
background and projects, and fuzzy logic.  These topics
are necessary to understand the subsequently derived
requirements for aircraft CGFs and the solution
methodology that addresses these requirements.
Distributed Interactive Simulation
The most widespread use of network technology for
distributed virtual environments (DVEs) relies upon the
current DIS suite of standards (IEEE Standard 1278-
1993).  DIS was designed to link distributed,
autonomous hosts into a real-time distributed virtual
environment via a network for exchanging the data that
describe events and activities.  DIS takes the concept of
environmental distribution to its extreme; there is no
central computer, event scheduler, clock, or conflict
arbitration system.  Each entity is responsible for
processing the information that it receives and for
insuring that all remote hosts have current and accurate
information about its state.  Stytz presents additional
information concerning DIS and DVEs (Stytz, 1996a).
Current CGF Background and Projects
Computer generated forces that exhibit human-like
behaviors are critical to achieving large-scale distributed
virtual environments.  Their presence is important



   

because they permit a complex virtual environment
with a large number of actors to be activated without
the expense of involving large numbers of humans.
The challenges for a CGF lie in computing human-like
behaviors and reactions to a complex dynamic
environment in real-time, or at least at a human-scale
rate of time.  However, the challenge is eased somewhat
because there is no need to replicate the human decision
process, instead only the observable aspects of human
decision making must be mimicked.  However, the
CGF behavior must be realistic and accurate enough so
that other CGFs and human participants respond to it
as if it were a human-controlled actor.  Advances in
artificial intelligence are important to the development
of realistic CGFs.  The capability to construct large,
complex reasoning systems and the development of
large knowledge bases for use by the decision
machinery combine to enable the implementation of
CGFs of acceptable fidelity.
For our purposes, the major components of an aircraft
CGF include the following: vehicle dynamics, behavior
modeling, artificial intelligence, and software
architecture.  Vehicle dynamics are important in CGFs
because the actor should move through the virtual
environment accurately whether it is human or
computer-controlled.  The vehicle dynamics for
computer-controlled actors should not allow a human to
identify it as a CGF by virtue of either exceptionally
good or poor motion or display of dynamic behavior
that would identify it as being computer controlled.
Human behavior modeling addresses the task of making
the behavior and reactions of a CGF seem realistic by
developing models that yield a reasonable analog of the
output of the human decision-making process.  The
human behavior modeling subcomponent of CGFs
might normally be considered as part of the artificial
intelligence subcomponent.  However, separating it
from artificial intelligence serves to highlight its
importance and the need to model behavior
independently from the approach used to act upon the
behavior model.  In addition, the human behavior
modeling component is the focus for certifying the
accuracy of the performance of the CGF.  Human
behavior modeling requires acquiring domain-specific
knowledge about the human mental models and
information brought to the decision-making process and
the key factors in the process.  For military virtual
environment purposes, this involves incorporating
doctrine, tactics, knowledge models, information, and
training into the behavior of the CGF, making this
component relatively static but nevertheless complex.
The area of artificial intelligence addresses the problems
associated with processing the situation considering
constraints like plans, mission, activities by other
actors, domain knowledge, and the capabilities of the
vehicle that the CGF must control.  The artificial
intelligence component insures that the CGF pursues
its goals, responds in a proper, human-like manner

based upon its knowledge base, keeps the performance
of the CGF within human and sensor limits, develops
plans based upon its knowledge base, and manages
other tasks.  Fielded systems, like TAC-AIR SOAR
(Tambe, 1995) and ModSAF (Calder, 1993) address
these problems at different levels of fidelity. TAC-AIR
SOAR is the most successful of the current aircraft
CGFs, which builds upon the Soar architecture (Laird,
1987) for general intelligence and reasoning.  However,
TAC-AIR SOAR does not handle uncertainty in its
decision making process.
The vehicle dynamics, behavior modeling, and artificial
intelligence system components are brought together
within the CGF software architecture component.  A
flexible CGF software architecture ensures that current
CGF development efforts are extensible to future CGF
requirements.  The ability to modify the implemented
CGF to include additional behavioral requirements is
directly attributable to the software architecture’s
flexibility.  In addition to the incorporation of new
behavioral requirements, a flexible CGF software
architecture allows the system to effectively address
computational efficiency, incorporation of additional
knowledge engineering efforts, and scaleable
performance.
Fuzzy Logic
Within a fuzzy-logic system of reasoning, an assertion
may have a degree of both truth and falseness.  While
this may seem confusing at first, it is a common way to
represent situations.  For example, consider a piece of
teal matte board and the assertions “the board is blue”
and “the board is green.”  Depending upon the shading,
we may say that the assertion that the board is blue is
true to degree 0.6 (out of 1) and the assertion that the
board is green is true to degree 0.4.  We now have two
assertions, both true to a degree.  We can reason with
these assertions by factoring in the degree of truth of
each assertion to arrive at a conclusion that considers all
of the available information.
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Figure 1.  Specification of the AGE Linguistic Variable

The concept within fuzzy logic most applicable to the
AW project, the aircraft CGF development effort
described later in this paper, is that of a linguistic



   

variable.  A linguistic variable, such as temperature,
describes a quantity or an idea that is best represented
by fuzzy sets, called term sets. A more powerful
technique is to fuzzify a crisp value and determine the
term set(s) to which the crisp value belongs, allowing
the linguistic variable to be valuated as the union of its
fuzzy sets.  The linguistic variable then takes on the
value of all the term sets that apply, not the crisp value
itself (Zadeh, 1975 and Schwartz, 1991).  An example
term set is age.  The concept of age is often described in
terms of young, middle-aged, and old. Figure 1 shows
one possible design for the linguistic variable Age.  In
this example, a 15 year-old person is “young” while a
75 year-old person is “old.”  A 45 year-old person
could be considered “young” or “old”' to a very small
degree but is primarily called “middle-aged.”

COMPUTER GENERATED FORCES
REQUIREMENTS AND THEIR

IMPLICATIONS
Even though we rely upon a rapid experimental and
evaluation prototyping approach to system development
(described in Stytz, 1996b), a set of baseline
requirements are necessary to provide a foundation for
system development.  This section broadly describes
these requirements.  In the next section we describe
how we approach these requirements.
CGF Requirements
The requirements for a CGF can be broken down into
several categories.  These range from the software
architecture that implements the CGF to the knowledge
base that is used by the CGF to support its decision
making.  The genesis for these requirements is the need
to support a wide variety of training scenarios at the
lowest possible unit cost while simultaneously
achieving a credible representation of the behavior of the
modeled entity.  We open this section with a
discussion of each requirement: 1) modifiability, 2)
high fidelity representations, 3) adaptable decision
mechanisms and behaviors, and 4) automated
incorporation of past reasoning into the decision
process.  Subsequent subsections provide additional
background on each requirement and assess the
development and performance implications of each
requirement.  

Modifiability.  In our view, modifiability is the
ability to enhance existing CGF capabilities and
includes rapid expandability of the domain-specific
knowledge base and a flexible software architecture.
The requirement for knowledge base expandability
focuses on the need for the CGF to incorporate new
strategies, tactics and maneuvers to reflect current ally
and opponent concepts.  If this requirement is ignored,
then the CGF stagnates and large expense will be
incurred to maintain the usefulness of the system for
training.  A flexible software architecture likewise
insures that the CGF can be readily adapted to meet
new performance, interface, and communication protocol

requirements. The architecture should be able to
support system development as well as the fielded
system.  While the software architecture should not
change often once the system is fielded, there will
continue to be system upgrades and the software
architecture should be able to incorporate these changes
with limited repercussions on the rest of the system.  

High Fidelity Representations.  High fidelity
representations in the CGF are achieved by enabling
CGF operation using an accurate 1) world
representation, 2) dynamics for vehicle motion, 3)
sensor and weapons models, and 4) model of human
behavior.  The world representation is based upon
surface representations using primitives within a
hierarchically organized representation of the terrain
data.  However, to simply have a high fidelity
representation within the CGF is not sufficient.  The
CGF must also interact with other entities within the
distributed training environment; therefore, the
representation must also permit a high fidelity data
interchange capability.  In short, since CGFs do not
operate in isolation, their world representation must
have a high fidelity counterpart for manned systems as
well as for other CGF systems.  The issue of
implementing correct dynamics for vehicle motion is
another aspect of achieving a high fidelity
representation.  The vehicle dynamics concerns issues
associated with insuring that the vehicle only moves
according to its capabilities and does not achieve a level
of performance that is unrealistic given the terrain,
weather, and atmospheric conditions.  Likewise, the
weapons and sensor models must properly report the
same field of view and range as its real-world
counterpart.  This level of fidelity must range from the
modeling of the eyesight of the operator of the CGF to
the RADAR and Infrared sensing  systems of the CGF.

The most difficult challenge lies in modeling human
behavior.  To be a useful model for training purposes,
we believe that the model must incorporate the
following characteristics:  1) correctly computed outputs
of the human decision making process at human-scale
rate of time, 2) unpredictability, and 3) certifiability.
The first component, correct outputs modeling, forces
the CGF to react at a human-scale rate of time and
requires that the decisions appear to be made by a
human.  That is, random, disjointed sequences of
decisions, decisions that seem to be made irregardless
of the world state, and decisions that seem to be made
in total disregard for the success of the mission or
preservation of the CGF should not occur.
Additionally, for the entity to operate believably in the
virtual environment, it must produce the appropriate
behaviors/operations in a human-scale rate of time or at
least within the time bounds of the distributed training
environment.
The second component, unpredictability, addresses the
need for CGFs to behave in a manner such that human



   

opponents can not detect patterns in the behavior and
then use these patterns to defeat the CGF.  The CGF
must not exhibit a pattern in its decision making, thus,
forcing its human or CGF opponent to rely on its
training to defeat it.  Predictable patterns in CGF
behaviors lead to negative training because the human
operators will learn to defeat the automated opponent by
exploiting these patterns of behavior rather than
exploiting their doctrinal/tactical weaknesses or weapon
system vulnerabilities.
The third component of human behavior modeling is
that the behavior be certifiable.  To be certified, a CGF
software system must be able to be measured against
and compared to the exhibited behaviors of a human in
a comparable situation.  A certified CGF system,
therefore, is one that has exhibited credible behavior
within a set of test scenarios.  It does not mean that the
system is provably correct or that its responses are
credible in all situations. The need for certifiability
drove our decision to model behaviors rather than to
model the human decision making process because
behaviors may be observed and measured.

Adaptable Decision Mechanisms.  Adaptable
decision mechanisms allow the CGF to exhibit a degree
of flexibility in dealing with situations that occur in the
virtual environment.  The decision mechanisms must
adapt to the amount of information that is available and
to requirements for different levels of CGF performance
in the battlespace.  Adaptable decision mechanisms
permit the system to maintain robust, credible behavior
for the CGF at run-time under a variety of external
circumstances and at different levels of operator skills.
The first sub-requirement, robust, credible behavior, is
necessary so that the CGF continues to act and react
even when confronted by conflicting or incomplete
information and when under system stress.  If the CGF
does not exhibit robust behavior, then the CGF will fail
or have a scripted pattern of behavior.  The second sub-
requirement addresses the necessity to provide multiple
levels of operator skills for a class of CGFs.  Multiple
skill levels allow the training to be tailored to the skills
of the human participants and provide a more realistic
training situation because the opponents and allies
exhibit a variety of capabilities to train against;
therefore, the training environment is more realistic.

Automated Incorporation Of Experiences Into The
Decision Process.  The requirements outlined above are
difficult to satisfy because they must be addressed using
large software systems that have extensive knowledge
bases.  The interplay between the knowledge bases and
decision mechanisms further complicates the task of
implementing a system to meet these requirements.
Large systems are surpassing the ability of a single per-
son to understand the interrelationships between the
knowledge base and decision mechanisms for compli-
cated systems.  Therefore, CGFs must incorporate a
learning mechanism into their architecture so that, by

virtue of participating in training environments, they
will improve their decision making capability.
Implications Of These Requirements
The requirements for modifiability, high fidelity repre-
sentations, adaptable decision mechanisms and
behaviors, and automated incorporation of past reason-
ing into the decision process have implications for
system complexity, real-time performance, knowledge
engineering, and scalability.   Table 1 summarizes
these implications.  We discuss the implications in
detail below.
The requirement to achieve a modifiable system
indicates that the system should be structured so that
components are isolated from each other and so that
there is loose coupling between components of the
system.  This isolates the components and minimizes
the system-wide impact of changes to the software or
knowledge base and serves to retard architectural
entropy.  Data movement between components should
be carefully managed within the architecture and the
programmer should be constrained to remain within the
system’s architectural approach when performing
maintenance.  An additional architectural consequence
of the need to provide modifiability is that the control
flow for the system must be a visible and separate
component of the architecture, which makes the
architecture more complex.  The task of knowledge
engineering is complicated by modifiability because the
knowledge acquisition effort must be more extensive,
and can complicate the design because there must be a
clean separation between the knowledge representation
and the decision mechanism.
The need for high fidelity representations within the
CGF affects the system’s architecture because it must
support multiple levels of fidelity in the representations
of terrain, airframe, and human behavior.  Regarding
terrain, the system must have rapid access to different
levels of detail so that the CGF is not burdened with
reasoning about high detail terrain features that are
outside of its sensor range.  The airframe model, which
encompasses vehicle dynamics models, sensor models,
and weapon models, should be structured so that the
level of fidelity in the computations dynamically adapts
to the CGF’s situation.  For example, the highest
fidelity should be used when the system is engaged in
rapid maneuvers and lower fidelity representations are
employed when the other components require additional
computational cycles.  However, the need for high
fidelity conflicts with the need for real-time performance.
The affect of this conflict can be ameliorated somewhat
by the use of multiple levels of fidelity.  As in the
modifiability requirement, the demand for high fidelity
increases the complexity and cost of the knowledge
engineering task for the CGF.  The implications of the
human behavior modeling fidelity requirements for the
system lie primarily in the areas of knowledge base
design and decision mechanism design.  For the



   

knowledge base, the design should encapsulate related
items of knowledge within a single access unit and
separate unrelated knowledge components from each
other.  Here also there should be multiple levels of
detail in the knowledge base so that the system can
access information at the level of detail warranted by the
world state and the available time before a decision

must be made.  This permits the decision mechanisms
to atomically access the information they require and
also permits the designer to update the knowledge bases
with minimal impact upon other information in the
knowledge base.

Modifiability High Fidelity Adaptive Decision
Making

Automated
Incorporation Of

Experiences

System
Complexity

Increases system com-
plexity due to the need
to incorporate addi-
tional knowledge and
implant a more flexible
decision structure in
the decision mecha-
nism

N/A Increases system
complexity due to the
need to implant an
adaptive decision
mechanism and a de-
cision control
mechanism

Increases system com-
plexity due to the need to
implant and operate an
evaluation engine to
determine how to score
and incorporate decision
results.

Increases the complexity
of the decision making
component.

Software
Architecture

Increases architectural
entropy, control flow
must be visible and
traceable within the
architecture

Architecture must be
able to manage multi-
ple levels of fidelity
models

No global affect on
the architecture, some
effect on the decision
making component

Mandates assembly of an
evaluation engine to
determine how to score
and incorporate decision
results

Real-time
Performance

N/A Competing require-
ments

Supports real-time
performance

Competing requirements

Knowledge
Engineering

Increases amount of
work to be performed
for knowledge repre-
sentation development
and separation of
knowledge representa-
tion and decision
mechanism

Increases amount of
work to be performed
for the development of
the knowledge base
and decision mecha-
nism

Increases amount of
work to be performed
to elicit and represent
basic principles for
adaptability

Increases amount of work
to be performed to design
learning mechanism and
capture experiential
knowledge

Scalability Complementary
requirements

N/A Attaining an adaptive
decision mechanism
requires scalability

Mandatory in the know
ledge representation
portion of the decision
making component

Table 1:  The Effect of CGF Requirements on Select Metrics of CGF Implementation

The requirement for adaptive decision making increases
the complexity of the CGF’s decision making
component because the decision mechanism must
robustly deal with incomplete information and
uncertainty.  The decision mechanism must be
structured so that the amount of information considered
when making the decision can be adaptively varied and
so that additional possibilities can be considered as
time and circumstances permit.  Furthermore, the
decision mechanism requires an external governor to
limit the time and information resources consumed
when computing a decision.  Adaptive decision making
supports achievement of real-time operation because it
allows the decision making mechanisms to produce a
viable answer with a specified amount of time and with
limited information.  As with the two previous
requirements, this requirement increases the cost and

effort of the knowledge engineering task.  The
requirement for high fidelity in the decision mechanism
does not conflict with the requirement for the decision
mechanism to be adaptable.  At the system level,
providing adaptable decision mechanisms provides the
system with the means to perform scaleable decision
making so that the amount of information considered
and the time consumed by the decision can be varied
dynamically according to the CGF’s circumstances by
the decision mechanism.
The requirement for automated incorporation of CGF
experiences into its knowledge base and decision
mechanism increases the complexity of the system
because the system must be able to modify these two
components during execution.  In order to modify its
behavior, the system requires an evaluation engine to
assess the results of a decision, which increases the



  

complexity of the decision making component and the
knowledge base.
In light of these requirements, we developed a
comprehensive CGF system architecture.  We describe
this architecture in the next section.

A SOLUTION
The requirements for an aircraft CGF, 1) modifiability,
2) high fidelity representations, and 3) adaptable
decision mechanisms, are addressed within the current
Automated Wingman (AW) project.  In our architecture
and design, we focused on the hierarchical structuring
and modularity of both the processes and the knowledge
to support modifiability, representation fidelity, and
adaptable decision processing.
The Automated Wingman project addresses these
requirements for aircraft CGFs in the virtual battlespace
(Edwards, 1996).  During operation, the AW flies in
support of a lead, manned simulator with behaviors
believable enough to be indistinguishable from human
controlled entities.  The AW responds to instructions
from the flight lead and keeps the lead informed of any
developing situations.  In the event that the lead is
destroyed, or the AW is separated from the lead, the
AW determines its course of action in support of its
mission and in light of it current status.
To achieve modifiability, knowledge engineering in the
AW is predicated on straightforward incorporation of
standard doctrine for strategy and tactics used with the
various aircraft types.  Representational fidelity is
addressed through appropriate modeling and system
representations used within the AW.  To achieve
decision process adaptability, we use a technique to
allow decision making within an uncertain environment
and employ an AW model representation that allows
parameterization.  In the following subsections we
discuss the AW project, its CGF-specific architectural
components, and the incorporation of AW into the
Common Object Database (CODB) software
architecture.
Automated Wingman and Fuzzy Logic  
The Automated Wingman seeks to improve the state of
the art for CGFs by using fuzzy logic as its core
reasoning mechanism.  Fuzzy logic provides the AW
with the ability to reason with incomplete data and
approximations, thereby enabling the AW to make
decisions within an uncertain environment. The heart of
the AW’s reasoning mechanism is a fuzzy knowledge-
based system that uses a hierarchy of knowledge bases
in support of decision making.  This provides the AW
with a reasoning capability while the knowledge bases
provide the information required to select appropriate
tactics, to determine the required maneuvers to
implement those tactics, and to fly the maneuvers.
Fuzzy logic has already been shown to be successful to
a limited degree in making simple decisions concerning
movement of CGFs (Parsons, 1994).

Automated Wingman CGF-specific Architectural
Components
Our motivation for the development of a general
architecture to support the AW was to achieve system
modifiability and form a basis for the design of broad
classes of CGFs.  Simply crafting CGFs by
emphasizing differences is counterproductive and often
results in only a few highly specialized types of CGFs
being developed.  Lack of a general approach to
constructing CGFs will likely result in little or no
information reuse between entity classes or even
between entity types in the same class of CGF.
Our goal is to provide a general architecture for CGFs
that naturally accounts for “variety” in a given type of
CGF and presents a general approach for organizing and
building vastly different CGFs, such as tanks versus
aircraft.  Our architecture consists of highly modular
components where component interdependencies are
well-defined and minimized.  
Expanding system requirements often cause the CGF
knowledge base and reasoning system to be modified
and adapted to new system requirements throughout the
life of the project and in the subsequently fielded
system.  As a result, the knowledge and reasoning
components should be structured so that the knowledge
base and reasoning system are disjoint, as in traditional
knowledge-based systems.  To allow for increased
software adaptability, in our architecture the analysis
and action components of the reasoning system are
separate components as well.  Furthermore, since we are
using fuzzy logic, we implement each of these
components as a hierarchy of objects that serve to
aggregate information and dynamically limit the search
space.  
As discussed in the section detailing CGF
requirements, the components of the airframe
(aerodynamics model, avionics systems, and weapons
packages) must be rapidly modifiable.  Therefore,
within the AW, these components are realized as
separate objects that have a clean, robust interface to the
remainder of the system.  The reasoning components
that use the outputs from the airframe CGF components
are separate.
Our CGF reasoning mechanism consists of three
components (Figure 2): a Pilot Skills Component
(PSC), an Active Decisions Component (ADC), and a
Physical Dynamics Component (PDC). The PDC
encapsulates all the physical attributes and properties of
the CGF. For example, in the AW, this component
includes the aerodynamics model, entity-specific
properties, aircraft capabilities, weapons load, sensors,
damage assessment, and physical status. In addition,
the PDC contains the processes for computing physical
state changes, such as updating object position in the
virtual environment. The PSC consists of those
portions of the CGF that vary between individual
entities within a type and class.  This component



     

serves to model the skills and ability of the pilot of an
entity.  For an aircraft entity, the constituents of the
PSC consist of the pilot’s ability to maintain situation
awareness and to execute tactical and flight skills.
These PSC components play an integral part in the
decision making ability within the ADC.  The ADC
encompasses the intelligent decision making processes
and the knowledge necessary to properly drive them.
This includes the overall mission, goals and objectives,
plan generation, reaction time, and crisis management
ability, etc.  Clearly, the ADC must accomplish many
of its activities in real-time.
We separate these components from  the remainder of
the CGF architecture and from each other to insure that
modifications are isolated and will not propagate
throughout the entire system. The PDC is only

responsible for the basic entity maneuver information,
and functions completely unaware of the status of the
other system components.  Likewise, the ADC is
solely responsible for decision making and only knows
about the physical component’s status based upon the
data communicated in the system software architecture.
The PSC is more closely tied to the ADC than the
PDC because the ADC is responsible for computing
control outputs for the entity based upon the modeled
pilot’s skills.  The PSC supplies a description of the
pilot’s ability to the decision making component so
that the decision can be appropriately constrained by the
pilot’s abilities.  The division of capabilities between
these basic components lessens the system level impact
of any changes in the PDC, PSC, or ADC.
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Figure 2. Automated Wingman System Architecture Incorporating the Common Object Database

The PSC and PDC contain all the information and
status required to portray an aircraft and model its
pilot’s ability.  The PDC encapsulates the entity state
information and the PSC contains a representation for

all the pilot skill variables.  The key aspect of these
two components is that these subsystems are
completely parameterizable, and hence rapidly
reconfigured and reused.  We isolate entity control



 

skills into the PSC because this separates the ability to
parameterize the operator’s capabilities from the
decision making mechanisms used by the operator.
Through this parameterization, any number of CGFs of
a given type may be generated using a given ADC so
that each entity has its own unique set of operator
skills.  The PSC models the pilot’s skills as a
hierarchy of capabilities.  This scheme allows us to
compose more complex skills from elementary skills
and to compose the higher level skills using a careful
weighting of the appropriate elementary skills.  The
drawback to this approach is that atomic skills must be
carefully chosen and crafted so that high level skills
have the desired performance.  The PDC and PSC do
not, however, perform decision making based upon the
information they store.  The decision making task is
solely the responsibility of the ADC.
The ADC is the heart of the Automated Wingman, and
holds the fuzzy logic decision engines.  Decision
making in the ADC is not based on a traditional goal-
driven planning approach. Instead, the ADC contains a
fuzzy planner that allows certain subgoals to remain
unsatisfied but still have the supergoal satisfied. This
decision making flexibility permits a much wider
variety of possible behaviors and provides additional
decision-making elasticity, allowing the CGF to
achieve its mission in the face of uncertainty. That is,
the system can tolerate uncertain satisfaction of subgoals
and then use it as a measure.  Also, the fuzzy approach
provides a method for optimization when various
subgoals are applicable but only one is desired. This
use of fuzzy logic adds another behavioral distinction
that can be exploited to create a diverse mix of entities.
Within the ADC, there are four primary reasoning
modules of interest:  the strategic decision engine
(SDE), the tactical decision engine (TDE), the critical
decision engine (CDE), and the basic control module
(BCM).  The ADC also contains relevant knowledge-
bases specific to these reasoning modules.  The SDE
handles strategic matters related to accomplishing
mission goals by continuously re-evaluating the
completion status of mission objectives and re-planning
to achieve the objectives in a deliberative fashion. To
execute its plans, the SDE then requests the TDE to
carry out the near term (tactical) objectives.  The TDE
operates under the direction of the SDE to manage near-
term situations and determine a fine-grain course of
action for imminent tactical situations.  It then
implements those actions as requests to the BCM.  For
example, for an aircraft, the TDE transmits stick and
throttle settings to the BCM.  The TDE is less
deliberative than the SDE and must perform its
functions in real-time.  The CDE is a purely reactive
reasoning system that deals with critical situations the
AW might encounter. Its purpose is to enable the AW
to survive a life-threatening situation, and it operates
independently of mission goals and objectives.  To
operate effectively, the CDE monitors the world state

until a critical situation is detected. The CDE then
assumes control of the AW until the crisis has passed.
During the crisis, the SDE and TDE monitor the AW’s
state so that they may resume control after the crisis has
passed.  Lastly, the BCM processes the requests of the
TDE and CDE to pass as flight control inputs for the
AW.  Processing the requests takes into account the
state of the PDC and PSC most relevant to the
requests.  For example, the BCM filters its flight
control decision outputs using parameterized pilot
ability ratings to execute a  maneuver before it is
applied to the aircraft’s control inputs.  Note that, due
to the separable design for the ADC, the ADC could
initially operate with only the BCM.
The above decomposition of the ADC maintains
component independence.  Furthermore, the knowledge-
base decomposition mirrors that of the decision
engines, allowing the various knowledge-bases to be
constructed and tested independently.  By modularizing
our decision engines and the knowledge-bases in this
fashion, traceability and certification of CGF behaviors
are more easily achieved than in previous approaches to
knowledge engineering CGFs.
The Common-Object Database
Our system architecture, Figure 2, relied upon the CGF
requirements to guide the architectural definition.
Figure 2 also illustrates the relationship of the complete
software system architecture to the basic CGF-specific
architectural components.  Within the software
architecture we use containers, which are data structures
used to move large amounts of structured data between
system components, to manage and control inter-
component communication.  The main AW
components are specified as objects.  These objects are
the CGF-specific architectural components explained
previously (PSC, ADC, and PDC), the Common
Object Database (CODB), the World State Manager
(WSM), and the Environment Database.  Each of these
objects are, in turn, hierarchically defined as a set of
objects that use the containers to communicate with the
other components of the AW via the CODB.  The
CODB holds all public data for the AW and all system
components may access the CODB for data from other
system components.  The World State Manager is
responsible for maintaining a complete description of
the state of distributed virtual environment as
communicated using DIS-formatted protocol data units.
To maintain isolation of the major components of the
AW, we use containers to communicate all necessary
information between the AW components and to all
other external system components.  The containers’
size and format are fixed for the duration of an execution
of the AW.  However, because the contents of a
container may be required by more than one other
component, the containers transmit data from each
component to the CODB rather than between
components.  The CODB holds all the exported data



   

from all system components and functions as a routing
mechanism for data movement between components.
Each component updates its portion of the CODB via a
container asynchronously.  The only restriction we
place on an update is that it can not occur while another
component or the CODB is accessing the contents of
the preceding container from the same component.  The
CODB also contains methods to repackage the
information from several different component containers
into a single component-specific outgoing container to a
component.  The CODB only holds data from the
current containers.  However, previous containers
should be retained for later analysis.  For this purpose,
the CODB also maintains an Action History database.
Due to the bandwidth required between the CODB and
its components, we use the CODB architecture only for
communication between system components that reside
within a single host computer system.  See Stytz for a
more thorough discussion of the CODB (Stytz, 1996b).

SUMMARY AND FUTURE WORK
In this paper, we addressed the general problem of
baseline requirements for aircraft CGFs.  In light of
these requirements, we presented a system architecture
that satisfies these general requirements.  We illustrated
the application of this architecture using the AW
project.  By basing the AW architecture on the CODB
approach, we achieved a flexible foundation for further
development of aircraft CGFs while addressing the
requirements for aircraft CGF development.  
However, the set of requirements to be addressed by the
architecture continues to change and evolve.  Additional
challenges come from the need to accommodate new
types of data, such as environmental, radar, and infrared
emissions.  These data types are fundamentally different
from the types of data currently processed in that they
are variable throughout the region in which the
phenomena are defined.  We expect that the container
approach to data flow within the software architecture
will allow us to meet these new requirements.
The most challenging area of future work is the
requirement for automated incorporation of experiences
into the AW decision mechanisms and knowledge
structure.  We have not yet addressed this requirement
because of the difficulty and system complexity incurred
in the attempt.  However, the AW knowledge structure,
architecture, and decision mechanisms were designed
and implemented with this requirement in mind.  As
the AW matures in its satisfaction of other
requirements, we will address this requirement.
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