
THE JOINT SIMULATION SYSTEM ARCHITECTURE:
 A FOUNDATION FOR FUTURE TRAINING SYSTEMS

Edward T. Powell David R. Pratt
Science Applications Joint Simulation System (JSIMS)

International Corporation (SAIC) Joint Program Office
1100 N. Glebe Rd. Suite 1100, 12249 Science Dr. Suite 260,

Arlington, VA 22201 Orlando, FL, 32826
epowell@std.saic.com prattd@jsims.mil

KEYWORDS
JSIMS, Architecture, Simulation Infrastructure.

ABSTRACT

Over the last several years there has been a proliferation in the use of Computer Based Training (CBT) systems.
One of the key factors in the growth of CBT systems was the advent of authoring tools that allowed the
courseware developer to focus on the content vice the supporting infrastructure. The production of a core
infrastructure that abstracts out many of the underlying details is on the key goals of the Joint Simulation System
(JSIMS) program. As the model developers develop the content, they will then be integrated with the common
JSIMS core to provide a M&S capability with reduced developmental costs. This paper presents an overview of
the JSIMS architecture focusing on the mechanisms for achieving composability, scalability, distributability, and
increased training efficiency. The JSIMS architecture contains four layers, each addressing more abstract levels of
functionality. The lowest layer represents the virtual network. The JSIMS Object Services layer adds an HLA-
compliant RTI as well as an Object Management Framework that allows end-to-end object management. A
support services layer adapts each application (resident in the application layer) to the underlying infrastructure.
The construction of the layered architecture allows the developer to focus on the development content, in this
case the applications and mission space objects (MSOs), which is the true value added portion of a model.

1. INTRODUCTION

JSIMS is the flagship DoD modeling & simulation
program to provide next generation training, mission
planning and mission rehearsal capability for
warfighting CinCs and the services with better
functionality with lower operating costs than today’s
systems. An Orlando-based Joint Program Office
has been established by agreement between the
Director of Defense Research & Engineering, all
four service Operations Deputies, and the Director
of the Joint Staff. JSIMS is a cooperative
development effort among services and department
agencies that will yield a whole far greater than the
simple sum of its parts. Policy oversight is by J-7
and DUSD (Readiness).

JSIMS is a simulation system that supports the
twenty-first century warfighter’s preparation for
real-world contingencies. The system provides
garrison and deployed exercise capability to meet
current and emerging training and operational
requirements in a timely and efficient manner. By
interfacing to the warfighter’s real go-to-war
systems, the view into the simulation world mirrors
that of the real world. JSIMS is a single, distributed,
seamlessly integrated simulation environment. It
includes a core infrastructure and mission space

objects, both maintained in a common repository.
These can be composed to create a simulation
capability to support joint or service training,
rehearsal, or education objectives.

The JSIMS software architecture, Figure 1,
represents the culmination of years of research and
testing in many DoD simulation programs to build a
flexible, extensible, interoperable, composable,
large-scale simulation system. It consists of four
layers representing increasing functionality and
specificity. The base layer is Communications,
providing a virtual network capability that allows
seamless insertion of different communications
technologies into JSIMS. The JSIMS Object
Services Layer provides HLA-compliant
middleware functionality to manage objects through
space and time. The Support Services Layer
provides additional functionality tailored to each
class of application, while the Application Layer in-
cludes the specific applications or models in JSIMS.
It is at the top most layer where the true value added
portions of the simulations exists. The underlying
goal of the JSIMS program is to provide a robust,
extensible simulation infrastructure to allow the
future simulation developers to focus on the top
level where the return on investment is the highest.

Other Systems

C4I Other
Systems Sims,

 Ranges

Translation
Services

Sim
MRCI Gateway

Repository
Management
Tools

Lifecycle
Applications

Mission
Space
Objects

Modeling
Framework
& Common
Services

Lifecycle
Framework
& Common
Services

JMSRR
Support
Services

System Abstraction Layer

JSIMS Object Services
Federation Objects

Object Management Framework
HLA Run Time InfrastructureCommon Data Infrastructure

In
fr

as
tr

uc
tu

re
Su

pp
or

t
Se

rv
ic

es
A

pp
lic

at
io

ns

 Figure 1.The JSIMS Layered Software Architecture

2. DRIVING TECHNICAL REQUIREMENTS

The over set of JSIMS requirements can be divided
roughly into two major areas. The first, and most
important, is the set of functional requirements.
These requirements, which come from the users,
determine what the system must be able to do and
are found in documents such as the Operation
Requirements Document (ORD). These
requirements are beyond the scope of this paper.
Rather, this paper will focus on the technical
requirements of the system. These requirements
represent how the system is going to achieve the
functionality laid out in the first set of requirements.

2.1 The Challenges of JSIMS

JSIMS has the following driving technical
requirements as the primary challenges to
successfully delivering a useful simulation system:
• Composability
• Scalability
• Distributability
• Automation (decreased overhead/cost)
• Interoperability
• Reasonable Behavioral Representation

(Cognitive Modeling)
• Consistent and Seamless Synthetic Environment
• Seamless Incorporation of Operational C4I

The rationale behind the segmentation chosen for
the JSIMS architecture presented above is to choose
a segmentation that allows the designers to best
address the JSIMS driving requirements. This focus

allows detailed design and construction of JSIMS
components to proceed using a division of labor
construct, with each designer and implementer
having to focus on only one or a few driving
requirements when designing or building his or her
component.

Composability is addressed by having a single
consistent means for developing models enforced by
the Modeling Framework and a common repository
for containing all developed software. Scalability is
addressed by using interest management built into
the JSIMS Object Services (JOS) Layer and by
facilitating in the Modeling Framework the creation
of multi-resolution models. Distributability is
achieved by using a decentralized design based on
the JOS acting as a distributed object bus for the
JSIMS system. Portability is achieved through a
well-defined System Abstraction Layer
encapsulating all of the peculiarities of different
platforms and operating systems. Also, the
architecture is not dependent on the type of
computer platform used; that is, there is no
requirement for a supercomputer or massively
parallel computer to run JSIMS. Automation is
achieved by having a single composable tailorable
Lifecycle Framework from which a suite of
automated tools can be built with a common look
and feel. Automation technologies are included in
the areas of mission planning, course-of-action
analysis, terrain reasoning, database/repository
search, environmental database construction,
federation object model development, doctrinally
correct force laydown, and a “simulation of the
simulation” capability for ease of checking the
validity of compositions. Interoperability is
achieved using a common infrastructure on which

all models and applications are built including
significant use of frameworks, based on an internally
HLA-compliant architecture and containing a single
Federation Object Model used throughout the entire
exercise lifecycle and a consistent environment
representation used by all models. Reasonable
behavioral representation (cognitive modeling) is
achieve through a consistent modeling paradigm
based on an enterprise-wide agreement on the types
of algorithms that will be used for modeling and the
advanced technology based on the experiences of
the simulation community up to this point. A
consistent and seamless synthetic environment is
achieved by using a single multi-resolution set of
environmental models based on work sponsored by
DARPA, DMSO, NIMA, STRICOM, JWFC and
other agencies and a commitment on the part of the
enterprise to not let three-dimensional visualization
be a driving requirement for JSIMS, but let the
environmental models be based on user-defined
requirements coming out of the JCMMS
development effort. The seamless incorporation of
operational C4I systems is achieved by learning
from and enhancing the DMSO-sponsored MRCI
capability and the Joint Precision Strike
Demonstration (JPSD) method of incorporating C4I
systems directly into a synthetic battlefield.

2.2 Principles behind the JSIMS Architecture

To meet the driving requirements listed above, it is
necessary to remember a number of lessons learned
in the development of previous simulation systems.
These lessons become the principles that guide the
development of the JSIMS architecture. In
particular, the JSIMS architecture must:
• provide a single architectural vision for the

entire JSIMS enterprise.
• manage data in a uniform and consistent fashion

throughout the exercise lifecycle.
• use a layered architecture in which each layer

represents more abstract services. This layering
can help shield the model developers from most
of the complexity involved in creating a
distributed interoperable simulation.

• be designed for reuse, which means that in all
architecture and design activities, the architects
must consider the impact of decisions
throughout the entire enterprise and product
lifecycle, rather than simply designing for a
single use at a single time.

• reuse concepts and designs where applicable
from other successful related simulation efforts,
learning from these programs successes and
failures.

• focus on the needs of the joint and service users,
including both the people who create exercises
with JSIMS as well as the trainers and training
audience.

 Some simulation systems in the past have failed to
live up to expectations because they weren’t user-

focused in their requirements analysis. JSIMS must
always focus on the user first in deciding what is
important for the simulation.

3. CORE INFRASTRUCTURE

The Core Infrastructure provides those components
that are reused throughout the JSIMS Enterprise.
The primary design criterion for Core Infrastructure
software components is reusability. In particular,
these subsystems are designed to be both generic
and tailorable. Generic software can be used in its
default configuration to give the JSIMS system a
basic level of functionality “out of the box.” Yet
each component will be tailorable to meet the needs
of the diverse set of JSIMS joint and service users.
The mechanism for this tailorability is through the
use of application frameworks throughout the core
infrastructure. These frameworks are partially
populated with leaf classes when delivered.
Tailoring is accomplished by writing new leaf
classes derived from common base classes that
implement functionality specific to a given use case.
Other key design criteria include maximizing
portability among different hardware and software
platforms, maximizing scalability and
distributability, and automating as many tasks in the
exercise development and execution process as
possible to reduce the amount of overhead required
to execute an exercise.

The following sections describe the components of
the Core Infrastructure.

3.1 System Abstraction Layer (SAL)

The SAL is designed to make JSIMS portable across
multiple hardware and operating system platforms.
Specific abstraction software needs to be built to
encapsulate the peculiarities of the underlying
operating system and platform, including those
associated with graphics, threads, I/O, networking,
and other system services.

3.2 JSIMS Object Services (JOS)

The philosophy behind the JOS is to build a reusable
distributed object bus tailored for the needs of large-
scale distributed simulation. The distributed object
bus must deal with all aspects of object
communication, but primarily two categories: the
management of persistent data throughout the
exercise lifecycle, and the management of real-time
simulation state data during an exercise. The JOS
provides an abstract means of communication
between applications in a distributed simulation
system across both space and time.

A general simulation infrastructure requires the use
of advanced technology. In particular, it must meet
the needs of many different types of mission-space
objects (such as both aggregate- and entity-level
objects), it must enforce no requirements on model
builders about how to model battlefield forces, and

it must be both generic (widely applicable), and
tailorable to meet the needs of any particular model.
The JOS is based on an object-oriented framework
that represents a generic solution to the domain of
simulation object communication, and is also
tailorable to meet the needs of any particular
combination of Mission Space Objects.

To be used, the JOS must be specialized for a given
JSIMS composition. This specialization takes the
form of defining the objects about which the
particular JSIMS composition has agreed to
communicate, called the JSIMS Federation Object
Model (FOM).

The JOS contains Interest Management software
specifically designed to address scalability in the
JSIMS domain. The JOS also contains algorithms
and mechanisms for achieving a measure of fault
tolerance. Because it contains the HLA Run Time
Infrastructure, the JOS implements JSIMS as an
internally HLA-compliant system as well as aiding
the rapid development of gateways that allow JSIMS
to be externally HLA-compliant.

Figure 2 shows the internal architecture and
components of the JOS. The purpose and function
of each component will be described below along
with their interrelationships.

System Abstraction Interface

 Object
Interface

Common Data
Infrastructure

HLA RTI Interface

Inheritance

CDI Interface

RTI
Interface
(Declaration

Management,
Time

Management,
Federation

Management,
Ownership

Management)
Object Management

Framework

Object
Manage-

ment
Interface

(Object
creation,
Events,

Collections)

HLA Run-Time
Infrastructure

Federation
Objects

CDI
Interface

(Data
Collection,

Object
Population,

Query,
Initialization,

Control,
Coordination)

CDI/JMSRR
Interface

Interest
Manager

Interest
Manager
Interface

Figure 2. Internal Architecture of JSIMS Object Services.

3.2.1 Federation Objects

Federation Objects are the primary means for
managing data in a uniform and consistent fashion
throughout the exercise life cycle. They are the
common language that all applications in JSIMS
speak and represent the public aspect of units,
entities, interactions, messages, and environmental
changes that exist and interact in the simulated
world. The set of all Federation Objects is the
Federation Object Model (FOM). All JSIMS
applications, including pre- and post-exercise
applications, deal with federation objects. They are
the primary means of interoperability in JSIMS.

Applications deal with Federation Objects through
the mechanisms defined in the Object Management
Framework (described below). A Federation Object
is an object proxy for its corresponding Mission
Space Object (MSO).

3.2.1.1 The Relationship Between a Model and its
Federation Object -- a Very Simple Example.

Figure 3 shows a simplified object diagram for an
MSO and its corresponding Federation Object. This
diagram represents a very crude picture of the
relationship between a model (in this case a Tank)
and its Federation Object (the Tank FedObj). The
Tank Model always keeps its own Tank FedObj
object’s state up to date, but the reflection of this
state to other models is handled automatically by the
OMF and Interest Manager (described later). Note
that though many different models might make up a
tank (i.e. Hull, Sensor, Brain, Weapon, Munition,
etc.), only the model that has an independent
existence on the battlefield and thus requires a
“public face” (the Tank) has a corresponding proxy
Federation Object. Federation Objects may also
exhibit a composition hierarchy based on scalability
and data transmission considerations (i.e. a separate
“Kinematics” Federation Object for frequently
updated information). The Tank Model also has
expressed interest to the Interest Manager which
manages a collection of other Federation Objects

(proxies) that meet the Tank’s interest criteria.
These Federation Objects are monitored by the tank.

The Interest Manager dynamically updates these
collections as the exercise progresses.

Other
FedObjs
Other

FedObjs
Other

FedObjs

Tank Hull

Sensor

Weapon Munition

Brain

Model The Modeling Framework
The Object Management
Framework

Tank
FedObj

Update state

Collection
FedObj

Other
FedObjs

Get state

Kine-
matics

GTDObject

Figure 3. The Relationship Between a Model and Its Federation Object.

There are a few important concepts to understand
about Models and Federation Objects:
• MSOs may be composed of other MSOs in a

composition hierarchy, but only the MSO that
has an independent existence on the battlefield
(called the Master MSO) has an associated
Federation Object.

• The Master MSO is responsible for keeping the
corresponding Federation Object’s state
consistent and up-to-date.

• Federation Objects may also exhibit a
composition hierarchy but this hierarchy may be
completely different from the MSO composition
hierarchy. Reasons for this difference in design
are related to the different roles these objects
play. MSOs are primarily modeling objects that
need to be organized around modeling goals.
Federation Objects are primarily state-
containing objects that need to send the state to
other MSOs and save the state to a database in
the most efficient manner possible. Thus
Federation Objects must be designed with
efficient transport and storage in mind.

• The Federation Object is used throughout the
entire exercise lifecycle as a means of
exchanging information between all JSIMS
applications, not simply those applications
active during exercise execution time. Thus
federation objects are called “end-to-end”
objects because they exist from the beginning of
the exercise lifecycle until the exercise is
completely finished and all interesting
information about it has been archived into the
JMSRR.

3.2.2 HLA Run-Time Infrastructure

The HLA RTI is responsible for all run-time
Federation Object communication and distribution.
In general, the RTI performs the role of a
generalized time-managed message-passing
infrastructure. The RTI has six categories of
interfaces and functionality:
• Federation Management. These functions

manage the creation, management, and
destruction of individual federation executions.
In general, these functions cause the sending of
control messages between applications.

• Declaration Management. These functions
manage the publication and delivery of the
appropriate data based on the FOM and the
ability of a given application to understand a
given object class. Declaration Management
Services allow extensibility of the FOM without
recompilation of every application.

• Object Management. These functions allow the
transmission and receipt of the actual objects
and interactions that make up the FOM.

• Time Management. These functions instruct the
RTI how to order messages for delivery. In
general, messages can be delivered in receive
order, in time-stamped order with a guarantee
that no message will arrive in the past, or in
time-stamped order with no guarantee that a
message will not arrive in the past thus
necessitating the capability of “roll-back” on the
part of the application. These three mechanisms
correspond to the time management schemes
known as no time management, conservative
time management, and optimistic time
management, respectively. The RTI supports

all three mechanisms with varying degrees of
efficiency and performance.

• Ownership Management. These functions
provide messages for managing the ownership
of federation objects. An owner process is that
process allowed to write the values for a given
federation object. In particular, in the HLA,
individual attributes of a given federation object
can be owned by different applications. JSIMS
will not use this particular feature of the HLA
heavily. JSIMS will treat objects as the most
atomic unit of ownership, but use complex
composition hierarchies to achieve equivalent
results.

• Data Distribution Management. These
functions control the mechanisms for
distributing the messages across the underlying
network medium’s available communications
channels. In general, DDM controls what
multicast groups messages are sent upon.

3.2.3 Common Data Infrastructure

The CDI is a value-added database managing
persistent data through the exercise lifecycle. The
CDI stores all data collected during an exercise and
records cause and effect relationships among
runtime data and between exercise generation data
and runtime data. The CDI is also the primary
means of storing and communicating information in
pre-exercise and post-exercise phases. The CDI is
not the JMSRR. A CDI exists for each exercise
execution, while there is only one global JMSRR.
During the exercise generation phase, objects and
data are retrieved from the JMSRR and placed in the
CDI to be used for a given exercise. Occasionally
data from the CDI (such as pre-exercise-defined
missions or post-exercise summary data) is stored
back into the JMSRR after exercise execution. The
CDI can be thought of as the scratch database for an
exercise, storing initialization information, runtime
collected data, and analytic results, while the
JMSRR is the global repository for all exercises.

The HLA RTI provides a way to manage run-time
simulation data. However, persistent data makes up
the bulk of the data for any exercise: exercise
generation / simulation initialization data with rich
semantic content and high complexity but with low
performance requirements and run time collected
data of low complexity but large volume that
requires high performance and places heavy
demands on the available storage. Other forms of
persistent data consist of legacy system data, meta-
data, analyzed data, etc. The CDI fills the role of
persistence engine for a given exercise. The CDI is:
• Distributed. The CDI is a federated

multidatabase. It exists on multiple computers,
but to the application developer it acts as if it
were a single monolithic database. This greatly
simplifies data collection and analysis, because
it allows distributed data collection while
permitting analysis software to act as if the

database were all in one location. Certain types
of queries (those resulting in distributed joins)
have poor performance in a federated
multidatabase. Users are warned when
attempting to query the database in a manner
that will result in a distributed join.

• Active. The CDI accepts and responds to
queries posted into the future, greatly enhancing
exercise management and analysis capabilities.
The mechanism for implementing active queries
is through the use of agents running on data
collector applications. These agents wait until
they detect a particular event, then evaluate a
condition for validity. Given a valid condition
they then perform some action. This is called
the Event-Condition-Action paradigm and it
will be implemented in the CDI based upon the
JSIMS sequencing of requirements.

• Spatio-Temporal. The CDI explicitly indexes
data based on geography to support the most
common queries needed to assemble an AAR.
Temporal indexing permits efficient storage and
retrieval of end-to-end objects.

• Object-Oriented. The CDI presents its data to
an application as objects. The CDI is designed
to be an object-relational database, including
the strengths of both object and relational
DBMSs.

Access to the CDI is done using a number of special
mechanisms tailored to the needs of the user.
Primarily, there are four users of the CDI, each with
a different requirement on the database.

Exercise Generation applications require access to
the database as if it were an object-oriented database
with a high degree of navigation capability built in
augmenting the standard query capability. For these
applications, the CDI software in the JOS translates
between the underlying relational nature of the
Oracle database and presents to the application a
federation object of the type requested. Similarly,
the CDI software translates a given application’s
modified federation object into the underlying SQL
statement that is used to store the object’s state into
the database. The schema for storage of an object
may not bear a direct resemblance to the in-memory
C++-like structure that an object has when activated.
The schema may be optimized for performance both
at exercise generation time as well as during
collection at run-time. SQL is used for accessing
the database in this case.

The second type of CDI user is the JSIMS
simulation applications containing the mission space
objects that need to fetch their initial state from the
corresponding federation object at initialization
time. These applications need to be able to get their
initial state and then instantiate the run-time portion
of their federation object in one seamless operation.
Essentially, at initialization time, mission space
objects must use both the initialization interface and
the run-time evolution interface of the end-to-end

federation object at the same time. SQL is used as
the underlying mechanism for accessing the
database in this case.

The third CDI user is the data collectors, which
gather run-time federation object state evolution
information and store it into the CDI for later
analysis. An efficient and tailored schema greatly
helps realize maximum performance. Because of
the high-volume nature of the collected data, SQL
must usually be bypassed in favor of custom
mechanisms for storing data into the database during
run time. During such database loads, all database
transaction functionality is bypassed, although some
creation of indices may continue.

The fourth user of the CDI is the analysis and AAR
applications that query the database for information
related to illustrating what transpired during
previous portions of the exercise. These
applications may access the data in a number of
different fashions. First, using the temporal
interface to a given end-to-end object, the
application can view a given object as a unified
temporal whole stretching from its initial state to its
final state and including the documented reasons for
state evolution. Secondly, an analysis application
may choose to perform direct SQL queries against
the database and interpret the resulting table in a
fashion consistent with the application’s
understanding of the database schema. In this way,
numerous COTS tools such as PowerBuilder or
Microsoft Excel can be linked to the database using
commercial standards such as ODBC or JDBC. The
limitation of this mechanism is that the application
must reconstruct the federation object on its own
without help from the CDI software. The benefit of
this mechanism is the ability to leverage commercial
products for analyzing and reviewing an exercise.

3.2.4 Local Cache of the Ground Truth Database
and the Object Management Framework.

The JOS provides an in-memory database of
federation objects for each application to use. This
database contains all the federation objects
corresponding to local Mission Space Objects as
well as all federation objects that are proxies for
remote mission space objects. Given that JSIMS
may have an enormous number (105 to 106) of
objects active at any one time, it is necessary to
limit each process’s database to only those objects
that the local MSOs are interested in. Thus one can

think of the union of all the federation objects
distributed among all simulations in a given exercise
as the “Ground Truth Database,” while each
individual process only has a local cache of the
Ground Truth Database (GTD). The GTD exists
only in memory, not in a persistent store. Thus it is
distinct from the CDI which is the persistent
equivalent of the GTD.

The GTD is created from the Object Management
Framework illustrated in Figure 4 below. The
Object Management Framework (OMF) is the
collection of base classes from which Federation
Objects are derived. Each Federation Object
inherits from the GTDObject base class. Event
Handlers are the equivalent to GTDObjects for
Interactions (Fire, Detonate, Signal, etc.) Event
Handlers allow MSOs to register for asynchronous
notification of the delivery of an interaction.

Views are objects that implement the “Observer”
pattern with respect to GTDObjects. When a
GTDObject is altered, any Views that are attached
to the object are activated. Views do not run
synchronously with the object that has been
changed; they are scheduled to run in the future.
This scheduling prevents a view from being
activated when for example location.x is changed
and then again immediately after that when
location.y is changed. When a scheduled View does
run, it runs only once per observed object no matter
how many times it has been activated. There are a
three different types of views defined in the OMF:
the Reflector View used to schedule a GTDObject
for reflection out through the RTI, a Collector View
used to schedule a GTDObject for storage into the
CDI, and a Trigger View used to provide
asynchronous notification to an MSO that a
particular GTDObject has changed. Each simulation
application maintains a single local cache of the
GTDObjects of interest to all the MSOs present in
that simulation. Collections of GTDObjects are
themselves GTDObjects with all the requisite
properties and behaviors (including the ability to
have Views attached to them). The Interest
Manager maintains a collection of GTDObjects for
each Interest Expression it has that is active. The
requesting MSO or Application is given a reference
to the particular collection that corresponds to its
interests. An MSO can attach a Trigger View to its
collection to allow asynchronous notification of any
changes to the collection, including changes in the
collection’s cardinality.

Actor

Infrastructure
Support

Federation
Objects

Collection

Event
Handlers

MSOs

Actors

Triggered
Behavior

CreatesViews

RTI DistributorCDI Distributor

Creates

CollectorReflector Trigger

ViewGTDObject

Figure 4. The Object Management Framework implementing the Ground Truth Database

Actors perform all the workhorse functionality in the
OMF. They interpret and translate to and from the
RTI and CDI, factory objects, and update the GTD
when new information arrives. Actors contain state
and behavior to update GTDObjects and
communicate interactions. Special Name-Value
Pair Actors will facilitate rapid RTI integration and
improve performance. Distributors are examples of
the façade pattern that shield the application from
difficult-to-use interfaces, such as for the RTI and
the CDI.

3.2.5 Interest Manager

The Interest Manager is the scalability engine of the
JOS. It has the responsibility of making the
decisions required to route outgoing data to the
appropriate places as well as ensuring that its
particular application receives all the information it
requires to function properly. The Interest Manager
also sorts incoming data into convenient collections
for the use of the application. All this automation,
however, is not without its cost. MSO developers
must be very cautious in how they use the Interest
Manager as significant performance penalties can be
the result of incorrect usage. The Interest Manager
is responsible for four basic tasks:
• Interest Expression. All of the MSOs running in

a particular process constitute a JSIMS
application. In general, the application

understands what type of data it is interested in.
Using methods provided by the Interest
Manager, the application can formulate an
Interest Expression (IE) that precisely describes
this interest. The Interest Manage is then
responsible for communicating this IE to the
RTI in such a way that the RTI will deliver data
to the GTD that fulfills this interest. The
application may create many IEs or just a single
IE. There can be multiple IEs for each MSO in
the application, a single IE for all MSOs in an
application, or anything in between.

• Routing of Outgoing Data. When a locally-
owned Federation Object’s state is updated and
it has a Reflector View attached, that object’s
state will be scheduled to be transmitted to any
interested parties via the RTI. When the
Reflector View executes, it asks the Interest
Manager for information about what logical
destination the data should be sent to. Since the
data is being sent via the RTI and the RTI uses
an abstraction known as “Routing Spaces” for
the underlying network multicast groups, this
functionality consists of basically deciding,
given an object that needs to be transmitted,
what part of Routing Space should the object be
sent to (i.e. onto which multicast group should it
be transmitted). The Interest Manager has a
method that performs this function based on a
particular multicast strategy that has been
selected for a given exercise.

• Filtering and Sorting of Incoming Data. When
the RTI delivers an incoming piece of data, a
number of tasks are performed. First the data is
used to either create an interaction, or it is used
to create a new or update an existing object in
the Ground Truth Database. In either case, the
Interest Manager is used to help decide where
else to route the incoming information. The
Interest Manager has a list of all active Interest
Expressions for a given application. For objects
in the GTD, the Interest Manager maintains a
collection of GTDObjects for each Interest
Expression. Each collection contains all and
only those objects that fulfill that IE. Thus as
new data is received the Interest Manager must
update all relevant collections so that they are
consistent with the new information. In the case
of Interactions, the Interest Manager uses its list
of IEs to identify the appropriate Event
Handler(s) that must be called on receipt of that
particular type of interaction. The Interest
Manager performs these sorting and filtering
functions on incoming data to relieve the MSO
designers of having to worry about culling
through the GTD each time the MSO is active
trying to find only those GTDObjects that are
relevant to that particular MSO. Such a
searching/sorting process can be extremely
time-consuming and cause a lot of wasted
processor effort. In effect the Interest Manager
performs an efficient insertion sort on incoming
data to make sure every collection is kept up to
date. Unfortunately, the amount of time the
Interest Manager spends keeping the collections
coherent is directly related to the number of
Interest Expressions active in a given
application at a given moment. Thus it
becomes very important not to create a large
number of overlapping Interest Expressions that
cause the Interest Manager to have to perform a
large amount of work on the receipt of each new
piece of information. Nevertheless, properly
used, such a sorting scheme can be extremely
efficient in ordering data such that MSOs can
know exactly which Federation Objects are
relevant to them and which are not without
searching the GTD.

• Managing the Interaction of Predictive
Contracts and Interest Expressions. “Predictive
Contracts” is the name given to the mechanism
of MSOs signing a “contract” for their behavior
in the future. As long as they do not “break the
contract,” they will never cause information to
be transmitted via the RTI. In general,
Predictive Contracts are a form of replicated
computing, based on the fact that it might be
less expensive to perform redundant
calculations on multiple processors rather than
send information across a network. Because
with current technology it is very expensive to
write to and then read from a network,
replicated computing can be an efficient
implementation strategy for message-passing

simulations such as JSIMS. The most common
form of Predictive Contracts is the Remote
Vehicle Approximation or “Dead Reckoning”
used in the DIS Standard. With Dead
Reckoning, an entity promises not to deviate
from a linear (or quadratic) path above a given
threshold without informing any listeners of
such a deviation. This type of Predictive
Contract can reduce network traffic by an order
of magnitude. More sophisticated Predictive
Contracts are theorized to be able to reduce
network traffic by another order of magnitude
with little increase in computational cost.
Unfortunately, the use of Predictive Contracts
can interfere with the use of Interest
Expressions if they are not handled properly.
For example, an entity publishes a predictive
contract consisting of its route of travel. This
route begins outside of any interest expression,
travels through areas that other MSOs have
expressed interest in, then exits all relevant
interest regions. In this case the entity will
publish the contract and its current position and
then no more information until it either breaks
the contract or finishes the route specified in the
contract. Thus without the intervention of the
Interest Manager, any MSOs that have
expressed interest in the regions through which
this entity travels will not be informed of its
relevance to their interests. The Interest
Manager, therefore, is responsible for analyzing
any Predictive Contracts that are
communicated, and predicting when an
extrapolation based on a contract will intersect
with any active interest regions. The Interest
Manager then sets a timer to expire when this
intersection occurs and places the relevant
entity’s federation object in the appropriate
collection based on its current position obtained
from the contract.

JSIMS will extensively use Predictive Contracts as a
mechanism for limiting network transmissions.
However, these contracts will almost always be
based on an MSO’s position as a function of time.

3.2.6 JOS Interfaces

There are five categories of interfaces to the JOS:
• The CDI interface. This is the interface that

provides direct access to the CDI database.
Two mechanisms are used: direct SQL access,
and OO wrapped access that allows a method to
be invoked and a Federation Object to be
returned.

• The Object Management Interface. This
interface has methods to allow the creation and
destruction of Federation Objects, the creation
and management of collections and iterators,
and the overall management of the JOS.

• The Object Interface. This is the set of methods
that allow access to each Federation Object and
Interaction

• Interest Manager Interface. This interface
allows the formulation of Interest Expressions
and the manipulation of the collections
associated with each Interest Expression.

• The RTI Distributor Interface. This is the
façade that allows access to the RTI’s time
management, federation management, and
ownership management functionality.

4. INTEGRATING OTHER SYSTEMS INTO A
JSIMS COMPOSITION

To meet JSIMS’s requirements it is necessary to
make use of a number of systems that are not under
the control of the JSIMS program. In particular,
JSIMS requires that the training audience interact
with the JSIMS simulation using their go-to-war C4I
systems. Also, it will be necessary from time to
time to federate JSIMS with other simulations or
simulators. The Translation Services are designed

to translate between JSIMS native “language,” the
Federation Objects, and the language spoken by
these other systems.

4.1 Other Simulations: the Gateway Approach

Gateways provide the linkage between JSIMS and
other simulations or simulators. They utilize the
HLA and the RTI to federate JSIMS with these other
systems. The JSIMS internal FOM is not changed,
but is treated as its SOM for the purposes of
federation. This approach makes JSIMS externally
HLA-compliant as well as internally HLA-
compliant. An illustration of the Gateway Approach
is shown in Figure 5 below. With this approach, all
components use the RTI to communicate,
guaranteeing HLA-compliance. There are two
FOMs: one internal to JSIMS, one between JSIMS
and the external system. The peculiarities of the
external system are encapsulated in one place, thus
changes in the external system require only one
piece of software to be modified. This solution can
be replicated ad infinitum.

Translation Services

External System
Communication

Software

Gateway Software
Architecture

JSIMS Object Bus
(JOS and SAL)

External System Network or
Communication Medium

Communications

Sys. Abstraction Layer

JSIMS Object Services

Federation Objects

Translation Services

HLA RTI

Gateway to other
HLA Federations

Common FOM

Communications

Communications

Sys. Abstraction Layer

JSIMS Object Services

Federation Objects

Translation Services

VRLink or equivalent

Gateway to DIS
Simulations (for

example)

Communications

JSIMS Network JSIMS Network

Other HLA
Simulation
Network

DIS
Network

Examples:

JSIM
S O

bject B
us

JSIM
S O

bject B
us

Figure 5. Software Architecture of External System Gateways.

4.2 C4I Systems: the Surrogate Approach

The Modular Reconfigurable C4I Interface (MRCI)
Program, sponsored by the Defense Modeling and
Simulation Office (DMSO), provides a number of
lessons learned for incorporating operational C4I
systems into JSIMS. MRCI has developed a suite of
translators that translate between numerous
operational message formats and the Command and
Control Simulation Interchange Language (CCSIL),

a machine-interpretable language used to
communicate command and control information.

All training audience interfaces to JSIMS will be via
operational C4I systems. Messages are translated
between operational formats and CCSIL and
affected by simulations of the tactical
communication systems used. C2 surrogates
simulate physical C4I systems in the simulated
world. Simulated C4I systems and decision makers
are fully integrated into the simulated world .

4.3 Lifecycle Framework and Common Services

All Lifecycle Applications are built on a common
Lifecycle Framework. This framework provides
reusable software components such as map displays,
graphics primitives, mechanisms for interfacing with
the JOS, performing time management, etc.

4.4 Lifecycle Applications

Lifecycle applications automate exercise
construction, execution and review with reduced
overhead. There are a number of lifecycle
applications:
• Exercise Planning Tool: this tool aids the

exercise designer in planning the exercise
objectives.

• Scenario Analysis Tool & Infrastructure
Analysis Tool: This tool suite automates
scenario investigation and resource management
by providing a “simulation of the simulation”
and “simulation of the system” capability.

• Exercise Generation Tools: a suite of tools that
automate creation of exercise initial conditions

• Data Collection Management Tool: automates
data collection planning and the management of
the data collectors during run-time

• Data Collectors: these applications collect the
run-time simulation data for later analysis and
review.

• Exercise Management Tools: these tools
perform the functions of simulation control,
technical control, exercise observation

• Exercise Analysis and Review Tools: these
tools automate preparation and presentation of
AARs, and aid understanding the exercise
technical results.

• Archiving Tool: this tool automates the archival
of information into JMSRR

Each of these tools incorporates key automation
technologies. The Exercise Lifecycle Tool Suite
represents a single integrated system based on a
common framework that provides a uniform method
of technical control. The tools all have a common
look and feel based on an advanced user interface.
The tools are fully integrated with operational C4I
systems. They also have the ability to view and
extract data from the JMSRR. Exercise planning
tools contain advanced automated decision-making
software that aids the user in constructing an
exercise. This automation inherent in the Exercise
Lifecycle tool suite is critical to reducing the
amount of labor currently required to design, build,
run, analyze and review an exercise.

Lifecycle Applications can have their GUI run on a
separate platform from their main executable. This
allows more flexibility in being able to design an
exercise since it allows the GUI for the exercise
generation tools to be located at a user site, while

the main application is located near the data that it
needs to use. This approach greatly improves
application performance by limiting the amount of
information that must be transmitted over a Wide
Area Network, while simultaneously allowing the
users to run the application from anywhere in the
world. The Lifecycle Common Services allow the
applications to tie into DII COE common modules
when this is appropriate so that these modules can
be reused in JSIMS.

5. MODELS AND THE MODELING
FRAMEWORK.

Models are the mission space objects based on the
Joint Conceptual Model of the Mission Space
(JCMMS). They represent:
• Forces (service specific and joint, unit and

platform)
• Environment
• Intelligence, Surveillance, and Reconnaissance
• Command and Control decision makers and

behavior

All models connect to the JSIMS infrastructure
through the modeling framework. Model
composition occurs at the modeling framework
interface. Models can be as complicated or as
simple as desired, and can support multiple
resolutions depending on the needs of the particular
exercise composition.

5.1 Modeling Framework

The Modeling Framework enables model creation in
a uniform, consistent, composable fashion. The
object-oriented framework gives flexibility,
extensibility, and aids in creating interoperable
models. Having a single uniform Modeling
Framework ensures that the MSO developers build
their MSOs in a consistent fashion.

The Modeling Framework is a set of interacting base
classes that span the problem space of model
development. Each base class defines a number of
interfaces and the relationships between the
interfaces. Model developers subclass from these
base classes, override and implement the interfaces
and the model’s methods are then called at the right
time.

5.2 Mission Space Objects

Mission space objects populate the simulation
battlespace and provide life to the training exercise.
Mission space objects are bound and described by
several architectural principles:
• Mission space objects inherit from base classes

defined in the modeling framework
• Mission space objects have a close relationship

with their corresponding Federation Object

• Mission space objects can be executed in logical
sets

Mission space objects inherit from the modeling
framework. The framework provides an overall
architecture for how models are executed and what
models look like (the framework is a "template" that
provides a starting point for developers). The model
developer inherits primitive capabilities such as
scheduling primitives and message-passing
capabilities. However, other functional capabilities
are provided via direct calls to the JOS and various
toolkits and libraries.

Mission space objects have a close relationship with
the FOM. Simulated things (entities or aggregates)
in the mission space are composed of some set of
components (where components are functional
capabilities represented in the design as abstract
classes). Thus, a "tank" is composed of a "hull",
"sensors", etc. A given run-time instance of a
simulated thing is actually executing a set of
models, where models are represented in the design
as concrete classes derived from the components.
Using this terminology, a "simulated thing" is an
object that has a distinct physical presence on the
simulated battlefield and thus requires a “public
face” for interaction with other simulated things.
This public face is the thing’s associated Federation
Object.

Thus, each Federation Object is defined in
conjunction with its associated Mission Space
Object and is implemented to match the attributes
that can be exported by simulated things operating at
different resolutions.

Mission Space Objects can be executed in logical
sets. A logical set of mission space objects must be
formed so that a given exercise execution makes
sense. Exercise generation tools must limit the
exercise to a logical combination of models. There
are three limitations that bind the logical model sets
supported by JSIMS.
• A limited number of models can be developed

(since not all possible resolutions of all possible
things can be implemented, only a subset).

• Models in a given exercise must be able to
communicate together both via Federated
Objects they both understand and via direct
method invocation. As an example of the
former, a very high resolution thermal sensor
will not get sufficient data from a constructive
"division", whose Federation Object may
contain center of mass data, not temperature
profiles of engine exhaust.

• Models that are otherwise logically
interoperable may not be able to operate
together given constraints on available
resources or exercise execution parameters. An
example is an attempt to run with too many
high resolution entities (or with too many

medium resolution entities to handle a given
faster-than-real-time execution rate).

Models can be directly controlled by the Senior
Controller Workstation. That is, each model can
receive specific messages from and respond to the
Senior Controller Workstation. This capability will
allow the Senior Controller Workstation to be able
to directly change a model’s internal parameters.
This capability must be implemented using
specially-defined Federation Object Interactions, so
that such changes can be recorded by the Data
Collectors in the CDI for later analysis and review.

5.2.1 Submodel to Submodel Communication

Communication between submodels will be by both
direct method invocation and by the passing of
messages depending on the requirements of the time
management technique that is designed and
implemented for JSIMS. Certain communications
between submodels can be synchronous (i.e. not
time-managed). These communications can be
implemented as direct method invocations. Other
communications between submodels that must be
scheduled (and thus time-managed) must be
implemented via message-passing rather than direct
method invocation. The distinction between these
two techniques, both of which shall be supported by
the Modeling Framework, will be documented in the
SSDD.

6. JSIMS MODELING AND SIMULATION
RESOURCE REPOSITORY (JMSRR)

The JMSRR essentially consists of four
environments that are supported by a distributed
infrastructure and information security.
• User Environment - The end-user environment

in which users interact directly with the
repository to perform basic repository
operations or to administer the repository.

• Application Environment - The technical
environment that supports client applications for
domain-specific functionality (e.g., JSIMS
Lifecycle Applications for building, analyzing,
and recording an exercise).

• Common Services - “Central” common services
that support the application environment with
remote applications or functionality and also
support internal operations such as cataloging,
indexing, and routing of information flow.

• Libraries - JMSRR Libraries contain all of the
repository content along with the metadata,
contexts, and tools that support domain-specific
use of the content.

From a development perspective, this arrangement
of environments also defines three areas of interest:
Producers (those who provide the library content),
Consumers (those who use the content, both users
and domain applications), and Infrastructure (those

interested in the technology on which the repository
operates).

The previously mentioned environments or logical
system “layers” are shown in Figure 31 mapped to
the Hierarchical Virtual Repository paradigm. An
additional infrastructure consideration specifically
addressed by the JMSRR are the “External
Interfaces”. Because the JMSRR is part of a larger
information space, the MSRR, the JMSRR will
maintain at least one external interface to support
information flow between the MSRR and the
JMSRR so that users of either system can seamlessly
access at least a subset of the other. Over time,
there might be other external systems to which the
JMSRR will provide an interface (not all will
necessarily provide two-way information flow).
Realms are logical security domains that can be
synonymous with physical sites to support dynamic
security profiles associated with users, geographical
location, facilities, specific exercises (time, purpose,
“need to know”), etc.

7. A UNIFIED APPROACH TO
MANAGEMENT OF PERSISTENT DATA
THROUGHOUT THE EXERCISE LIFE
CYCLE

In past simulation systems, the management of
exercise data was treated in a stovepipe fashion,
with many databases, and database management
systems. This method impeded interoperability,
flexibility, and extensibility of these simulation
systems. In particular, there were many mismatches
between different types of data, between different

database systems, and there were important
inconsistencies between data used to create an
exercise and the data that was captured during an
exercise, leading to numerous problems interpreting
exercise results. The JSIMS architecture provides
for a uniform mechanism for managing data
throughout the exercise lifecycle (illustrated in
Figure 10). The JSIMS approach provides for
uniform data management throughout the exercise
lifecycle using the CDI as a single (though
distributed) common database and an end-to-end
object model (described in the next section) for
defining the schemas of objects that go into the
database.

The benefits of a unified approach to lifecycle
management of persistent data are numerous. First,
with a single system, data relationships are more
easily maintained, allowing for much easier
interpretation of the data during analysis. Second,
there is no “impedance mismatch” between pre-
exercise and run-time data, causing potentially
erroneous interpretation of information and forcing
the user to create numerous “translators” that
translate between the different data formats. Third,
cause and effect traceability is significantly
enhanced because information collected during run-
time can be more easily related to information that
existed in the Exercise Generation phase of an
exercise. Finally, it is much easier to archive pre-
exercise, run-time, and post-exercise data into the
JMSRR because there is a single object-oriented
data format to the exercise data that is compatible
with the JMSRR architecture.

Temporal
Progression

Data Flow

Exercise
Planning

Exercise
Planning

Exercise
Management

Exercise
Management

Data
Collection

Data
Collection

After-Action
Review

After-Action
Review

Persistent Data

Common

Exercise
Generation

Exercise
Generation

Interface

Figure 6 A Uniform Approach to the Management of Exercise Data

8. BENEFITS OF THE JSIMS
ARCHITECTURE

Our approach to JSIMS emphasizes the use of
advanced software technology to create a more
flexible, extensible, reliable, maintainable, and
interoperable JSIMS system. OO Frameworks give

the system flexibility, extensibility, and reusability
by providing structure for solutions to problems,
while allowing modelers to subclass and extend the
Framework to create specific functionality. They
also enable the construction of a composable sys-
tem, with its concomitant benefits of lowered
overhead and ease of exercise construction,
execution, and review. End-to-end object

management yields interoperability throughout the
entire exercise life cycle by defining a single
common language, the Federation Objects, that all
applications understand. The Life Cycle Applica-
tions provide users with automated tools to quickly
and easily compose exercises to meet their
requirements while lowering exercise overhead.

As this paper points out, there is a considerable
amount of work and effort to develop a set of
flexible software that allows the simulation
developer to follow the lead of the CBT
programmer. Figure 7 represents the idealistic view
of JSIMS. The simulation developer needs to focus
only on the value added portions of the system, not
reimplementing the infrastructure. By doing this, the
simulation return on investment will be maximized.

Models and Applications

Infrastructure
Interface

(Value Added Portion)

(Reused Common Software)

Figure 7 The Idealized Model of the JSIMS
Software Architecture

9. MORE INFORMATION

Considerable more detail is available concerning the
JSIMS Software Architecture, as well as the
program as whole, is available from the JSIMS
home page located at http://www.jsims.mil. This
paper is extracted from the JSIMS Architecture
Definition Document Version 1.0, which is also on
the web.

10. ABOUT THE AUTHORS

Dr. Edward T. Powell is a senior scientist with
Science Applications International Corporation. He
received his Ph.D. in Astrophysics from Princeton
University. After four years at the Lawrence
Livermore National Laboratory’s Conflict
Simulation Laboratory where he worked with the
Joint Conflict Model, he moved to SAIC and
became the chief simulation infrastructure architect
for the largest operational warfighter DIS exercise
ever created, the 10,000+-entity
live/virtual/constructive JPSD-96 exercise. He then
became a lead architect on the ARPA-funded
Synthetic Theater of War Program, where he
oversaw the creation of the STOW Simulation
Infrastructure and the STOW Data Collection
System and CDI. He is now the principle architect
and Core Infrastructure AIT Leader for the Joint
Simulation System Integration & Demonstration
contract.

Dr. David R. Pratt is the first Technical Director of
the Joint Simulation System (JSIMS) Joint Project
Office in Orlando, Florida. He holds this position
concurrently with an appointment as an Associate
Professor at the Department of Computer Science,
Naval Postgraduate School in Monterey, California.
As the Technical Director, his responsibilities
include the overall technical direction of the
program and the investigation of applicable
technologies relevant to large scale constructive
simulations. His academic interests include real-time
3D computer graphics, software architectures, and
distributed computing. Dr. Pratt lead the
development of the NPSNET system, one of the first
publicly available DIS based virtual environments.
Prior to joining the faculty at NPS, Dr. Pratt was a
Data Processing Officer in the United States Marine
Corps. His has an extensive publication record with
over 40 published articles covering a wide range of
computer topics. Dr. Pratt holds a Ph.D. and M.S. in
Computer Science from NPS and a BSE in
Electrical Engineering from Duke University.

