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ABSTRACT
We present the requirements and design of the Virtual
SpacePlane (VSP).  The VSP application is a
development and demonstration virtual prototype for
the Manned SpacePlane (MSP) project.  The VSP, to
be completed in two years, will demonstrate the
functionality and capabilities of the MSP throughout it
entire flight regime, from takeoff through space
operations and landing.  The goals of the VSP project
are to uncover, develop and validate the MSP’s user
interface requirements, design and implement an
intelligent user interface, and to design and implement a
prototype VSP that can be used to demonstrate Manned
SpacePlane missions and to conduct preliminary
training in support of the MSP. To achieve these
objectives, the VSP must also be able to execute the
planned MSP missions in a realistic and tactically
sound manner within a distributed virtual environment.
To quickly develop the functional VSP prototype, the
VSP reuses code from the Virtual Cockpit, Solar
System Modeler, and Common Object Database
(CODB) systems that have been developed in our Labs
over the past several years.  
In this paper we present background to the VSP project,
the known functional requirements for the VSP, its
software architecture, and its baseline user interface
design.  We conclude the paper with a brief summary of
the project’s current status and discuss future VSP
development.
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INTRODUCTION
The advent of requirements for worldwide deployment
of space assets in support of Air Force operational
missions has resulted in the need for a spacecraft that
can support these missions with minimal preflight and
minimal in-orbit support from a mission control center.
As a result, successful mission accomplishment will
depend almost completely upon the Manned
SpacePlane crew and upon the on-board capabilities of
the spaceplane.  To insure that the crew has the needed
capabilities on-board the craft, Phillips Laboratory
initiated the Virtual SpacePlane (VSP) project.  The
Virtual SpacePlane is a virtual prototype of the Manned
SpacePlane (MSP) and must be able to perform MSP
missions in a realistic and tactically sound manner
within a distributed virtual environment (DVE).  The
goals of the VSP project are to develop and validate the
MSP user interface requirements, design and implement
an intelligent user interface, and to design and
implement a prototype virtual spaceplane that can be
used to demonstrate MSP missions and to conduct
preliminary training in support of the Manned
SpacePlane.
The Virtual SpacePlane is based upon the existing
Virtual Cockpit (12,17, 21, 22), Solar System Modeler
(18), and Common Object Database (CODB) (20)
systems that have been developed in our Labs.  The
VSP, to be completed in two years, will demonstrate
the functionality and capabilities of the MSP
throughout its entire flight regime, from takeoff through
space operations and landing.  Because we anticipate
that VSP application requirements will expand and
evolve over the life of the project, we based the VSP’s
software architecture upon the CODB architecture (20).
To achieve accurate and high fidelity performance for the
VSP throughout its operational regime, the system
integrates existing aerodynamics and astrodynamics
models into a single seamless high fidelity model of the
VPS’s dynamics.  To achieve our project’s goals, we
must continually develop and refine system
requirements in several areas.  These areas include the
types of missions to be conducted, the weapons and
sensors that the spaceplane will employ, and the data,

controls, and displays required by the onboard
astronauts.  Based upon these requirements, we
designed a prototype system interface.
The next section contains a brief overview of relevant
background material and projects.  The third section in
the paper presents a discussion of the VSP requirements
and their implications for the VSP application.  The
fourth section presents our architectural and user
interface solutions to the VSP requirements.  The final
section contains a summary and suggestions for future
work.

BACKGROUND
This section discusses the topics of Distributed
Interactive Simulation (DIS), the Common Object
Database architecture, the Photorealistic Reconfigurable
Virtual Cockpit, and the Solar System Modeler.  These
systems formed the basis for the VSP.

Distributed Interactive Simulation
The most widespread use of network technology for
distributed virtual environments relies upon the current
DIS suite of standards (3, IEEE Standard 1278-1993).
DIS was designed to link distributed, autonomous
hosts into a real-time distributed virtual environment
via a network for exchanging the data that describe
events and activities.  DIS takes the concept of
environmental distribution to its extreme; there is no
central computer, event scheduler, clock, or conflict
arbitration system.  Each entity is responsible for
processing the information that it receives and for
insuring that all remote hosts have current and accurate
information about its state.  Stytz presents additional
information concerning DIS and DVEs (19) and Blau
discusses DIS as well (2).
Distributed interactive simulation technology uses
heterogeneous hosts and a common virtual environment
description to insert a variety of both human and
computer controlled actors into a common shared
synthetic environment.  In a DIS networked virtual
environment, the networked computer hosts cooperate
to form a common shared environment wherein each
host has its own local model of the environment and



there are no clients, servers, or central database
description.  The hosts are interconnected using
networks that carry broadcasts of each data item that is
dispatched from a host.  Communication between the
hosts is accomplished using the DIS suite of protocols.
Within the DVE one (or more) entities in the
distributed virtual environment are assigned to a single
host.  The responsible host propagates each one of its
entities through the virtual environment using the
appropriate dynamics model for its motion.  To
minimize the bandwidth required by each entity, dead-
reckoning is used. Dead-reckoning significantly reduces
the number of broadcasts required to propagate an
entity.

The Common Object Database Software
Architecture
The VSP’s architecture is based upon the Common
Object DataBase (CODB) as described by Stytz, et.al.
(20) and illustrated in Figure 1 below.  The Common
Object DataBase is a data-handling architecture that
uses classes, data containers, and a central runtime data
repository to store and route data between the major
objects in an DVE application. The Common Object
DataBase contains the entire state of the DVE, as well
as all the public or exported information for each object
within the VSP application.  This architecture reduces
the coupling in a simulation application by reducing

the amount of information that a class must maintain
about other classes.  To acquire public data from one or
more application objects, an object must only access
the container in the CODB where the information
resides. The Renderer object portion of the architecture
manages the rendering operations on the host computer.
The Environment Database contains the graphical
models for all of the entities to be portrayed in the DVE
as well as the terrain model(s) for the virtual
environment (VE).  The User Interface object contains
all of the selection and interface update software for the
application.  The World State Manager (WSM) handles
incoming and outgoing network traffic from a
simulation application and also maintains the world
state for all entities controlled outside of its host. The
WSM always has the most accurate description of the
external world state. The WSM further minimizes
coupling within the VSP by using it for the DVE
interface.  The dynamics and sensor models are used by
the application to accurately propagate the entity
through the virtual environment and realistically portray
data that the real-world system would be able to sense.
All other objects in the application are represented by
the Application Objects object.  One of the chief
advantages of the CODB architecture is that it enables
rapid switching between aircraft configurations and
dynamics models with minimal impact to the virtual
environment application’s  performance.
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The Photorealistic Reconfigurable Virtual
Cockpit
The Virtual Cockpit (VC) is a cockpit and aircraft
simulation project intended for use by military pilots
for tactical training at their individual units
(12,17,21,22).  The VC project addresses issues in a
low-cost, portable distributed interactive simulation
(DIS) capable flight simulators for aircrew training.  To
accurately model the aircraft for both the user and other
DVE participants, the VC must present realistic cockpit
displays and utilize accurate aerodynamics, onboard
sensor, and weapons models.  To achieve these
capabilities, issues must be addressed in the following
areas: 1) 3D computer graphics, 2) human-computer
interaction, 3) virtual environments, and 4)
aerodynamics, onboard sensor, and weapons models.
To adequately address these issues, the VC requires a
high resolution, visually realistic, functional portrayal
of the cockpit interior and a user interface for immersive
operation of its controls.  The user interface must
support a range of interaction that permits useful work
to be accomplished in a manner that emulates the
operation of the actual aircraft’s controls.  The VC has
only minimal physical instrumentalities for control of
the aircraft, typically only a throttle and stick.  All
other components of the aircraft cockpit are represented
using 3D graphical models.
A major factor that leads the user to interact with the
VC as though it were real and the user were present
within the cockpit is the visual fidelity of the objects
depicted in the DVE.  Visual fidelity is the amount of
detail represented in the object.  Visual fidelity
increases as the amount of graphical modeling detail
increases up to the limits of the display hardware.  In
the VC, photorealistic portrayal requires the most
detailed 2D and 3D graphical models that the hardware
can support.  High fidelity model detail directly
competes with available computational resources for the
following: 1) simulating aircraft aerodynamics, 2)
performing collision resolution for interaction with
other entities in the DVE, 3) portraying the
environment outside the cockpit, 4) supporting human-
computer interaction, 5) portraying other virtual
environment actors, and 6) satisfying network traffic
requirements.  To achieve acceptable visual realism and
satisfy the other six requirements we used a
combination of polygonally-defined objects and texture
mapping.  The polygonal objects form the basis of the
VC’s instruments, consoles, switches, and knobs.  We
used these same techniques for the visual components
for the VSP.
An important capability developed for the VC, which is
relevant to the VSP project, is its capability for rapid
reconfigurability between high fidelity representations of
an aircraft.  Rapid reconfigurability allows a single host
computer to fulfill multiple aircraft roles within the
duration of a single exercise by virtue of its ability to

rapidly change its appearance and flight behavior at any
time as needed.  The main obstacles in achieving this
capability were the definition of system components,
development of a reconfigurable aerodynamics model,
and specification of a software architecture that supports
rapid reconfigurability.  The VC’s implementation is
based on a loosely coupled implementation of the
CODB architecture, a highly-parameterized aircraft
aerodynamics model, several different multi-resolution
3D graphical models of aircraft cockpits, and a
parameterized basic sensor model.  The system
components and 3D graphical models were defined
using text descriptions and models of the interfaces for
the F-15E and F-16 cockpits. The aerodynamics
reconfigurability and fidelity objectives for the VC were
attained using a parameterized aircraft aerodynamics
model developed by the USAF Wright Laboratory at
Wright-Patterson AFB, OH.  Because this model is
parameterized, we can use data files at runtime to
reconfigure the VC to represent different aircraft in the
DVE. The VC sensor model was developed in our lab.

The Solar System Modeler
The Solar System Modeler (SM) (18) is a virtual
environment application that permits interactive
visualization of the Solar System, the near-Earth space
environment, and satellites in their correct orbits in
deep space and around the Earth.  We should note that
other systems have been developed to aid in the
analysis and visualization of spacecraft data
(1,4,5,6,7,8,10,11,13).  The Solar System Modeler
project has investigated the interface, physical modeling
accuracy, and rendering quality required to accurately
emulate the Solar System, visualize its components,
facilitate user interaction, and improve user
understanding of the space environment of our Solar
System.  To facilitate user interaction, the Solar
System Modeler provides direct manipulation functions
that allow a user to interact with  the planets, comets,
asteroids, planetary moons, and multiple satellites.
User understanding is aided by a variety of user
controls, display devices, and icons.  The Solar System
Modeler allows the user to view satellites, planets,
moons, and other Solar System components from a
space-based point of view.  The system also functions
as a network actor in a distributed virtual environment
by broadcasting satellite positions and orientations
using the DIS protocols.
The SM achieves accurate physical modeling of satellite
orbital motion by using published orbital element
descriptions and orbital mechanics propagation code.
The Solar System Modeler realistically models
planetary motion using celestial mechanics and
published astronomical tables of planetary ephemerii.
The simplest and most intuitive description for
elliptical satellite orbital motion uses six orbital
elements, as portrayed in Figure 2.  These "classical"
orbital elements consist of the following: the semi-



major axis, which is one-half the length of the orbit; the
eccentricity or shape of the orbit; the inclination of the
orbit, which is the angle between the equatorial plane
and the orbital plane; the ascending node, which
specifies the planetary longitude at which the satellite's
orbit crosses the equatorial plane; the argument of
perigee, which specifies the angle between the ascending
node and the point of perigee; and the time of perigee
passage, which is the time at which the satellite passes
closest to the Earth.

Figure 2:  Classical Orbital Elements.
These elements are the basic foundation for computing
orbital behavior but these elements ignore the effects of
perturbations upon spacecraft behavior.  However,
accurate static orbits that take these perturbation effects
into account can be computed using the NORAD SGP4
model (9), which replaces the time of perigee passage
with mean anomaly.  The SGP4 model, which is what
the SM uses, calculates spacecraft position and velocity
based on elapsed time from the time of perigee passage.
The SM virtual environment contains a 3D texture-
mapped model of the Earth, a texture-mapped 3D model
of an orbiting Moon, a starfield, and a 3D representation
of the Sun.  The Earth model is anchored at the origin
of our Earth-Centered Inertial (ECI) coordinate system
and only needs be rotated not propagated. The ECI
Cartesian coordinate system's origin is the center of
Earth, with the x-axis intersecting the equator at the
vernal equinox, the z-axis intersecting the North Pole,
and the y-axis perpendicular to the x-axis in the
equatorial plane.  The angular rotation per frame is
computed based on the frame rate at which the
simulation executes.  Similarly, modeling the Moon’s
orbit is straightforward, based on the algorithm
provided by Meeus (14).  To accurately model the
position of the Sun, we use an algorithm that assumes a
purely elliptical orbit of the Earth, as described in
Meeus (14) and in Seidelmann (16).  Using the current
epoch time, the geometric mean longitude and anomaly
of the Sun are computed.  Using the mean anomaly and
the Sun's equation of center, the true longitude and
anomaly are determined.  Then, the eccentricity of the
Earth's orbit and the true anomaly are used to compute

the distance, R, from the Earth to the Sun.  Finally R,
the true longitude and the eccentricity are used to
compute the ECI coordinates of the Sun.
Our interface paradigm for the SM is a “Pod” centered
around the user's viewpoint that the user enters to travel
throughout the virtual space environment (23).  The
controls are arrayed around the user on sets of 3D
panels, with each panel devoted to a specific category of
tasks. The SM’s Pod consists of four panels: a left,
center, bottom, and right panel.  Each panel is
comprised of sub-panels.  The sub-panels are separate
software objects that in turn contain the objects for
controlling the Pod’s capabilities as well as information
display. Each panel holds a set of objects and displays
related to the general functionality of the panel.  The
panels’ objects allow the user to modify the attributes
of the distributed virtual environment, such as moving
the viewpoint, enabling the display of visual features,
and attaching to actors.  The buttons, displays, and
panels were modeled so that they do not obstruct the
user’s view of the environment.  All of the panels,
controls and displays are within easy reach of the user.
The SM interface forms the basis of the VSP interface.

REQUIREMENTS AND THEIR
IMPLICATIONS

The basic set of requirements for the Virtual SpacePlane
stems from several anticipated operational conditions.
The VSP requirements stem from the following
Manned SpacePlane system requirements:  1)  to
operate in air and in-orbit; 2)  to perform military space
missions; 3) to achieve rapid vehicle turn-around time,
high availability, and field repairability; 4) to operate
under human control; 5) to perform a wide variety of
missions or mission subcomponents semi-
autonomously (without assistance from mission
control); 6) to achieve maximum automation so that
crew size and crew workload are minimized; and 7) to
fly using a self-contained virtual cockpit that can be
used on the ground or within the real-world spaceplane.
Using these real-world spaceplane requirements as a
basis, we derived the following seven VSP application
requirements.
The first  of these operational considerations is that the
VSP must operate autonomously.  The expected modes
of use and mission profiles of the MSP indicate that it
may have to perform many of the functions in-orbit that
are currently performed by mission control.  Some of
these autonomous tasks include fault detection and
diagnosis, system repair, orbit re-planning, re-entry re-
planning, mission re-planning, and consumables re-
planning.  These tasks are all data intensive and can
quite easily overwhelm the crew unless the interface and
the data management facilities are designed to pro-
actively assist the crewmember in the tasks at hand
while also considering the mission objectives and other
relevant parameters.  To accomplish the tasks
mentioned above, the crew will require a capability to



access information about the spaceplane in real-time;
browse technical manuals in-orbit; assess tradeoffs
between time, fuel consumption, and mission
objectives when re-planning missions; and assessing
the adequacy of consumables for performing re-planned
missions.  This level of activity is far above the current
level of astronaut in-orbit activity, which largely
consists of executing checklists provided by mission
control and looking to mission control to make
decisions concerning mission accomplishment and
mission plan changes.  One subsidiary requirement is
that the VSP requires an on-board intelligent system to
assist the crew by performing routine analysis of
mission and orbit parameters and assessing the impact
of action or inaction in a circumstance.  Without VSP-
based intelligent assistance, the crew will be
overwhelmed with information and their ability to
perform the mission will suffer.
A second VSP requirement is that the application
exhibit correct dynamics performance throughout its
flight regime and be able to rapidly respond to changes
in the dynamics performance of the real-world MSP.
These requirements must be met because the real-world
spaceplane is still being designed and the performance
criteria can be expected to change.  As a result, the VSP
must be able to switch between aerodynamics and
astrodynamics code that models its dynamic flight
performance within each flight regime. The switch
between codes on launch or landing must not be
detectable by the user and the VSP should not have a
break in its flight performance.  In addition, the
dynamics models will need to be able to be modified in
their performance to match the changes in the
aerodynamics or astrodynamics performance of the
actual MSP. To satisfy this requirement the VSP
application must have a parameterized flight model for
aerodynamic and astrodynamic flight that can be readily
altered.
A third requirement is that the spaceplane must be able
to operate within a distributed virtual environment.
Therefore, the VSP application must be able to operate
within both a DIS-defined virtual environment and a
DOD High Level Architecture (HLA) defined virtual
environment.  As a result, the architecture must be able
to switch between application software that can send
and receive using the data transmission formats used in
each type of DVE.  The VSP must transmit its
position, velocity, orientation, orbital parameters, and
possibly individual crewmember actions.  In addition,
the VSP must be able to receive and process
information relating to the position, velocity, and
orientation of other entities, atmospheric and solar
weather conditions, and commands from crewmembers.
A fourth requirement is that the VSP have an accurate,
high fidelity presentation of the ground, the Earth’s
surface as seen from orbit, and the contents of the space
environment.  As a result, the VSP must support
automatic level of detail switching so that the 3D

computer graphics computational burden is minimized.
Other orbiting bodies, such as the Moon and Earth
orbiting satellites, must be portrayed within the VSP
application and they must also propagate properly in
their orbits.  The stars must be properly positioned
relative to the Earth and to each other.  Finally, the
launch and landing locations, Earth-bound sensor
targets, and sensor targets in space must be modeled in
detail and across the electromagnetic spectrum.  
A fifth  requirement is that the VSP support rapid
prototyping of the cockpit’s user interface and of the
software architecture and its components.  A significant
portion of this requirement is assisting the user in
accomplishing tasks, and identifying and eliminating
extraneous data from the cockpit displays.  The
requirement for support of rapid prototyping arises from
several considerations.  First, at this time, no decision
concerning the astronaut suit that will be worn in-orbit
has been made.  The crew may be in anything from a
full-pressure suit environment to a shirt-sleeves
environment.  As a result, the interface may need to be
able to be tested by users in an environment that ranges
from very little capability for haptic operation because
large, cumbersome gloves are being worn, to one that
permits the same level of haptic interaction as in an
office.  Second, there is no experience in designing a
spaceplane interface to guide us in developing the VSP
interface or to guide in the development of the MSP.
The only starting point we have for VSP interface
development is the cockpit layout of the NASA Space
Shuttle.  However, the shuttle cockpit interface is
unsuitable for the VSP.  The current suite of displays
for the shuttle are generally crowded with information,
most of which are irrelevant to the tasks that the
astronauts perform in orbit.  One task the VSP must
support, then, is identification of information that is
important to the crew and of the best means for
presenting that information to the crew when needed.
As a result, the interface will evolve as usability
analysis (15) points out flaws in the placement or
presentation of information to the crew.  Third, the
overall physical design, missions, sensor suite, and
operational philosophy for the MSP has not been
identified, much less specified.  As a result, the
dynamics models, sensor models, and even crew
compartment layout will change over time and new
systems will need to be integrated into the VSP
architecture.  Given that this project is undertaken to
identify alternatives and explore as much of the design
space as possible, rapid integration of software is of
equal priority with run-time performance.
Sixth, the crew of the VSP must be able to change its
landing point and orbit as directed by mission control.
This requirement means that the crew must have
sufficient computational resources on-board to rapidly
perform a series of orbital change computations, an
interface that will allow them to specify the required



changes, and an interface that will allow them to
evaluate tradeoffs between solutions.  
Seventh, the VSP must contain a suite of simulated
sensor systems that accurately emulate the sensors that
the MSP is expected to carry.  Some of these sensors
will be a permanent part of the spaceplane, and hence a
permanent part of the VSP, while others will be
mission specific.  The VSP user interface and software
architecture must be able to support integration of both
temporary and permanent sensors into the application
and the presentation of the simulated sensor outputs.
Satisfaction of these requirements calls for an
architecture and an interface that supports
experimentation, rapid prototyping, rapid interchange of
software components, and an interface that supports
layout experimentation as well as experimentation with
presentation and interaction components.  The next
section presents our solution to these challenges.

A SOLUTION
The solution we propose is composed of four major
components: 1) the Common Object DataBase, 2) an
Information Pod approach to the interface, 3) reuse of
code from the VC and SM projects, and 4)
reconfigurability as demonstrated in the VC.  We
should emphasize that our architecture and design were
not developed to maximize code reuse, but rather to
meet the requirements outlined in the preceding section.

Design Overview
The design we developed, shown in Figure 3, uses the
CODB as its core, in that all data that moves between
application components passes through the CODB
using a container.  The DVE Object class encapsulates
all the functionality required to communicate with the
CODB and to represent a generic object for the virtual    
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environment.  Because there are many different orbital
propagation models that we must employ, propagation
is not part of the base class definition other than as a
placeholder; the actual dynamics model(s) used for an
object are defined when the object’s class is defined.
Within the DVE Object class are the classes for the
spaceplane, the spaceplane operator’s console, the
Earth, the Moon, and the Sun.  As in the VC, the
CODB provides an inheritable, reusable interface to the
computer hardware, input and output devices, and
Silicon Graphics’ Performer software.
The VSP’s DIS interface is our World State Manager
3.0 (WSM).  The WSM provides a protocol data unit
send and receive capability.  The World State Manager
accepts containers from the CODB with data for VSP
entity state PDUs and dispatches containers to the
CODB with data received in entity state PDUs.
Because of this clean separation between the
communications facilities and the remainder of the
application, we can readily adapt the VSP to the HLA
architecture, and this work is currently underway.
The Renderer class manages all of the rendering
functions.  The Renderer relies upon Performer to
execute most of the culling and drawing operations as
well as to maintain the scene database.  The Clock
object provides the application with the current Julian
date for astrodynamics calculations and could serve to
synchronize the VSP with an external clock in the
HLA.  The Selector object manages intersection testing
and interface component picking for the VSP cockpit
and the Console object.  The Stars object is responsible
for the starfield in the VSP.  The VSP has over 33,000
stars.  Each star is positioned at its correct declination
and right ascension with an accurate color and apparent
magnitude using data in the Astronomical Data
Center’s Catalog of 33,342 Stars.
The various astrodynamics models in the VSP are
responsible for moving the celestial objects through
their orbits.  The VSP’s Aerodynamics model is
currently the one developed for the VC with its
parameters altered to portray high Mach flight.  The
Astrodynamics models were ported from the SM and
the one used for an object depends upon the type of
object being propagated.  For example, the Satellite
propagation model uses the NORAD SGP4 propagation
code (9) whereas the Moon propagation model uses
code from the book by Seidelman (16).  Because of the
wide variety of dynamics models used in the VSP,
careful selection of the VSP application’s coordinate
system was paramount to realistic and computationally
inexpensive portrayal all entities.  Therefore, like the
SM the VSP uses an Earth Centered Inertial coordinate
system for the space environment model in the VSP.
The SpacePlane object encapsulates all of the aspects of
the VSP except for the cockpit user interface.  It uses a
variety of aerodynamics and astrodynamics objects to
compute the motion of the VSP during a mission from

launch through landing.  The Sensors object is attached
to the SpacePlane object and is responsible for
computing the entities that are visible to the VSP with
its onboard sensor systems.  The User Interface/Console
object manages the display of all of the VSP data and,
using the Selector object, determines the user’s
commands to the system. The User Interface/Console
object is of critical importance to achieving the VSP’s
objectives and is described further in the following
subsection.

The VSP User Interface
The central issue for the design of the VSP interface is
the portrayal of capabilities of an interface that uses
technologies that do not yet exist.  Our design assumes
that the real-world spaceplane will use display
technology beyond that of the CRT,  such as very large
flat-panel displays.  One of our working assumptions for
the VSP interface design has been that the current
controls and displays in the NASA Space Shuttle will
not be adequate for the VSP, however they do provide a
starting point for assessing VSP information display
requirements.  We also assumed that no amount of
display space will be adequate to support the
continuous display of all of the mission data.  As a
result, the displays must be reconfigurable in real-time
as the VSP moves through its mission profile and in
response to user activity.  Additionally, because the
MSP crewmember will operate with little or no ground
support, automatic information management capabilities
are required in the VSP.   It will also be necessary for
the interface to anticipate the user’s needs and retrieve
additional relevant information and present it to the
crewmember.
Given the assumptions above and the requirements
presented earlier, we decided to base the user interface
on a modified VC Pod interface and to postpone
physical implementation of the interface hardware.  We
believe that this approach will provide maximum
flexibility for experimentation with the interface
elements and with novel selection devices.  This
freedom will also allow us to modify the VSP interface
to match that of the MSP as it develops and to
prototype MSP interfaces without the expense incurred
by manufacturing the display consoles and their
components.
Our initial concept for the VSP operator’s console is
presented in Figure 4.  The panels shown there are
notional and user-configurable.  Different panels sets can
appear at any location in the interface depending upon
the task at hand and the information required.  The
console wraps around the operator and surrounds the
user with relevant data by placing it on both the flat,
table-top like portion of the interface as well as on the
vertical portion of the interface.  The far left side of the
console contains fault annunciation and diagnosis
displays.  These displays are always presented because   



Figure 4:  Conceptual Virtual SpacePlane Cockpit Interface
of their critical nature.  These sets of panels contain a
3D display of the VSP and its systems.  When a fault
occurs, the affected system(s) are highlighted on the
display.  By selecting the affected system, a HTML,
WWW-like interface on that portion of the console
appears.  This display contains information about the
affected systems, related systems, diagnosis and fault-
isolation tests, and possible repair procedures.  We
intend that all checklists for the VSP will use HTML
for markup and a WWW-like browser for their display.
The paradigm that we adopted for flying the VSP is
that of flight management and not flight control.
Therefore, we do not provide a throttle and stick for the
user.  Instead, we provide interface devices that allow
the user to control orientation, velocity, and VSP orbit
by inserting the desired final state or input into the
system and then allowing the VSP software to compute
the direction and duration of the rocket firings.  Input
may be accomplished using virtual sliders, buttons,
direct manipulation, or some combination thereof.  To
assist the user in maintaining awareness of the VSP and
its environment, we show the location of the VSP in its
orbit along with target objects projected onto a
depiction of the Earth as a globe.  The interface will
provide displays to show the user information regarding
fuel status, remaining velocity change capability (delta-
V), consumables status, possible recovery bases, solar
wind, other near-Earth orbital weather information, and
additional information of interest.
Because the VSP interface must be used for mission
evaluation and for preliminary MSP training, it must be
complete and functional.  By using the Pod interface
and the CODB architecture, we have sufficient
flexibility in the design and implementation of the VSP
to allow us to replace individual interface elements or
the entire interface if needed.  The CODB allows us to
separate the calculations for the display from the display
elements themselves, thereby permitting us to freely
experiment with the display without affecting the
underlying code.  The Pod interface software provides
us with the software infrastructure needed to allow us to
rapidly reconfigure the interface in real-time while the
VSP is operating within the DVE.

SUMMARY AND FUTURE WORK
In this paper we presented the requirements and design
of the VSP as derived from the MSP project’s
objectives. The VSP requirements coupled with the
need to rapidly assemble a prototype, led us to reuse
code from the Virtual Cockpit, Solar System Modeler,
and Common Object DataBase (CODB) applications.
We presented a review of the highest level requirements
for the VSP as they are currently known and described
their implications for the VSP project.  We also
presented a brief description of the VSP software
architecture and the user interface design.  The VSP
project is currently underway and the initial interface
work is nearly complete.  We have identified
appropriate astrodynamics code and the initial software
integration based upon the VSP architecture is nearly
concluded.
One problem we have encountered that was unexpected
is difficulty in inserting a WWW-like browser into a
VE application.  Because of this difficulty and of the
need to realize a functional prototype quickly, we have
foregone development of a WWW-like browser and
have instead decided to simulate its operation using
texture maps and clickable icons within the texture map
display.  This is an acceptable short-term solution, but
we must implement a suitable browser or find an
alternative in the near future.
One issue that must be addressed is that of space
weather.  Currently, we lack the capability to generate
space weather within the VSP application.  We are
currently in the process of locating available space
weather code and determining its suitability for
incorporation into a DVE.
In this same vein, we also lack accurate sensor models
and the aerodynamics model must be improved.  The
current sensor models that we use in the VSP are rough
approximations of the actual devices and may depart
significantly from actual performance characteristics.
We hope that in the near future we will be able acquire
more accurate and representative parameters for these
systems.  The current aerodynamics model uses



approximate, but realistic, parameters for MSP
atmospheric flight.
A final important topic is the evaluation of the user
interface and its suitability for the intended space
operations.  Thus far, we have confined our evaluation
efforts to the application of usability heuristics as
described by Nielson (15).  While these techniques are
suitable for the initial phases of interface development
and for most of the interface components, they are not
sufficient for those components of the interface that will
be used frequently or that will be used to manage
critical situations.  Therefore, we plan to identify these
critical and frequently used components and to test
them thoroughly.
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