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I. INTRODUCTION

The Navy's 15G30 series of  Air Traffic Control
(ATC) trainers currently employ custom hardware
speaker dependent speech recognition systems to
replace human role players. Speaker dependent
systems pay a penalty of about thirty minutes per one
hundred words to enroll the trainee onto the system
to develop a custom set of templates that work with
the phraseology for an application. The 15G30 series
of trainers use a vocabulary greater than five
hundred words, and therefore, require approximately
two and one half hours of acoustic enrollment.
Further, the speaker dependent systems are typically
ten percent more accurate than the speaker
independent systems. It is hypothesized that the ten
percent gap in accuracy can be narrowed by
developing custom speaker independent finite state
machine models using acoustic signals recorded in
the environment in which the system will be used.
Similarly, the acoustic data should be made up of
unscripted utterances (which provides a byproduct of
modeling the mannerism in speaking those
utterances). Additionally, speaker independent
solutions do not require training and can be
implemented into an all software configuration using
off-the-shelf hardware. The technology used in this
effort is the Hidden Markov Model (HMM)
statistical state machine. Intuitively, employing
domain specific acoustic signals for the development
of continuous speaker independent speech
recognition should improve recognition accuracy
because the variability in potential speech patterns
will be bounded to the context of the phraseology for
which the recognition system will be used. Each self-
looping node in the model shown in Figure 1 is a
sub-phonetic state. Word models are formed through

concatenation of these sub-phonetic states. These
models are created by recursively re-estimating the
Gaussian
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FIGURE 1   Markov Model

distribution with observations for each set of possible
feature vectors that occur in that state. States may be
iterated for some observations, as shown above, for
states two and four. The re-estimation merely adjusts
the height and width of the distribution. The figure
shows Gaussian distributions for a sequence of six
observations. The re-estimation (called training) is
accomplished by applying the Baum-Welch
algorithm.

The variability of human speech is inherent to the
Markov model after the model has been exposed to a
representative set of subjects, each producing a set of
utterances that will occur in the desired phraseology.
Ideally, each possible utterance will have been
spoken seven to ten times for each subject. A



phonetic recognition system requires seven to ten
occurrences of each phoneme in the context for
which it will be used. Phonetic recognition,
therefore, requires the number of phonemes (which
is around forty for the English language), cubed
because the phoneme can occur with many different
surrounding phonemes thus changing the effects of
coarticulation.

This paper describes a research effort leading to an
improved speech recognition system for ATC
training. We are attempting to make  better finite
state machine models using audio data recorded in
the trainer where the recognition system is used.
This data is intuitively better than commercial -off-
the-shelf (COTS) model data, because COTS is
designed for very large (60000 word plus)
vocabularies where the models were typically created
by people reading the Wall Street Journal (WSJ).
Reading from a script is generally quite different
than speaking naturally because of rhythm and
emphasis. Further, the organization and frequency of
occurrence for a set of words is dependent upon the
application where the speech recognition system is to
be used. The Wall Street Journal may have the words
“final”, “radar”, and “contact” in the script, but a
sequential occurrence of these words would be very
unlikely.  Additionally, there may be a certain
rhythm that is used when speaking phrases, that is
unique for a particular application, which would not
be apparent in the non-domain specific scripted
models. The phraseology used by Navy ATC
controllers in training has been captured onto digital
audio tape which can be used to develop domain
specific HMM’s. The recorded data reflects the
naturally occurring rhythm and context of the
phraseology for the application as well as the
acoustic environment for which the speech
recognition system will be used.

II. BACKGROUND

Speech recognition is signal processing and
modeling of spoken input for the communication of
information. There are a few flavors of speech
recognition depending on the technology used to
identify a given utterance. The technology used in
this exploratory research effort is speaker
independent, continuous, speech recognition using
Markov Modeling which is a probabilistic pattern
matching approach that models a time-sequence of
speech patterns representing the temporal structure
of a phoneme or word depending on the type of
recognizer used, phoneme based or word based.

Continuous speech recognition is challenging
because of the effects of coarticulation between
words when words are strung together. The
coarticulation of words is unique for  domain specific
phraseologies. The state of the technology is such
that applications of continuous speech recognition
will work reliably for small vocabularies. Modeling
of the coarticulation effects of these words can be
bounded because the vocabulary is small enough to
allow for the building of models re-estimated with
sufficient repetition of  possible utterances. Further,
re-estimation of these models with data from many
different speakers, provides inherent flexibility of the
models to allow for the inherent variability of spoken
language[1]. The process of re-estimation effectively
adjusts the Gaussian distribution of the possible
feature vectors that can occur during the states in the
Markov model[2]. Models adjusted for the
phraseology and the mannerism in which a certain
group of people communicate is an optimization of
the model.

Speech recognition begins by sampling an analog
microphone input with an analog-to-digital converter
(A/D). The sampling rate is at least twice the highest
signal frequency, commonly known as the Nyquist
frequency, which prevents aliasing of the sampled
signal. The digital audio is then transformed from
the time domain to the frequency domain by way of a
Fast Fourier Transform (FFT). These transforms are
performed periodically on the input using a
Hamming window. The bandwidths of the frequency
components are based on the biologically inspired
mel scale which has more resolution at the lower
frequencies. Subsequently, the spectrum is run
through a series of cosine functions to characterize
the cepstral energy thus obtaining the mel cepstral
coefficients (MFC’s). We use ten to twenty
millisecond windows because of the mechanical
operation of the articulatory components, especially
the glottis, and it is assumed that this time period is
short enough for the  signal to be  stationary. Each of
the feature vectors in this experiment represent a ten
millisecond sample. Hidden Markov Models (HMM)
are developed by re-estimation of each possible state
and establishing a distribution of the MFC
classifications  that could occur for  each ten
millisecond window. These models use a feed
forward state transition topology to model the
transitions between each sub-phonetic window. The
Viterbi[3], or Baum-Welch re-estimation algorithms,
then compute the statistical likelihood of the model
producing a given spoken input or sequence of sub-
phonetic observations.



III. DEVELOPMENT OF FINITE STATE
MACHINE MODELS

Development and integration of  speech recognition
Markov models is simplified using a toolkit such as
the Hidden Markov Model Toolkit (HTK) by
Entropic. This toolkit operates on a Sun computer
and requires one to know how to write shell scripts
for automating the model development. Shell scripts
are used to semi-automate most of the process from
taking recorded audio and to convert it to the correct
Sun file format by way of a data link with a SCSI bus
connection. Further, scripts are used to manipulate
the data for developing the models. Once created and
trained, the models are used for recognition in the
Viterbi recognition algorithm.

Finite state machine HMM’s are partitioned
phonetically or lexically. When the partitioning is
phonetic, words are constructed by concatenating the
phonetic based models together. Each ten
millisecond state of the phonetic model has a
probability distribution for the feature vectors that
can occur for that moment in time. Initially, the
probability distribution is established by aligning the
acoustic signal with a prescribed phonetic topology
for the expected word. Subsequently, the probability
distribution is set by re-estimating a large set of
feature vectors specific to the phraseology from a
variety of human subjects.  The prescribed phonetic
topology is defined in a phonetic dictionary. This
dictionary can include many variations of a given
word which means there will be a unique set of
phonemes for each possible variation. Air traffic
control  phraseology has unique concatenation of
words and therefore, unique effects of coarticulation.

The original phonetic topology for a word is often
changed and/or lost when spoken with surrounding
words. It is this change and/or loss of phonetic
information that establishes a unique and context
specific vocabulary for the air traffic control
application. For example, the coarticulation effects
when concatenating the words “plugged” “and”
“receiving” results in a loss of the beginning and the
end of the word “and” leaving just the “n” as well as
a change in the suffix “ed”  which sounds more like
a “t”. Further, there is a change in the temporal
topology of the model because it takes less time to
pronounce the concatenated set of words than it does
to pronounce each word individually. Figures 2  and
3 show, in the time domain and in the frequency
domain, the words “plugged”  “and”  “receiving”
spoken individually.  Figures 4  and 5 show the

effects of coarticulation with the concatenation of the
words “plugged and receiving” in the time domain
and in the frequency domain. It is clear that the
concatenation of these words results in the loss of
phonetic information.
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A gain in accuracy is realized when the phonetic
dictionary reflects the effects of coarticulation thus
creating a optimal set of word models for a given
phraseology. Simply identifying and labeling in the
dictionary, phonetic topology for a given unique
utterance, establishes the alignment of the training
data with the HMM’s. The language model identifies
the lexicon and syntax of the phraseology. Lexically
and syntactically bounding the phraseology limits
the combinations of possible phonetic
concatenations. Further, the language model
provides a lexical transition probability. This lexical
probability combined with the HMM state
probability results in the overall probability for a
given utterance[4]. Use of models that are not
optimized for the target phraseology results in a
solution that can never perform at the limit of the

technology. It is hypothesized that inclusion of the
unique coarticulation effects of concatenated words
leads to the best technical solution because the
dictionary reflects unique pronunciations and the
models are trained with data representing the actual
usage of the phraseology.

Ideally, the models would be trained using acoustic
signals that were recorded in the environment where
the recognizer will be used. Similarly, it is best to
train the models using the same microphone as that
used in the target environment. Both of these
approaches reduce the variability in the recognition
of live audio input.  Figure 6 shows the addition of
12 dB of noise to the phrase “plugged and
receiving”. White noise was added to test the
response of the speech recognition system.
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FIGURE 6

IV. RESULTS

The ATC HMM’s were trained with acoustic signals
comprised of Navy ATC trainees using the trainer
during training exercises. These signals capture the
emphasis, speed, and idiomatic characteristics
particular to Naval ATC students. The ATC HMM’s
were trained with acoustic signals recorded in the
target environment with the same input device that
will be used with the new models thus reducing some
of the environmental and equipment variability and
therefore an optimized model. Testing the models
presents a challenge because of the enormous
possible combinations of  valid utterances within the
boundaries of the language model. A set of
utterances representing most of the frequently used
utterances was established as test data and run
through the recognition system. Simply speaking a
canned set of utterances to the recognition system



will not provide repeatability or the rhythm, speed,
emphasis, etc. that is inherent with data extracted
from the acoustic signals recorded in the target
environment.

Preliminary results for a small vocabulary
implementation indicate that the optimized models
perform better than the models developed from
scripted and non-domain specific speech. Models for
the digits zero through nine were trained with data
from three adult male subjects. The models were
then tested with a canned data set representing the
target environment with the coarticulation specific to
the target phraseology. The recorded data was
verified with the transcriptions. Subsequently, the
recorded data was run through both the domain and
non-domain specific models. The domain specific
models are labeled NAWC and the non-domain
specific labels are labeled WSJ in the following
tables. Further, two flavors of acoustic signals were
tested, one with just the ambient background noise
and the other mixed with 12 dB of white noise.
Tables 1 and 2 show the results for the models tested
with the ambient noise and tables 3 and 4 show the
results for the models tested with an additional 12
dB of noise added to the recorded speech.
Correctness does not include the insertions whereas
accuracy does include the insertions. Tables 1 and 3
show the correctness and tables 2 and 4 show the
accuracy. The same data set was tested against each
model.

Correctness w/Ambient Noise

Model W S D Correct
NAWC 1865 5 3 99.57%
WSJ 1865 9 1 99.46%

TABLE 1

Accuracy w/Ambient Noise

Model W S D I Accuracy
NAWC 1865 5 3 4 99.36%
WSJ 1865 9 1 2 99.36%

TABLE 2

Correctness w/12 dB of White Noise

Model W S D Correct
NAWC 1865 519 86 67.56%
WSJ 1865 241 302 70.56%

TABLE 3

Accuracy w/12 dB of White Noise

Model W S D I Accuracy
NAWC 1865 519 86 55 64.61%
WSJ 1865 241 302 242 57.59%

TABLE 4

W-Words S-Substitutions D-Deletions I-Insertions

The results were scored using the National Institute
for Science and Technology figure-of-merit
methodology[5]. Basically there were a total of 1865
words in the data set. Substitutions occur when a
word other than what was actually spoken is
recognized. A deletion is an omission of a correctly
spoken word. An insertion is anytime a word was
added to a recognized utterance. The percentage of
the correct words is the total number of words minus
the substitutions and deletions divided by the total
number of words. Accuracy is the total number of
words minus the substitutions,  deletions, and
insertions all divided by the total number of words.
Insertions or deletions of silence were omitted from
the results because insertion and or deletion of
silence does not affect the accuracy of the system.
Substitutions of silence were not omitted from the
results because a substitution of silence does affect
the accuracy of the system.

The metric for correct words does not include word
insertions which are mostly due to noise. Correctness
is important when looking for a specific key word
within a string. Accuracy includes the adverse effect
of word insertions or forced recognition due to noise.
Noise can be mitigated through signal processing
and microphone improvements using arrays, but
insertions due to noise must be considered, therefore
the metric of accuracy reflects the performance of the
recognition system.



V. CONCLUSIONS

This paper describes a pilot test of the process used
to develop Hidden Markov models for speech
recognition. The models were based on a subset of
the air traffic control trainer vocabulary. The pilot
test was necessary to establish the process for testing
larger vocabularies.  Further, this test provides a data
point of the NAWC models. Development of these
models is an iterative process. Exposure to new  data
enhances the variability of the models and the
models will need to be tested periodically during
development using the process established in this
pilot test. The results, including the noise, show the
NAWC domain specific models are an improvement
over off-the-shelf models built with WSJ data,
although more data is necessary to verify this
conclusion. Any small improvement in speech
recognition accuracy is significant.

VI. FUTURE WORK

This is a three year research effort and we are in the
fourth quarter of the first year.  The vocabulary for
this project is considerably larger than the
vocabulary used for the pilot test described in this
paper. The Markov models for the pilot test were
word based models. The models for the complete
system may be word based models, or they may be
phoneme based models. Phonetic models provide a
higher context resolution because they are smaller in
size. Both types of models will be constructed and
evaluated for accuracy and correctness. Further, the
models will be tested with representative noise from
the target environment added to the test data.
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