MOVING ADVANCED DISTRIBUTED SIMULATION INTO
OPERATIONAL TRAINING: THE DISTRIBUTED MISSION
TRAINING INTEGRATED THREAT ENVIRONMENT PROJECT

Martin R. Stytz, Ph.D., Sheila B. Banks, Ph.D., Eugene Santos, Ph.D.
Virtual Environments Laboratory
Artificial Intelligence Laboratory
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433
mstytz@afit.af.mil, sbanks@afit.af.mil, esantos@afit.af.mil

ABSTRACT

As the Air Force moves to the use of Distributed
Mission Training for pilots, the adequacy of integrated
threat systems and their ability to operate within a
distributed virtual environment will be key factors in
determining the success of this approach to aircrew
training. For computer generated threats to be useful in
training environments, they must exhibit a broad range
of skills, display competency at their assigned
missions, and comply with current doctrine. For cost
reasons, a single computer host should be capable of
inserting several threats into the environment,
coordinating the threat activities with threats inserted
using other systems, and of reusing scenarios developed
at other host systems. Because of the rapid rate of
change in Distributed Interactive Simulation and the
expanding set of performance objectives for any
computer generated force, the system must also be
modifiable at reasonable cost and incorporate
mechanisms for learning. The requirements pose an
intricate set of challenges because the system must
satisfy reasoning and fidelity requirements as well as
performance requirements. To address these
circumstances, we developed a set of general
requirements for distributed mission training threat
systems and used them to guide our specification of a
generalized architecture for these systems. In this paper,
we present a component-wise decomposition of the
system and describe the structure of the major
components of the distributed mission training threat
system’s decision mechanism.

ABOUT THE AUTHORS

Martin R. Stytz is an active duty Lieutenant Colonel
in the U.S. Air Force serving as an Associate Professor
of Computer Science and Engineering at the Air Force
Institute of Technology. He received a Bachelor of
Science degree from the U.S. Air Force Academy in
1975, a Master of Arts degree from Central Missouri
State University in 1979, a Master of Science degree
from the University of Michigan in 1983, and his Ph.D.
in Computer Science and Engineering from the

University of Michigan in 1989. He is a member of the
ACM, SIGGRAPH, SIGCHI, the IEEE, the IEEE
Computer Society, the IMAGE Society, AAAI, and the
Society for Computer Simulation. His research
interests include virtual environments, distributed
interactive simulation, modeling and simulation, user-
interface design, software architecture, and computer
generated forces.

Sheila B. Banks is an active duty Major in the U.S.
Air Force serving as an Assistant Professor of Computer
Engineering at the Air Force Institute of Technology,
Department of Electrical and Computer Engineering,
Air Force Institute of Technology, Wright-Patterson
AFB, OH. She received a Bachelor of Science in
Geology from University of Miami, Coral Gables, FL
in 1984 and a Bachelor of Science in Electrical
Engineering from North Carolina State University,
Raleigh, NC in 1986. Also from North Carolina State
University, Raleigh, NC, she received a Master of
Science in Electrical and Computer Engineering in
1987 and her Doctor of Philosophy in Computer
Engineering from Clemson University, Clemson, SC in
1995. Her research interests include artificial
intelligence, intelligent computer generated forces,
associate systems, distributed virtual environments,
intelligent human computer interaction, and man-
machine interfaces.

Eugene Santos Jr. is an assistant professor of
computer science at the Air Force Institute of
Technology. He received his B.S. in Mathematics and
Computer Science (1985) and M.S. in Mathematics --
Numerical Analysis (1986) from Youngstown State
University (1985) and subsequently completed a Sc.M.
(1987) and Ph.D. in Computer Science -- Artificial
Intelligence (1992) from Brown University. His
research interests include automated reasoning, neural
networks, natural language understanding, expert
systems, machine learning, operations research,
probabilistic reasoning, robotic planning, temporal
reasoning, combinatorial optimization, numerical
analysis and parallel processing. Member, IEEE, ACM,
Sigma Xi and AAAL

MOVING ADVANCED DISTRIBUTED SIMULATION INTO
OPERATIONAL TRAINING: THE DISTRIBUTED MISSION
TRAINING INTEGRATED THREAT ENVIRONMENT PROJECT

Martin R. Stytz, Ph.D., Sheila B. Banks, Ph.D., Eugene Santos, Ph.D.
Virtual Environments Laboratory
Artificial Intelligence Laboratory
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

INTRODUCTION

The Joint Synthetic Battlespace (JSB) proposed within
the Department of Defense modeling and simulation
master plan requires a distributed virtual environment
(DVE) wide consistent threat environment to achieve a
useful mission rehearsal, training, test and evaluation
capability. To achieve this objective, all threats must
appear at compatible levels of fidelity for all the entities
operating in the DVE and they must interact with
human-operated and computer-controlled entities in a
realistic fashion. Achieving this goal is not currently
possible for two reasons. First, each primary aircraft
simulator training system developer has created their
own threat system and made their own modeling
decisions to support a specific user for a select few
predetermined conditions. This traditional threat
simulation approach is expensive and leads to ongoing
difficulties in maintaining threat currency as intelligence
updates are made, new weapons are introduced and new
theaters of operation are identified. Second, the threat
system interaction on a distributed network must be
coordinated. The individualized nature of current threat
systems precludes the possibility of introducing
coordinated threats. The Distributed Mission Training
Integrated Threat Environment (DMTITE) Project is
developing an effective solution to these issues.

The DMTITE project is identifying the requirements
for a distributed threat environment and building a
demonstrator DOD High Level Architecture (HLA)
compatible system that can provide realistic threats for
pilots to train against. To be a suitable prototype,
DMTITE must provide a distributed threat
environment composed of surface threats, air threats and
jamming systems. To achieve these objectives,
DMTITE must have threat models, a knowledge base,
and a ruleset for interaction with every appropriate
entity in the DVE.

The DMTITE prototype will instantiate a variety of
threats for use in distributed training scenarios. A key
element of the system will be the provision of realistic
behaviors for the threat systems. As a basis for this
modeling, we incorporate realistic sensor models,
acrodynamics models, and weapons models into
DMTITE for each threat system. Decision making,
using fuzzy logic, will be augmented with a scripting
capability. We can readily expand the system to

accommodate peer-to-peer communication and group
tactics. This approach allows us to provide a range of
threat skill levels for each threat modeled within the
DMTITE system.

We based DMTITE on a general software architecture
for computer-generated forces (CGFs) that naturally
supports “variety” in performance for a given type of
CGF and allows us to organize and build vastly
different CGFs within the same architecture. Given the
continuously changing nature of CGF requirements, an
evolutionary and exploratory approach to knowledge
engineering, such as our Rapid Evolutionary and
Exploratory Prototyping (REEP) methodology is
required. To support the REEP approach, our
architecture consists of highly modular components
where interdependencies are well-defined and
minimized. @ To accommodate the instability of
requirements and the accelerating change of pace in the
underlying technologies, our software architecture is
suitable for implementing and maintaining applications
developed using a modified rapid prototyping approach.
DMTITE will be operated using a graphical user
interface that can be used to configure the threats that are
required for a training scenario.

The next section presents a short discussion of
background information for our project. Section three
contains a description of the operational concept for the
DMTITE system, its requirements, and the
architectural implications of these requirements.
Section four presents our solution to the system
requirements that have been levied against DMTITE.
Section five contains a summary and presents some
suggestions for additional work.

BACKGROUND

This section discusses the topics of Distributed
Interactive Simulation (DIS), current CGF background
and projects, and the Common Object DataBase
(CODB) architecture and the REEP approach to system
development. These topics form the groundwork for
the DMTITE architecture and its operational
environment.

Distributed Virtual Environments

The most widespread use of network technology for
distributed virtual environments (DVEs) relies upon the

current DIS suite of standards (IEEE Standard 1278-
1993) or upon the DOD High Level Architecture
(HLA). DIS was designed to link distributed,
autonomous hosts into a real-time distributed virtual
environment via a network for exchanging the data that
describe events and activities. DIS takes the concept of
environmental distribution to its extreme; there is no
central computer, event scheduler, clock, or conflict
arbitration system. The HLA is a more comprehensive
architectural approach, it describes the communication
requirements, basic system requirements, and defines an
object-oriented approach to defining a DVE. Stytz
presents additional information concerning DIS and
DVEs (7), as does Blau (1,2).

Computer Generated Forces

Computer generated forces (CGFs) that exhibit human-
like behaviors are crucial to achieving large-scale DVEs.
Approaches to achieving realistic CGF are described by
Calder, et.al. (3), Edwards (4), Laird (5,6), and Tambe
(10). CGFs are important aspects of a DVE because
they enable a complex virtual environment with a large
number of actors to be activated without the expense of
involving large numbers of humans. The run-time
challenges for a CGF lie in computing human-like
behaviors and reactions to a complex dynamic
environment at a human-scale rate of time. However,
the computational challenge is eased somewhat because
there is no need to replicate the human decision
process, instead only the observable aspects of human
decision making must be mimicked. However, the
CGF behavior must be realistic and accurate enough so
that other CGFs and human participants react to its
outputs as though it were human-controlled. Advances
in artificial intelligence are important to the
development of realistic CGFs. The -capability to
construct large, complex reasoning systems and the
development of large knowledge bases for use by the
decision machinery combine to enable the
implementation of CGFs of acceptable fidelity.

For our purposes, the major components of a CGF are
the following: vehicle dynamics, behavior modeling,
artificial intelligence, and software architecture. Vehicle
dynamics are important because the actor should move
through the virtual environment accurately whether it is
human or computer-controlled. The vehicle dynamics
for computer-controlled actors should never allow a
human to identify it as a CGF.

Human behavior modeling addresses the task of making
the behavior and reactions of a CGF realistic by
developing models that yield a reasonable analog of the
output of the human decision-making process. The
human behavior modeling component should be
modeled separately from the artificial intelligence
component and it is the focus for certifying the accuracy
of the performance of the CGF. Human behavior
modeling requires the acquisition of domain-specific
knowledge about the domain models that humans use

and about the information that humans use in the
decision-making process. For military virtual
environment purposes, human behavior modeling
involves incorporating doctrine, tactics, knowledge
models, and training into the CGF.

The area of artificial intelligence addresses the problems
associated with assessing and reacting to the
environment based upon considerations like plans,
assigned mission, the activities of other actors, the
available domain knowledge, and the capabilities of the
vehicle that the CGF must control. The artificial
intelligence component insures that the CGF pursues
its goals, responds in a proper, human-like manner
based upon its knowledge base, develops plans based
upon its knowledge base, and manages other tasks.

The vehicle dynamics, behavior modeling, and artificial
intelligence system components are brought together
within the CGF software architecture component. A
flexible CGF software architecture ensures that current
CGF development efforts are extensible to address future
CGF requirements. The ability to modify the
implemented CGF to include additional behavioral
requirements is directly attributable to the software
architecture’s flexibility.

Common Object DataBase and Rapid
Exploratory and Evolutionary Prototyping

The DMTITE architecture is based upon the Common
Object DataBase (CODB) as described by Stytz (8).
The Common Object DataBase is a data-handling
architecture that uses classes, data containers, and a
central runtime data repository to route data between the
major objects in an DVE application. The CODB holds
the entire current state of the DVE and all the public or
exported information for each threat in operation within
the DMTITE application. This architecture reduces the
coupling in a simulation by reducing the amount of
information that a class must maintain about other
classes. To acquire public data from other DMTITE
application objects, an object need only access the
container in the CODB where the information resides.
The World State Manager (WSM) portion of the
CODB handles incoming and outgoing network traffic
from a simulation application and also maintains the
world state for all entities controlled outside of its host.

The Rapid Exploratory and Evolutionary Prototyping
(REEP) methodology is a methodology that supports
quick extraction and refinement of requirements,
experimentation with alternative means for satisfying
requirements, and rapid incorporation of the solutions
developed by successful experiments into the
application. Exploratory prototyping examines an
implementation solution within the context of an
operational solution. The intent is to minimize impact
on the rest of the system while evaluating this new
solution. Exploratory prototyping significantly
accelerates our ability to assess potential

implementation solutions. The intent of evolutionary
prototyping is to allow successive revisions to the
overall design and implementation without making
major modifications to the system. The system can
then evolve over time but always remains a complete
solution. The REEP process begins with the
construction of an initial prototype of the application
that satisfies the baseline requirements.

Baseline DMTITE Architecture

The reasoning architecture for DMTITE has three
components (Figure 1): a Skills Component (SC), an
Active Decisions Component (ADC), and a Physical
Dynamics Component (PDC). The PDC encapsulates
all the physical attributes and properties of the
individual CGF. This component includes the
dynamics model, entity-specific properties, performance
capabilities, weapons load, sensors, damage
assessment, and physical status. The PDC also
computes physical state changes, such as the new CGF
position in the virtual environment. The SC consists of
those portions of the CGF that vary between individual
entities within a type and class. This component
serves to model the skills and ability of the operator of
an entity. The ADC contains the intelligent decision

making processes and the knowledge required to drive
them. The knowledge includes the overall mission,
goals and objectives, plan generation, reaction time,
and crisis management ability. The ADC has three
reasoning engines, the Strategic Decision Engine
(SDE), Tactical Decision Engine (TDE), and the
Critical Decision Engine (CDE). These engines
perform long-term, near-term, and immediate reasoning
for the CGF. When a conflict between the outputs of
these engines occurs, the Basic Control Module
arbitrates a decision. These decision engines are
described further in Stytz (9).

We separate these components from the remainder of
the CGF architecture and from each other to insure that
modifications are isolated and will not propagate
throughout the entire system. The PDC is only
responsible for the basic entity maneuver information,
and functions completely unaware of the status of the
other system components. Likewise, the ADC is
solely responsible for decision making and only knows
about the physical component’s status based upon the
data communicated to it via the system software
architecture. The SC is more closely tied to the ADC
than the PDC because the ADC is responsible for
computing control outputs for the entity based upon the

Active Decisions

) Component
Skills
Component
P Mission,
Strategy, [
. Tactics KB
Situation Environment
A Vv
wareness $ SDE — Database
Tactical
Skills g
TDE e
% W CDE e
Flight Skills Physical Dynamics
—>> BCM Component
Flight Dynamics
Control Comainerl | Container Y

Inputs &

Common Object Database

v 4

World State
Container

Sensors

v 4

World State Manager

Broadcast PDUs %

Entity Data
ﬁ Dead
Reckoning
& Engine
Entity State
Updates

Received PDUS%

| Network Interface and Network |

Figure 1: The Baseline Distributed Mission Training Threat System Application Architecture

modeled pilot’s skills. The SC describes the pilot’s
ability to the decision making component so that the
decision can be appropriately constrained by the
simulated pilot’s abilities.

Using the information described above and interviews
with subject-matter experts, we defined the requirements
for DMTITE in light of its concept of operations and
the objectives for the application.

OPERATIONAL CONCEPT, SYSTEM
REQUIREMENTS AND THEIR
IMPLICATIONS

As a prelude to describing our architectural solution and
to support our design decisions, this section presents
three essential elements of DMTITE-specific
background information. The section opens with a
discussion of the operational concept for the DMTITE
system and describes its proposed use. After that, we
present a discussion of the system requirements that
DMTITE must satisfy. The section closes by
examining the implications of the requirements for the
DMTITE software and knowledge base architectures.

DMTITE Operational Concept

The DMTITE system will operate within a large-scale
DVE and insert a variety of accurate and highly realistic
threats into the DVE for pilot training. Each DMTITE
system must operate autonomously and also be able to
cooperate with other DMTITE systems for the DVE to
portray a coordinated threat environment. Each of the
training locations, and each participating system is
connected to the other participants using a high
bandwidth network. Each DMTITE system requires
access to a common script for a scenario, but by virtue
of using artificial intelligence techniques the execution
of the scenario will vary each time it is run.
Reusability of training scenarios must be maximized,
so the scripts developed at any DMTITE location can
be used at any other location. Figure 2 illustrates
DMTITE use.

In Figure 2, there are three participating locations in the
DVE, Eglin, Luke, and Tyndall Air Force Bases. Each
location has two dedicated DMTITE systems that
insert threats into the DVE. Four manned aircraft
trainer systems for pilot training are also at each
location. There are two additional DMTITE systems
located at other locations that are responsible for
inserting RADAR threats and jamming into the DVE.
Each DMTITE can insert aircraft, RADAR jamming,
RADAR detection, chaff, flare, SAM, and AAA threats
into the DVE, and the performance of each system can
be varied to portray a variety of operator skills and
tactics. Because some threats require high-speed
interaction with targets, and vice-versa, threats must be
able to migrate between DMTITE systems undetected
by any of the human pilot trainees.

Requirements and Their Implications

The requirements for DMTITE can be broken down
into several categories and have been derived from those
specified for aircraft CGFs by Stytz, Banks, and Santos
(9). These requirements range from the software
architecture that implements the CGF to the knowledge
base that is used by the CGF to support its decision
making. The source for these requirements is the need
to support a wide variety of training scenarios at the
lowest possible unit cost while simultaneously
achieving a credible representation of the behavior of the
modeled entity. This section contains a discussion of
each requirement: 1) a wide variety of threat systems,
such as AAA, SAM, jamming RADARS, acquisition
RADARS, sound and infrared detection systems,
aircraft, and Unmanned Autonomous Vehicles (UAVs),
2) modifiability for knowledge bases, software and
hardware, 3) high fidelity representations, 4) adaptable
decision mechanisms and behaviors, 5) hardware
independence, 6) exterior software independence, 7)
variety of threats at varying levels of fidelity depending
upon the scenario, 8) variety of skills levels for both
reasoning capabilities and manual skills, 9) terrain
reasoning capability as part of operator emulation, 10)
DIS and HLA compatibility, 11) a graphical user
interface for DMTITE system configuration, and 12)
capability to download scenarios from other DMTITE
locations and reuse them. The next few paragraphs
delve into a select few of these requirements and assess
their implications for the DMTITE project.

A variety of threat systems. For the DMTITE to
achieve its objective for operational training, it must be
capable of inserting a variety of threat systems into the
DVE. The project’s goal is to remove the threat
systems from the pilot training system and to distribute
them across the network; therefore, every threat system
must have at least a generic representative within
DMTITE.

Modifiability. Modifiability is the ability to enhance
existing CGF capabilities and includes the ability to
rapidly expand a domain-specific knowledge base, a
flexible software architecture, the capability to operate
on a variety of hardware, and independence from
external software. The requirement for knowledge base
expandability addresses the need for the CGF to
incorporate new strategies, tactics and maneuvers as ally
and opponent concepts change. This requirement also
addresses the need to maintain DMTITE in the field
and supports improvement of the system’s performance
by permitting well-encapsulated changes to the
knowledge base. A flexible software architecture
likewise insures that DMTITE can readily adapt to
meet new performance, interface, and communication
protocol requirements. The architecture should be able
to support the fielded system. While the software
architecture should not change often once the system is
fielded, there will be system upgrades and the software

Luke AFB

Tyndall AFB

DMTITE

DMTITE

Figure 2: DMTITE Operational Concept

architecture should be able to accommodate these
changes with limited impact upon the rest of the
system. Hardware independence addresses the need to
be able to move DMTITE to new, more capable
computer hardware with minimum rewrite of the
application code. The need to remain independent from
external, non-DMTITE software supports the need to
remain independent of hardware and to allow the system
to take advantage of developments that can improve its
performance. DMTITE must be independent of any
software encumbrances that would impede porting it to
a new hardware platform or operating system.

High fidelity representations. High fidelity

representations in DMTITE are achieved by enabling
CGF operation using accurate: 1) world representation,

2) dynamics for vehicle motion, 3) sensor and weapons
models, and 4) models of human behavior. The world
representations are based upon surface representations
composed from primitive data elements organized
within a hierarchical representation of the terrain data.
However, since CGFs do not operate in isolation, their
world representation must have a high fidelity
counterpart for manned systems as well as for other
CGF systems. The issue of implementing correct
dynamics for vehicle motion is another aspect of
achieving a high fidelity representation. Correct vehicle
dynamics insures that the vehicle only moves according
to its capabilities and does not achieve a level of
performance that is wunrealistic given the terrain,
weather, and atmospheric conditions. Likewise, the
weapons and sensor models must use the same

sensitivity, field of view, and range as its real-world
counterpart. This level of fidelity must span the variety
of sensors from the eyesight of the operator of the CGF
to the RADAR and Infrared sensing systems of the
CGF. This requirement is discussed further in Stytz

9).

Adaptable decision mechanisms. Adaptable decision
mechanisms allow the CGF to exhibit a degree of
flexibility in dealing with situations that occur in the
virtual environment. The decision mechanisms must
adapt to the amount of information that is available.
Adaptable decision mechanisms permit the system to
maintain robust, credible behavior for the DMTITE at
run-time under a variety of external circumstances and at
different levels of operator skill. The sub-requirement
for robust, credible behavior is necessary so that each
threat instantiated by DMTITE can act and react even
when confronted by conflicting or incomplete
information and when under system stress. If the threat
does not exhibit robust behavior, then the threat will
fail or have a scripted pattern of behavior.

Threats at varying levels of fidelity and a variety of
skills levels. The first component of this requirement
speaks to the need to conserve computational power.
Threats should be available to the exercise designer at
multiple levels of fidelity so that only those threats that
require a high fidelity representation are represented that
way and are allowed to consume a correspondingly
greater amount of computational resources. Irregardless
of the level of fidelity, each threat should also be
available in a range of skill levels. Multiple skill levels
allow the training to be tailored to the abilities of the
human participants and provide a more realistic training
situation because the opponents and allies exhibit a
variety of capabilities to train against; therefore, the
training environment is more realistic. The skills can
be realized by varying manual skills, by varying the
range of options available to the decision making
component, by varying the knowledge about friendly
and enemy tactics available to the decision making
component, and by permitting the decision making
component to forecast the impact of each available
option on its ability to perform its mission.

DIS and HLA compatibility. The requirement for DIS
compatibility stems from the need to be backward
compatible with existing training systems, which are
largely DIS compliant. =~ The HLA compatibility
requirement is driven by a DOD mandate. However,
since each DMTITE can be rapidly reconfigured and its
data output can vary, multiple Federation Object
Models will be required to accommodate the variety
and timing of output data from DMTITE based upon
the threats being instantiated, their fidelity, and the
skill level of each threat.

Graphical user interface and scenario download
capability. These two requirements stem from the need

to reduce the expense of configuring DMTITE to
participate in an exercise. The use of a graphical user
interface will help structure the available options for the
system and allow the user to readily assemble and
examine the number, type, fidelity, and skill for the
threats a DMTITE system must provide. The scenario
download capability requirement addresses the desire to
reuse scenarios across DMTITE systems.

Implications Of These Requirements

The requirements for modifiability, high fidelity repre-
sentations, and adaptable decision mechanisms have
implications for system complexity, real-time
performance, knowledge engineering, and scalability.
We discuss these implications below.

The requirement to be able to instantiate a wide variety
of threat systems within a single computer host
indicates that the system must use a set of general
purpose reasoning mechanisms and threat specific
knowledge bases to enable reasoning about the DVE.
Therefore, the architecture must enable multiple threats
to share a single, shared representation of the DVE
state, permit sharing of knowledge bases between like-
threats, and allow each threat to transmit its data to the
other DVE participants.

The requirement to achieve a modifiable system
indicates that the system should be structured so that
components are isolated from each other and so that
there is loose coupling between components of the
system. The benefits of isolating the system
components are that it minimizes the system-wide
impact of changes to the software or knowledge base
and also serves to retard architectural entropy. Data
movement between components should be carefully
managed within the architecture and the programmer
should be constrained to remain within the system’s
architectural approach when performing maintenance.
An additional architectural consequence of the need to
provide modifiability is that the control flow for the
system must be a visible and separate component of the
architecture. The task of knowledge engineering is
complicated by modifiability because the knowledge
acquisition effort must be more extensive than would
otherwise be the case and can complicate the design
because there must be a clean separation between the
knowledge representation and the decision mechanism.

The need for high fidelity representations within
DMTITE affects its architecture, knowledge base and
information flows. The architecture must support
multiple levels of fidelity in the representations of
terrain, airframe, and human behavior. The data flows
must insure that the information available to the
decision making mechanisms accurately models the
type and quantity of information available to the human
operator in the real world. Additionally, DMTITE
must have access to different levels of detail of
information so that the it is not burdened with

pure world
CODB <<—— (DVE)
information
Sensors
Knowledge
Bases
Decision Arbitration
Engines = Engine
Weapons <&
World (DVE) << CODB
Controls <z

Figure 3: Data Flow Through the Application for an
Individual DMTITE Threat

reasoning about high detail terrain features that are
beyond its sensor range. For the knowledge base, the
design should encapsulate related items of knowledge
within a single access unit and insure the separation of
unrelated knowledge components. This permits the
decision mechanisms to atomically access the
information they require and also permits the designer
to update the knowledge bases with minimal impact
upon other information in the knowledge base.

A key aspect of the DMTITE operational environment
is that each system has perfect knowledge about the
state of all of the entities in the DVE, which is an
inaccurate portrayal of the real-world operational
environment. As a result, each threat operating within
a DMTITE system must have its information restricted
so that it operates only upon a realistic model of the
information that would be available to the real-world
counterpart. Figure 3 portrays how this may be
accomplished within the baseline architecture. As
information enters the DMTITE system, it is stored
within the CODB. When a threat application requires
information, the information is extracted from the
CODB and then passes through a sensor filter. The
sensor filter functions to restrict the available
information to match that of the real-world system.
After sensor processing, the data is placed in the
knowledge base, where the Decision Engines can access
it for their decision making computations. The

Arbitration Engine takes the results of the Decision
Engine’s work and decides which outputs should be
acted upon. The outputs from the Arbitration Engine
are then forwarded to the CODB where other threat
components, such as weapons or system controls, use
the outputs as part of their computations for emulating a
threat.

The requirements for adaptability, multiple skill levels,
and multiple levels of fidelity affect the knowledge base
and the decision making components in several regards.
Firstly, the decision making component must robustly
deal with incomplete information and uncertainty. The
decision mechanism must be structured so that the
amount of information considered when making the
decision can be adaptively varied and so that additional
possibilities can be considered as time and
circumstances permit. Secondly, because the system
requires general-purpose decision mechanisms the
knowledge base component must contain enough
information to allow the decision mechanism to satisfy
the requirements for multiple skill levels and multiple
levels of fidelity. As a result, the knowledge base
architecture must support partitioning of the knowledge
by level of fidelity and level of skill and allow access to
the database accordingly. Finally, the need for multiple
levels of fidelity affects the decision making component
in that one means of achieving computational savings is
to alter the type of reasoning performed. Therefore, the
decision making component of the DMTITE
architecture must support the use of different reasoning
systems for a given threat without requiring changes to
the threat’s knowledge base.

A SOLUTION

In this section we describe our proposed solution to the
DMTITE system requirements presented previously.
This section opens with a discussion of the software
architecture solution we developed. The section
concludes with a discussion of the DMTITE knowledge
architecture.

The architectural solutions presented in Figure 4 is
based upon the architecture outlined in Figure 1. The
main architectural components of the generic CGF
architecture are maintained, with a few key differences.
We use one CODB that is shared among all the entities
instantiated by a single DMTITE system host
computer. The CODB and WSM combination serves
to place data into the DVE and receive data into
DMTITE. The CODB is also used to route data
between threats instantiated within the individual
DMTITE system. Each threat type within a DMTITE
system shares a single knowledge base, the type of data
accessed from the knowledge base is determined by the
fidelity level and skill level of each threat instantiation.
Currently, the knowledge bases are read-only at run-
time. The decision mechanisms within each threat are

Distributed Virtual Environment

Threat

Skills Physical Dynamics
Database Component Active Decisions Component
Component
Mission, Situation _
Strategy, Awareness SDE Dynamics
Tactics KB Tootic N
actical
Skills_l TDE
Environment
Database : CDE
M % \ Flight Skills AE
Threat Threat Threat Threat Threat
[] |] n
Typel Typel Typel TypeN TypeN
Common Object Database
% % Entity Data
ﬁ Dead
World State M anager Reckoning
9 & Engine
Entity State
Broadcast PDUs * Received PDU54 Updates

| Network Interface and Network |

Figure 4: DMTITE System Architecture

Computer Generated Threat

World
Info

CGA
Info

v Iv v

Sensor Interface

vy Iy

A

Arbitration Engine

Physical Representation Component State Cognitive Representation Component
info Knowledge
Bases
Physical Component |—— Y — =
y P - Strategic Decision
Engine
Physical Component ——|
Q
e >
Physical Component | ——| ?C_?
ST N N
= Tactical Decision
& >-/7 Engine
<]
b i=
° ©
° E‘;—b
3
‘B -
>
Physical Component |——] —— | Critical Decision
Engine
-l
Physical Component ——
4 Control Info

Figure 5: Data Flow Through the DMTITE Architecture

instantiated along with the threat, they are not shared
between instantiations. The chief difference between the
DMTITE reasoning mechanisms and the generic
system in Figure 1 is that the knowledge base is
removed from the reasoning mechanisms. As in the
baseline architecture, we rely upon the CODB approach
to achieve loose coupling between system components
while also enabling the best possible system
performance. By virtue of sharing knowledge bases
between threats, the difficult and expensive knowledge
base construction process must only be accomplished
once, the burden of achieving different levels of fidelity
and skills falls upon the decision mechanisms and its
access mechanisms to the knowledge bases.

Figure 5 presents another view of the architecture, but
in this instance we are examining the data flow through
the system. This view of the architecture illustrates
how the architecture supports the data flow presented in
Figure 3. We view this processing as consisting
primarily of two stages, modeling of the physical world
state and then reasoning upon the state. The reasoning
outputs are then used to control the threat and to
generate outputs for the DVE. After the DVE data
enters DMTITE via the WSM and CODB, it is passed
to each threat after being appropriately processed by a
sensor modeling unit. The Sensor Interface is a
component of each individual threat type and models
the type and fidelity of the data available to the threat
operator in the real-world system. The Physical
Component then combines its state with the Sensor
Interface output and passes this summary of the DVE
state to the decision making component. Upon entry to
the Cognitive Representation component, the incoming
state data is operated upon by the SDE, TDE, and CDE
in conjunction with the threat knowledge bases. The
SDE, TDE, and CDE place the outputs of their
computations into the Arbitration Engine (AE), which
selects the actions that are fed back to the physical
component to be acted upon. This view of the
architecture highlights the activity of the sensor models
and also illustrates how information and knowledge
bases are shared between types of threats and between
instantiated threats in a single DMTITE system.

SUMMARY

In this paper we presented an architectural solution to
the requirements for a distributed mission training
threat system. The requirements that we presented
were, in turn, derived from a consideration of the
operational concept for the DMTITE as well as from
conversations with threat system subject matter experts.
The architectural solution we developed is based on the
CODB architecture and permits the use of REEP,
insures the isolation of reasoning components from
knowledge base components, permits multiple threats
to be instantiated within a single DMTITE system,
restricts available information to a model of the
information available in the real-world, and allows a

DMTITE system to insert multiple threats of many
different types into a DVE.

The first DMTITE system is under development at the
time of this writing. The first demonstrations are
scheduled for Fall, 1997.

REFERENCES

1. Blau, B.; Hughes, C. E.; Moshell, J. M.; & Lisle,
C. (1992) “Networked Virtual Environments,”
Proceedings of the 1992 Symposium on Interactive
3D Graphics, Cambridge, MA, 157-160, 29
March - 1 April.

2. Blau, B., Moshell, J. M., & McDonald, B.
(1993) “The DIS (Distributed Interactive
Simulation) Protocols and Their Application to
Virtual Environments,” Proceedings of the Meckler
Virtual Reality ‘93 Conference, San Jose,
California, 19 - 21.

3. Calder, R.B., Smith, J.E., Courtemanche, A.J.,
Mar, J.M.F., & Ceranowicz, A.Z. (1993)
“ModSAF Behavior Simulation and Control,”
Proceedings of the Third Conference on
Computer-Generated Forces and Behavioral
Representation, Orlando, FL, 347-356.

4. Edwards, M. & Stytz, M. R. (1996) “The Fuzzy
Wingman: An Intelligent Companion for DIS-
Compatible Flight Simulators”, The SPIE/SCS
Joint 1996 SMC Simulation Multiconference: 1996
Military, Government, & Aerospace Simulation
Conference, vol. 28, mno. 3, New Orleans,
Louisiana, 77 - 82.

5. Laird, J. E., Newell, A., & Rosenbloom, P.S.
(1987) “SOAR: An Architecture for General
Intelligence,” Artificial Intelligence, vol. 33, 1-64.

6. Laird, J. E., et. al.. (1995) “Simulated Intelligent
Forces for Air: The SOAR/IFOR Project 1995,”
Proceedings of the Fifth Conference on Computer
Generated Forces and Behavioral Representation,
27-36, Orlando, FL.

7. Stytz, M.R. (1996) “Distributed Virtual
Environments,” IEEE Computer Graphics and
Applications, vol. 16, no. 3, pp. 19-31.

8. Stytz, M. R., Adams, T., Garcia, B., Sheasby, S.
M., & Zurita, B. (1996) “Developments in Rapid
Prototyping and Software Architecture for
Distributed ~ Virtual Environments,” [EEE
Software, vol. 12, to appear.

9. Stytz, M. R.; Banks, S. B.; & Santos, E.
“Requirements for Intelligent Aircraft Entities in
Distributed Environments,” 18th
Interservice/Industry — Training Systems and
Education Conference, Orlando, Florida, 3 - 5
December 1996, publication on CD-ROM.

10. Tambe, M., Johnson, W. L., Jones, R.M., Koss,
F., Laird, J. E., Rosenbloom, P. S., & Schwamb,
K. (Spring 1995) “Intelligent Agents for
Interactive ~ Simulation Environments,” Al
Magazine, vol. 16, no. 1, 15-40.

