
ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

Timothy J. Hohmann
Galorath Associates, Inc.

El Segundo, CA

ABSTRACT

This paper discusses the impact of size on software development in relation to other major cost and
effort drivers, and describes current methodologies for estimating size. Automation, through computer
hardware and software, has enabled great improvements in training, by making training more efficient
and more effective. Computer-based training packages have shown great potential for cost savings as
well as improvements in the quality and consistency of training delivery. And embedded training routines
in weapons and tactical information systems allows trainees to conduct realistic exercises on the same
hardware that they will use in combat. Estimating the cost of training software development is critical to
developing specifications and making informed decisions about program development. Although many
factors influence software development, software program size is one of the key determinants of cost
and effort. This paper discusses personnel capabilities, development resources and specification
characteristics, and the relative impact of size on cost & effort is demonstrated. The paper also
describes commonly used software size measures. Size metrics discussed include source lines of code
(SLOC) as well as functionality measures (function point analysis). It also discusses methods and
demonstrates tools for developing accurate estimates of software size. Various size estimation methods
are briefly described, and the SEER-SSM software sizing tool is demonstrated and discussed in detail.
SEER-SSM uses a relative comparison methodology with reference programs of known size to develop
accurate, probabilistic estimates of software size.

AUTHOR BIOGRAPHY

Mr. Timothy Hohmann is a consulting manager and director of training for G A Consulting Division of
Galorath Associates, Inc. in El Segundo, CA. Galorath Associates produces the SEER family of
parametric cost estimation tools and provides cost estimation support to military, government and
commercial clients. In addition to developing and conducting training for the SEER line of parametric
estimation tools, Mr. Hohmann is involved in cost analysis for both software and hardware development
projects.

Mr. Hohmann spent ten years in the U.S. Navy as a Surface Warfare Officer, and was actively involved
in training in all of his assignments. He is currently a Lieutenant Commander in the Naval Reserve. He
also teaches information systems management courses for the University of Phoenix in the
undergraduate Business and MBA/Technology Management curricula. He holds a BS degree in History
from Iowa State University, and a MS in Information Systems Management from the University of
Southern California.

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

Timothy J. Hohmann
Galorath Associates, Inc.

El Segundo, CA

THE IMPORTANCE OF SOFTWARE COST
ESTIMATION IN TRAINING DEVELOPMENT

Military, government and commercial
organizations all face a similar dilemma in terms
of training. The importance training has long been
recognized. However, in today’s tight budgetary
climate, training dollars are often near the top of
the list to be cut. Consequently, organizations
must figure out how to provide good, effective,
realistic training in a cost-effective way.

Increasingly, the solution to this problem is
automation—computer-based training, distance
learning and online instruction, simulation systems
and embedded operator training modules in
operational systems. While automated training
can be very cost effective once established, it
requires a considerable up-front investment, much
of which is attributable to software development.
The effective management of software
development cost and risk is thus of interest to
anyone involved in training development.

FACTORS INFLUENCING SOFTWARE
DEVELOPMENT COST

Many factors affect software development, and
these factors have different impacts on the cost of
development. The most critical step in estimating
the cost of a software development project is
determining the overall scope of the project.
Important factors influencing scope include: the
capabilities and experience of the development
team; the tools, methods and practices used; the
inherent complexity of the application under
development; and the overall size of the
application.

The Development Team

The capabilities and experience of the systems
engineers and programmers responsible for
developing software can have a major impact on
productivity and cost. Better people will tend to
produce more effective software, with fewer bugs,
in less time and with less effort. Although it is
important to use the most capable individuals
available, it is equally important that they work as
a team. Software development is an intensely
collaborative undertaking, and a poorly functioning

or poorly managed team will not be productive, no
matter how brilliant the individual members.

Development Tools and Environment

Similarly, the tools, practices and methods
available to the development team can affect
productivity. Structured programming techniques
and CASE tools, coupled with firm requirements
and stable target hardware will improve
productivity and lower costs. Implementing better
tools and methods can, however, be a double-
edged sword. Upgrading equipment and tools in
the development environment and instituting
modern programming practices will normally pay
off in the long run, but may result in lower
productivity as the development team climbs the
learning curve.

Complexity

As may be expected, some types of applications
are inherently harder to implement than others. A
simple hierarchical database may be relatively
easy to program, while a larger, more complex ,
relational database program will be more difficult.
A real-time simulation program with a 360 degree
display, control of six-degree motion and intense
user interactivity will be even more complex. The
language chosen for development will also impact
its complexity. Coding in most 4th generation
languages, for instance, may be relatively simple
and easy to understand, enhancing productivity.
Implementing the same functionality in a language
like Ada, or directly in mainframe assembly
language, would be more difficult.

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

Software Size

Software size is a measure of how “big” a program
is. While this may seem self-evident, the actual
concept of software size is very slippery. Many
measures exist, and two of the most common are
described below. Each measure attempts to
capture and quantify the work or functionality
performed by a piece of software. Software that
does more things, or does more complex things,
or does things more quickly or more reliably will
normally be “larger.” Size will also vary
depending on a number of other factors
(Humphrey, 1989), such as:

Code source:
New
Modified
Reused

Language type:
Assembly
High-level
Object code

Ancillary code:

Comments
Patches
Test and debug code
Support Code

Relative Impact on Cost

Figures 1 through 4 show the impact of several of
the factors listed on effort, as estimated by a
software cost model. As can be seen, changes in
size have significant impact on effort, and therefor
on cost and schedule. Furthermore, much of the
impact of other factors varies proportionally with
size, and so can be described as a factor of size.
For this reason, software estimating models like
SEER-SEM, COCOMO, PRICE-S and SLIM use
size or volume of the end product as a primary
input. It is obvious, then, that an accurate
estimate of program size is one of the most critical
factors in developing an accurate estimate of
software project cost, effort and schedule.

Vehicle Model (C++): Programmer Capabilities

0.0

6.8

13.5

20.3

27.0

VLo Low- Low+ Nom Hi- Hi+ VHi

VLo+ Low Nom- Nom+ Hi VHi-

RANGE

USER

Figure 1. Effort Sensitivity to Programmer
Experience

Vehicle Model (C++): Modern Development Practices Use

0.0

6.3

12.5

18.8

25.0

VLo Low- Low+ Nom Hi- Hi+ VHi

VLo+ Low Nom- Nom+ Hi VHi-

RANGE

USER

Figure 2. Effort Sensitivity to Modern
Development Practices

Vehicle Model (C++): Language Type (complexity)

0

5

10

15

20

Low Nom- Nom+ Hi VHi-

Low+ Nom Hi- Hi+ VHi

RANGE

USER

Figure 3. Effort Sensitivity to Language
Complexity

Vehicle Model (C++): New Lines of Code

0.0

15.8

31.5

47.3

63.0

 10126 16165 22204 28244 34283 40323 46362 52402 58441 64481

 13145 19185 25224 31264 37303 43343 49382 55422 61461

RANGE

USER

Figure 4. Effort Sensitivity to Size

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

MEASURES OF SOFTWARE SIZE

In order to estimate software size, some unit of
measurement must be chosen. Measuring or
determining software size is, however, more
difficult than it might sound. Even a concept as
simple as counting lines of code becomes more
complicated when factors such as language,
programming style, and non-source code must be

considered. Various methods have been
developed to adequately describe the size or
volume of a program, and different methods may
be appropriate for different estimating situations.
The two most common size metrics currently in
use are lines of code and function points.

Lines of Code

One of the oldest and most popular methods of
describing software size is by measuring the lines
of programming instructions (commonly called
lines of code (LOC), source lines of code (SLOC),
executable lines of code (ELOC) or delivered
source instructions (DSI)). This size metric can be
used in almost all current estimating algorithms
and tools. One advantage of line-based metrics is
that they have been used for many years, and are
easily measured for existing programs. Thus a
large database of programs of known size exists.

What Is A Line? Although counting lines sounds
like a simple process, it can actually be quite
difficult, since different interpretations of “line of
code” may be used. For instance, should blank
lines be counted? Comment lines? Debug code?
When developing a line-based measure, it is
critical to define what counts and what does not.
Some common conventions include (Jones,
1986):

Executable Lines only
Executable lines and data definitions
Executable lines, data definitions and

comments
Executable lines, data definitions,

comments and job control language (JCL)
Physical lines on an input screen
Logical delimiters, such as semicolons

Figure 5 shows the how the difference in line
definitions affected one real-world project
(Galorath Associates, 1997). The original size
estimate presented for cost estimation of this
project was 1.6 million lines. The cost estimation
tool used discounted documentation, comments
and utilities, which were included in the original
estimate and accounted for 54% of that estimate.
Obviously, using the original size estimate with
this tool would have resulted in an unrealistically
high estimate of cost and schedule. Other
investigators have postulated differences of up to
500% due to line counting variations (Matson,
Barrett & Mellichamp, 1994; Bozoki, 1986).

How Much Effort Is Associated With A Line?
In addition to the distinctions in types of lines
mentioned above, line based measures must also
account for the progeny of a line. If the effort to
write a new line of code is taken as the basic unit,
different levels of effort will be expended in
including modified or reused lines in the product.
Most commonly, the effort associated with
modifying existing code will be less than that
required to write new code. However, if significant
integration, reverse engineering, redesign,
revalidation, retesting and redocumentation are
required, it may be more expensive to use pre-
existing code than to build it from scratch. Effort
associated with each line should also consider

Documentation

Comments

Utilities

Lines of Code

Figure 5. Importance of proper line definition

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

more than just the effort to write it. In addition to
the direct coding effort, design, documentation,
testing and QA effort should be considered.
Coding itself may account for as little as 10-15%
of total effort (Emrick, 1987).

How Much Functionality Is Associated With A
Line? Language also accounts for differences
both in the effort to write a line of code and the
functionality contained in each line. A very
complex language may require a great deal of
effort to write relatively few lines. Conversely, the
functionality contained in relatively few lines of a

higher order language may require several times
as many lines to implement in assembly
language. In addition, programming styles and
conventions can affect the size of a program. For
instance, writing two modules that do exactly the
same thing will double the lines of code used with
little or no increase in functionality. Simply
breaking a “do” loop into individual serial
commands might expand the size of a program by
many times with no additional functionality.

Consistency Is The Key. When using line-based
sizing to estimate effort, it is most important to
ensure that a common definition of a line is
used—to know what is and is not included, and
use the same definition for all programs under
consideration. Particularly when using estimation
models and automated tools, it is critical to ensure
that the line definition used in the size estimate is
the same as the definition used by the model.

Function Points

Recognizing the need for a more language- and
programmer- independent size metric, Allan

Albrecht developed the function point metric at
IBM in the mid 1970s. This metric proposed to
measure size based on what the program does,
rather than how many instructions it contains.
Albrecht’s methodology has been extended,
updated and codified by the International Function
Point Users Group (IFPUG), which defines
counting procedures, publishes a counting manual
and conducts training and provides certification in
function point counting.
Used as a basic unit of cost, a function point is
independent of the language or programming style
used. This metric is particularly useful in cost

estimation since the basic functionality of a
program can usually be defined early in the
project life cycle—in the concept and
requirements phases—when accurate cost
estimates are most useful.

What Are “Function Points?” Function points
are basic measures of “goods and services”
(Jones, 1995) that the user receives from the
software, based on its logical design. Function
points types are described in table 1 (International
Function Point Users Group, 1994).

Function Type Definition Examples
External Inputs (EI) Inputs to the application Input screens, interactive inputs, batch

input streams, hardware inputs
External Outputs (EO) Outputs from the

application
Output screens, batch outputs, printed
reports, hardware & software outputs

External Inquiries (EQ) User inquiries Menus, context-sensitive help, embedded
inquiries

Internal Logical Files (ILF) Data files updated by
the application

Data tables, database files

External Interface Files (EIF) Interfaces to other
applications, data files
not maintained by the
application

Shared data files, reference data, fixed
messages

Table 1. Function Types

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

In addition to the raw number of function points in
a program, function-based size considers the
relative complexity of each function. For
transactional functions (EI, EO and EQ), the
number of different file types and data element
types referenced by the function are counted, and
a complexity rating is assigned. For data function
types (ILF and EIF), data element types and
record element types are considered. These
complexity factors are used to rate each function
type’s contribution to the overall count. The
resultant count is known as the unadjusted
function point count.

This unadjusted count is then further weighted by
a Value Adjustment Factor, which estimates the
general functionality of the application based on
fourteen general system characteristics such as
data communications, transaction rate, complex
processing, ease of installation and multiple sites.
The calculated value adjustment factor is applied
to the unadjusted count to arrive at the final
adjusted function point count. These function
points can then be used as effort units, much as a
line of code is used.

Extensions to Function Points

A major criticism of the function point
methodology is that while it works well for
transactional and MIS systems, it is less useful for
characterizing applications like operating systems,
real time and embedded software which include
significant logical activity. Several extensions to
the basic methodology have been developed to
account for this shortcoming, including SEER-FBS
(Galorath, 1993) and Feature Points (Jones,
1995). Methods have also been developed to
“backfire” function based size estimates into lines
of code (Jones, 1996).

SIZE ESTIMATION METHODS

Estimation Approach
In estimating software size, the one decision
which must be made is the basic approach to
estimation. Two popular approaches are the

“bottom-up” approach and the “top-down”
methodology. In the bottom up approach, the
application is deconstructed into its component
parts, and the size of each part is estimated. The
sum of the size of the parts is then the size of the
whole. The top-down approach takes a more
global view of the system, arriving at a size
estimate based on the functionality of the entire
program. The overall size can then be distributed
among the component parts. Using both
approaches on the same application and
reconciling the resulting estimates can be a good
technique for exposing all the issues involved in
sizing. The choice of approach(s) to be used
should be based on the information and expertise
available to the estimator.

Estimation Methods

Many methods for estimating software size have
been developed, and several are described below.
Most of these methods can use either lines of
code or function based metrics, so the estimator
should choose the size metric most appropriate to
the application and available information. It is
important to understand that short of counting
lines in a finished program, no sizing method will
be 100% accurate. Any point value for a size
estimate should be accompanied by an estimated
range of probability.

Expert Judgement. Perhaps the most basic
method of estimating size is simply to ask the
expert. Experienced software engineers and
programmers can frequently offer an estimate of
size “off the top of their heads,” with very little
effort required. Especially when the application
type and development environment are familiar to
the estimator, expert judgement estimates can be
uncannily accurate. Expert judgement also forms
the basis or input for any more sophisticated
analysis, so deriving an expert judgement
estimate at some level of accuracy is an important
first step in any estimation of size.

Consensus of Experts. Expert judgement
estimates can be further refined using an iterative

Use Line of Code Measures when… Use Functional Measures when…
Lines can be counted (preexisting software) New or unique program
Similar programs of known size available Early in development cycle—no design work done
Expert judgement is available Detailed requirements & specifications available
Comparison with actual results is important Considerable input-output or file activity
Considerable real-time or logical code Trained & experienced in counting function points
Table 2. Line vs. Function Based Sizing

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

process known as the Delphi technique, originated
by the Rand Corporation (Humphrey, 1989). This
method requires several experts, and is most
accurate when applied in a “bottom-up” approach,
breaking down the application into the smallest
possible elements for estimation. The steps in the
Delphi process include:

1. Each expert is given all available
information about the application to be
estimated. Experts are usually also given
an estimation form, in order to keep all
estimates in a common format

2. Experts discuss the product and any
estimation issues. (Note: this is an
optional step known as the Wideband
Delphi Technique. In the classic Delphi
method, experts work completely
independently).

3. Each expert completes an estimation
form.

4. Estimates are tabulated and collated.
Results are returned to each expert
identifying the expert’s estimate, the
mean of all estimates, and the range of
estimates (highest and lowest). All
individual estimates remain anonymous
except the expert’s own.

5. The experts may again meet to discuss
the results of the round.

6. Experts reassess their estimates
individually, based on the results of the
previous round.

7. The process is repeated. With each
repetition, the range can be expected to
narrow until eventually an acceptable
mean value is reached.

One particular advantage of the Delphi technique
is that it tends to normalize biases and hidden
agendas of the individual estimators. As long as a
representative group of estimators is chosen, the
effect of overoptimism, overpessisimism, political
factors or other extraneous issues often
associated with expert judgement estimates can
be reduced or eliminated.

Relative Comparison/Analogy. Sizing by
analogy involves comparing the application to be
estimated to one or more programs of known size.

It can be inferred that programs that are
implemented in a similar language and
environment and perform similar functions will be
similar in size. It is also much easier for the
human expert to make relative judgements of size
rather than absolute judgements. Where an
expert may have trouble developing an a priori
estimate of program size, he may be able to make
a very accurate assessment of whether a program
is larger or smaller (and even “much larger” or
“slightly smaller”) than a properly described
reference program.

Reference programs are crucial to the analogy
method. Size of the reference program must of
course be known. It is also important to
understand the metric used to describe the
reference program’s size. In order to make a fair
comparison, the size metric of the reference and
estimated applications must be normalized.
Lastly, it is important that the functionality and
characteristics of a reference program be
described adequately, so that differences or
similarities in function can be translated into
differences or similarities in size.

Analytic Methodologies. Analytic methods
attempt to further refine size estimates supplied
through expert judgement or analogy, applying
statistical analysis in order to arrive at a
probabilistic estimate of application size. Analytic
techniques are particularly useful in constructing
risk-based estimates. One sizing tool, SEER-
SSM, applies several techniques using one or
more reference modules to develop a ranking
matrix, from which is developed a probabilistic
estimate of size (Bozoki, 1993). The validity and
accuracy of this method has been demonstrated in
several studies (Lucas, 1992; Bozoki, 1991 &
1992).

Several of these methods are combined in the
SEER-SSM sizing model. The model uses four
separate techniques to compare modules to be
estimated with a number of reference modules of
known size. It then combines the four data sets
into single, probabilistic estimate of size.
The first data set results from a random pairwise
comparison. The model chooses pairs of
unknown and reference modules randomly, and
asks the user to assess which is larger. The
model then places the unknown and reference
modules on an ordinal scale in order of size.

The second comparison uses the PERT technique
to assess the size of the unknown module or

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

modules. PERT uses a weighted average of
expert judgement estimates for unknown modules
defined by the following equation:

MEAN = {S + (4 ∗ L) + H} ÷ 6

Where:
S = the smallest estimate
L = the most likely estimate
H = the highest estimate

The model uses the size of the reference models
and the PERT mean size estimate of the unknown
modules to place all modules on another ordinal
scale in order of magnitude.

Thirdly, the SSM model uses a sorting technique,
constructing monotonically increasing size
intervals and asking the user to place each
unknown module in the correct interval.

Finally, a ranking comparison is performed. This
process is similar to the pairwise comparison,
except that ordered vice random pairings are
presented.

The result of these four techniques is four
independent ordinal rankings of reference and

unknown modules, each of which might be
expanded into an independent size estimate. The
SSM model, however, uses these scales to form a
ranking matrix. The ranking matrix is then
transformed into an interval scale using the
Logarithmic Least Squares Method (also known as
the Geometric Mean Scale) (Rand Corporation,
1985). Once all modules are placed on an
interval scale, ratios between sizes can be
established and the known size for the reference
modules can be used to derive size for the
unknown modules.

Criteria for Assessing Sizing Methodologies
and Models

Choice of a size estimation method and a related
sizing model or tool should be based on a number
of factors. The amount, type and character of
information available must be considered, as
should the validity and usability of the method
chosen. Table 3 summarizes the key areas and
criteria to consider when choosing a sizing
methodology or tool (Bozoki, 1986).

Area Criteria
User Input Is required knowledge available?

How accurate or firm is input data?
Quantitative or qualitative inputs required?
Level of training or expertise required?

Use of Historical Data Uses earlier user data for subsequent estimates?
Statistical or database dependent?
Support for sensitivity analysis?

Underlying Concepts & Algorithms Open model or black box?
Applicable to current development environments?
Historical validation of results?

Model Output Probability ranges?
Summary of user inputs?

Usability User-friendly interface?
Availability of support?

Table 3. Criteria for Assessing Sizing Methodologies

ESTIMATING SOFTWARE SIZE: IMPACT AND METHODOLOGIES

REFERENCES

Bozoki, G. J. (1986). Software Project
Sizing Workshop. (Available from GA SEER
Technologies, 100 N. Sepulveda Blvd, El
Segundo, CA 90245)

Bozoki, G. J. (1991). Performance
Simulation of SSM (Software Sizing Model),
Proceedings of the 13th Annual Conference of the
International Society of Parametric Analysts, CM-
14.

Bozoki, G. J. (1992). A Trade Study of
PERT and SSM Software Sizing Models,
Proceedings of the 14th Annual Conference of the
International Society of Parametric Analysts,
SW41-SW61.

Bozoki, G. J. (1993). An Expert
Judgement Based Software Sizing Model.
Journal of Parametrics, XIII (1).

Emrick, R. D. (1987). In Search of a
Better Metric for Measuring Productivity of
Application Development, Proceedings:
International Function Point Users Group
Conference.

Galorath Associates, Inc. (1997). SEER-
SEM Workbook. (Available from GA SEER
Technologies, 100 N. Sepulveda Blvd, El
Segundo, CA 90245)

Galorath, D. D. (1993). Function Based
Sizing, Proceedings of the 15th Annual
Conference of the International Society of
Parametric Analysts, K29-K33.

Humphrey, W. S. (1989). Managing the
Software Process. Reading: Addison-Wesley.

International Function Point Users Group.
(1994). IFPUG Function Point Counting Practices
Manual (Release 4.0). (Available from the
International Function Point Users Group, 5008-28
Pine Creek Drive, Westerville, OH 43081)

Jones, T. C. (1986). Programming
Productivity. New York: McGraw-Hill.

Jones, T. C. (1995). What Are Function
Points? (Available from Software Productivity
Research, Inc., 1 New England Executive Park,
Burlington, MA 01803)

Jones, T. C. (1996). Programming
Languages Table, Release 8.2. (Available from
Software Productivity Research, Inc., 1 New
England Executive Park, Burlington, MA 01803)

Lucas, S. (1992). Software Size
Estimation Using SEER-SSM, Proceedings of the
14th Annual Conference of the International
Society of Parametric Analysts, SW27-SW40.

Matson, J. E., Barrett, B. E., &
Mellichamp, J. M. (1994). Software Development
Cost Estimation Using Function Points. IEEE

Transactions on Software Engineering, 20, (4),
275-287.

Rand Corporation. (1985). The Analysis
of Subjective Matrices (R-2572-1-AF). Crawford,
G and Williams, C.

