
LESSONS LEARNED FROM HUMAN-IN-THE-LOOP HLA IMPLEMENTATION

John P. Baker, Walter E. Bowen, and Michael A. Harris
Johns Hopkins University

Applied Physics Laboratory
Laurel, MD

ABSTRACT

A distributed simulation experiment conducted using a High Level Architecture (HLA) federation
object model and the Runtime Infrastructure (RTI) was performed by the Johns Hopkins
University Applied Physics Laboratory (JHU/APL). To explore the utility of the HLA and RTI for
representative military problems, the experiment simulated two power projection scenarios. For
the first scenario, a simulated Tomahawk guided missile with intelligent anti-armor submunitions
was launched against an armor column. In the second scenario, an advanced hypersonic missile
was simulated as an anti-TEL (Transporter Erector-Launcher) weapon following a Scud launch.
In both scenarios, two Unmanned Aerial Vehicles (UAVs) were used to detect and track targets,
one with Moving Target Indicator (MTI) radar and one with Electro-Optical and Infra-Red (EO/IR)
sensors. This allowed initial targeting and, in the first scenario, dynamic re-targeting of the
Tomahawk missile. The EO/IR UAV payload operator station (based on the Predator UAV) was
simulated with virtual imagery in real-time and a user interface which allowed an operator to
select and control the sensors dynamically. A Virtual Strike Battle Station (VSBS) with a virtual
reality user interface was used to simulate the command and control center. Lastly, the Tactical
Event System (TES) was simulated to provide detection information of Scud launch events in
the second scenario.

This paper describes the HLA implementation and lessons learned for using the HLA for real-
time human-in-the-loop simulations. Specific problem areas are described and a suggested
“road-map” for building HLA/RTI simulations is presented.

ABOUT THE AUTHORS

Mr. John P. Baker is a Senior Engineer at the Johns Hopkins University Applied Physics
Laboratory (JHU/APL) within the Electro-Optical Group of the Air Defense Systems Department.
He has spent five years in the design of several fielded data acquisition systems including a
recent successful demonstration of Unmanned Aerial Vehicular control system installed on a
688-class attack submarine. Mr. Baker holds Bachelor of Science degrees in Electrical
Engineering and Computer Science from Washington University in St. Louis, a Master of
Science in Electrical Engineering from Johns Hopkins University, and is pursuing a doctoral
degree in Electrical Engineering at the University of Maryland College Park. He can be reached
via e-mail at bakerjp1@jhuapl.edu.

Mr. Walter E. Bowen is a Senior Engineer JHU/APL. He has nine years of experience in
modeling, analyzing, and developing concepts for weapon guidance, control, and navigation
systems. His technical interests include fuzzy logic and object-oriented system analysis and
design. Mr. Bowen received his BS and MS degrees in electrical engineering from the Virginia
Polytechnic Institute and State University. He can be reached via e-mail at
walt.bowen@jhuapl.edu.

Mr. Michael A. Harris is a Computer Scientist JHU/APL within the Strike Warfare Systems
Engineering Group of the Power Projection Systems Department. Since joining APL, he has
worked on a broad range of tasks including: distributed modeling and simulation, Air-Directed
Surface-to-Air Missile (ADSAM) analysis, medical informatics, and virtual reality. He has BS
degrees in Computer Science and Mathematics and an MA degree in Applied Mathematics from
the University of Maryland College Park. He is currently pursuing a doctoral degree in Applied
Mathematics from the University of Maryland College Park. He can be reached via e-mail at
Michael.Harris@jhuapl.edu.

LESSONS LEARNED FROM HUMAN-IN-THE-LOOP HLA IMPLEMENTATION

John P. Baker, Walter E. Bowen, and Michael A. Harris
Johns Hopkins University

Applied Physics Laboratory
Laurel, MD

INTRODUCTION

The High Level Architecture (HLA) is being
developed by the Defense Modeling and
Simulation Office (DMSO), to facilitate
interoperability among simulations and
promote reuse of simulations and their
components. The HLA has been designated
by the Department of Defense (DoD) as the
standard technical architecture for all DoD
simulations.. The DoD has mandated that
no further development occur after October
1, 1998 on any DoD-sponsored simulations
that are not in the process of achieving HLA
compliance. To achieve this mandate by
1999, the M&S community is developing
expertise in using the HLA. This expertise
is gained primarily through practical
experience. By designing and building HLA-
compliant federations that model real-world
problems, skills and techniques are learned
while studying the scenarios of interest. Out
of these experiences arise lessons on how
best to use HLA methodologies, and
perhaps more importantly, how not to use
them.

This paper describes an effort by the Johns
Hopkins University Applied Physics
Laboratory (JHU/APL) to use the HLA
paradigm and associated Runtime
Infrastructure (RTI) in a real-time simulation
with humans-in-the-loop. In particular, this
paper documents lessons learned for using
the HLA. Properly applied, these lessons
learned should expedite the development of
future HLA-compliant simulations.

.

PROBLEM DOMAIN
DESCRIPTION

To gain experience in applying the HLA to
complex weapon systems analysis, two
Naval interdiction concepts are being
studied. Both concepts provide a means for

forward-deployed US Naval forces to attack
moving tactical targets deep inland.

Two Interdiction Concepts

The first of these concepts uses a modified
cruise missile to attack a moving tank
column. In contrast, the second concept
uses a hypersonic missile to attack a
Transporter Erector-Launcher (TEL) and its
support vehicle after it has launched a
Tactical Ballistic Missile (TBM.)

IMAGING UAV

TOMAHAWK

TARGETING
UAV

TANK COLUMN

SMART
SUBMUNITIONS

COMMAND AND
CONTROL

COMMUNICATION
NETWORK

Figure 1: Armor Interdiction Concept

Both concepts integrate missile systems,
submunitions, and a C4ISR network into a
single weapon system. The constituent
components of these interdiction concepts
are enumerated below.

COMMUNICATIONS
LINKS

SPACE SENSOR
(TES)

TBM

TARGETING
UAV

IMAGING UAV

HYPERSONIC
MISSILE

SMART
SUBMUNITIONS

TEL

COMMAND AND
CONTROL

Figure 2: TEL Interdiction Concept

Sensors: Both concepts employ unmanned
aerial vehicles (UAVs) to collect target
location and imagery data that is transmitted
in near-real time to a shipboard command
and control center. One of these UAVs is

equipped with a Ground Moving Target
Indicator (GMTI) radar with a large sensor
footprint that can provide targeting data on
land vehicles distributed across the
battlefield. The other UAV is equipped with
high-resolution imaging sensors with a
relatively small footprint that are used to
provide positive target identification and to
make battle damage assessments. Both
UAVs are guided by human operators. The
imaging sensor payload on the second UAV
is also controlled by a human operator.

The TEL interdiction concept additionally
employs the Tactical Event System (TES)
to detect TBM launch events and estimate
the location of the launcher.

Communication Network: A satellite
communication network is used to provide
connectivity between the Command and
Control Center, the sensors (UAV and TES),
and the missiles. Communication delays
are modeled to simulate more accurately
C4I timeline issues.

Command and Control Center: The ship-
based command and control center
maintains a big-picture view of the land
battle as it evolves. This information, along
with knowledge of the weapon system, is
used to make targeting decisions, missile
launch decisions, and decisions to redirect
in-flight missiles. This is done by human
operators using computerized decision aids
and other software that integrate down-
linked missile and sensor data into a unified
picture of the tactical situation.

An aspect unique to the armor interdiction
concept is that the command and control
center can re-direct the missile in-flight to a
new terminal location if the intended target
deviates from its predicted course.

Weapons: The armor interdiction concept
employs an enhanced Tomahawk missile
that can be redirected in-flight by the
command and control center. The TEL
interdiction concept employs the Quick-
Reaction Deep-Strike (QRDS) hypersonic
missile to attack the TEL and its support
vehicles.

In both concepts, the missiles are armed
with a payload of intelligent submunitions
that are dispensed at the predicted target
location. Because these submunitions can
autonomously detect and fly to attack

individual targets, a very large effective
lethal footprint is obtained by the composite
payload.

Weapon System Evaluation
Criteria

The key question to be addressed with our
system concept models is the following:

Does the integrated weapon system deliver
its weapon with sufficient accuracy and
timeliness for the lethal footprint to
encompass the target?

To a great extent, the answer to this is
determined by the ability of the system to
predict the future location of a moving
target. To be effective, the system must be
able to detect and react to changes in the
target’s course. The overall responsiveness
of this system is limited by those subsystem
elements that have human operators
interfacing with computer-aided display and
machine control systems. In particular, the
command and control system must
incorporate the UAV data to synthesize a
clear picture of the evolving tactical
situation. This allows the human operator to
make informed judgments about the
situation and react accordingly. For this
reason, our study focuses on the man-
machine interface elements of the weapon
system.

HLA REPRESENTATION OF THE
PROBLEM DOMAIN

Federation Object Model (FOM)

The Federation Object Model (FOM) defines
the federation hierarchy of object classes
and shows how these object classes
interact. This section describes the object
class hierarchy of the federation used to
represent the problem domain described
above. (See Figure 3) The object classes
on the right side of Figure 3 are concrete
object classes that are instantiated as
objects in member federates of the
federation execution. The Vehicle, Surface
Vehicle, and Air Vehicle classes are the
super classes used to derive the concrete
classes. The Vehicle class contains the
physical position and orientation data

required to relate one object to another.
The hierarchy, along with the class
interactions, was documented using the
Object Model Development Tool (OMDT).

Position
Velocity
Acceleration
Orientation
Angular Velocity

Vehicle

Engine Temperature
Surface Temperature
Damage Level

Surface Vehicle

Air Vehicle

Imaging UAV

Targeting UAV

SS Missile

TBM

Imaging UAV GCS

Targeting UAV GCS

Launch Ship

TEL Support

State
Tactical Event System

Communications Links

Data Logger

Ground Truth Display

Erector Angle
Erector Temperature

TEL

State
C2 Center

Tank

Figure 3: Federation Object Classes

The FOM was the backbone of the
simulation effort. The participants
hammered out an initial version of the FOM
which was used to coordinate activities
throughout the project. We believe that a
good initial FOM is an essential tool to build
an integrated, interactive simulation.

Description of Participating
Federates

This federation includes a wide range of
federates. Two of the federates contain
real-time user interfaces which allow
human-in-the-loop interactions: the Virtual
Strike Battle Station (VSBS) and the
Imaging UAV GCS. The other federates
are purely analytic models. The federates
in this simulation are described below.

Virtual Strike Battle Station: The Virtual
Strike Battle Station uses virtual reality tools
to provide an immersive environment for a
futuristic strike battle station within the
setting of the Command Information Center
(CIC) of a DDG-51 class Navy ship. The
immersive setting allows a user to walk
through the CIC and sit at the Virtual Strike
Battle Station (VSBS). The VSBS is a
human-in-the-loop federate that allows an
operator to view and interact with entities in
the HLA simulation. VSBS consists of three
main components: the virtual reality

interface, the RTI communications process,
and the Strike Manager process. The virtual
reality interface is responsible for
communicating visual information to the
user via dynamically updated hanging
displays viewed through a head-mounted
display. The user interacts with objects in
the exercise through a data glove and voice
recognition interface. A 3-D GeoView is also
being developed which will allow a user to
view and interact with HLA objects
displayed in three-dimensional space over a
virtual table top. The RTI communications
process handles all of the low-level RTI
communications tasks such as sending and
receiving interactions, processing entity
attribute updates, and RTI time
management. The Strike Manager process
handles all of the computational and
coordination functions of the VSBS. The
virtual reality interface, the HLA
communications process, and the Strike
Manager process all communicate via
TCP/IP sockets.

During the simulation, the VSBS operator is
responsible for receiving sighting and track
reports from the imaging and targeting
UAVs as well as satellite-based Tactical
Event System launch queues. The operator
can act on this information by issuing
commands such as launch orders, imaging
UAV tasking orders, and Tomahawk
redirection tasking orders. The commands,
initiated by voice or gesture, are sent as RTI
interactions to the appropriate receiving
entities via the RTI communications
process.

Imaging UAV GCS: The Imaging UAV
GCS (Ground Control Station) federate is
modeled after a Predator UAV. The electro-
optic and infrared (EO/IR) sensors are
modeled and the flight dynamics are
consistent with the operating envelope of
the Predator. The Synthetic Aperture Radar
(SAR) sensors were not modeled. The
Imaging UAV is used for target identification
and Battle Damage Assessment (BDA).

A simulated payload operator’s station,
designated the Ground Control Station
(GCS), presents an operator with a synthetic
image of what a UAV would see flying over
a real-world analog of the virtual battle-
space. Updates of vehicle locations and
speeds are used to dynamically render
simulated objects on the operator’s screen.
The operator also has the capability to

dynamically pan, zoom, and switch sensors
much as a real payload operator would.
The UAV sensor view cones are accurately
rendered to provide the same “pinhole”
viewing areas found in real UAV sensors.

The graphical visualization is performed by
third-party software which accepts Digital
Terrain Elevation Data (DTED),
representative overhead terrain imagery,
models of imaged targets, and dynamic
position and orientation inputs. It renders
the resulting dynamic scene in real-time.
The dynamic data reflecting the positions of
the UAV and the target objects is generated
from an HLA federate. This federate
receives updated object attributes and
passes them to the visualization software
via a UNIX socket-based connection.

The Imaging UAV GCS is designed to
resemble a payload operator station for a
Predator UAV. Such a station allows a
payload operator to monitor the sensor data
(video) while controlling the look angles,
zoom, and sensor in use. The visualization
system harnesses a high-end Silicon
Graphics workstation to render realistic,
color landscapes and targets as they would
appear through a UAV sensor package. As
the operator adjusts the pan, tilt, and zoom,
the viewing frustum is altered in real-time.
In addition, a separate federate propagates
the flight-model of the UAV which
periodically (via the RTI) updates the
viewpoint of the UAV. (See Figure 4)

GUI

Imaging
UAV

Federate

Imaging
UAV/GCS
Federate

Visualization
Software

UAV Position
(RTI)

UAV Position
Target Positions and Orientations

Other
Object
Positions
(RTI)

Pointing
Angles

Sighting Report

Sighting
Report
(RTI)

External
Federates

Figure 4: Imaging UAV GCS Software
Architecture

Digital Terrain Elevation Data (DTED) files
are overlaid with representative overhead
imagery of the appropriate terrain type to
generate landscape imagery. OpenFlight
models provide the physical properties of
the target vehicles and real-time RTI

attribute updates are incorporated and
smoothed to animate the scene.

IR imagery is currently mimicked by altering
the color tables to show a gray-scale scene
rather than a color scene. Some target
object temperature attributes are passed to
the GCS via the RTI and are used to modify
the brightness of various features in the
object. Thus, a tank that has been running
for a time is brighter than one that has been
inactive. The IR modeling at this point is
very low fidelity and does not incorporate
radiometric techniques.

The visualization software was written using
the Performer libraries supplied by Silicon
Graphics, Inc. Performer was chosen due
to its wide availability, flexibility, and power.
As RTI updates of changes in the position of
the UAV and external federates appear at
the GCS Federate, the relevant data are
passed to the separate Performer process
via inter-process communication protocols.
The Performer application then applies
these new values to its current “world state”
and renders the resulting view. The
Performer application renders data slightly
delayed from real time so that data
interpolation can be used to produce smooth
animation.

Analysis and Support Federates

Imaging UAV: The Imaging UAV federate
supports the Imaging UAV GCS by
supplying a flight model which outputs
realistic position updates based on the
Predator vehicle’s flight envelope. This UAV
‘pilot’ is a software program that receives
tasking orders from the C2 center and guides
a flight model to a loiter point and performs
a loiter pattern over the designated area.
This program is implemented as a separate
federate from the GCS federate. The GCS
federate then subscribes to the UAV pilot
federate to establish the eye-point for the
visualization software.

Targeting UAV and Tomahawk Missile:
The targeting UAV and the Tomahawk
missile are modeled in the same federate.
Both models use a common six degrees-of-
freedom bank-to-turn flight kinematics
model. Aerodynamic derivatives, linearized
about a single trim condition, are used to
model the aerodynamic forces on the
vehicle. In addition, both models use a
GPS inertial navigation model, and a

mission waypoint guidance algorithm. The
UAV includes a wide-area GMTI radar
model, and the Tomahawk includes a
submunition payload model.

Launch Ship: The Launch Ship is modeled
as a generic Surface Vehicle. In the
scenarios the ship is stationary but capable
of motion. As currently implemented, the
Launch Ship publishes its location and
provides launch point coordinates for the
Tomahawk and QRDS missiles.

Quick Response Deep Strike Missile: The
QRDS missile cruises from the Launch Ship
towards the TEL target at hypersonic speed.
A dive, pull out, deploy maneuver is
executed to dispense a payload of multiple
Brilliant Anti-Tank (BAT) submunitions. The
QRDS object publishes the usual motion
attributes. It interacts with the TEL and
support vehicle to compute their Damage
Level attributes using a simple footprint and
probability-of-kill algorithm. A model
computes the complete trajectory of the
QRDS at launch time using the Launch Ship
and TEL locations.
Tactical Event System: The Tactical
Event System (TES) simulates the ALERT
software which processes data from space-
based sensors that can detect a tactical
ballistic missile (TBM) in flight. The state
vector and launch point are estimated from
the estimated TBM exhaust plume
temperature. The launch point estimate is
then passed to the command and control
center.

Communications Link: The purpose of
the Communications Link federate is to
provide representative delays associated
with sending data across real-world tactical
communications networks or tactical data
links (TDLs). A small number of TDLs
appropriate for the scenarios were
identified, and delays were modeled
stochastically from probability distributions
that adequately reflect the latency time
typical for those TDLs. All HLA interactions
which represent tactical communications are
sent to the Communications Link federate.
This federate determines a delay time and
relays the message (as another interaction)
to the intended recipient after that time has
elapsed.

Tactical Ballistic Missile: The TBM has a
boost phase (with an exhaust plume) and a
ballistic phase. The dynamics of the boost
phase of the TBM trajectory are published to
the federation using a lookup table
produced by a higher fidelity model. The
missile also publishes an Intensity attribute
to the federation that changes when the
SCUD enters its ballistic phase.

TEL and Support Vehicle: A TEL
(Transporter Erector-Launcher) and an
associated support vehicle are modeled as
generic Surface Vehicles. The vehicles
publish position, motion and temperature
data to the federation. The stationary TEL
launches a SCUD missile and begins
moving to a new location accompanied by
the support vehicle. The TEL Erector Angle
and Erector Temperature are also
published. The erector gradually cools after
the SCUD launch. This is modeled using an
exponential curve. After munitions are
deployed against the TEL and support
vehicle, a Damage Level attribute is
published.

Tank Column: A tank column is simulated
as a group of tanks (Surface Vehicles)
moving along a grid of roads. Speed and
configuration of the column are modeled
based on realistic tactics. Tanks also
publish temperature attributes that influence
detectability by various sensors. The tank
column performs turning maneuvers during
the simulation while the Tomahawk missile
is in the air. After munitions are deployed
against the column, individual tanks publish
a Damage Level attribute.

Data Logger: The logging of data
produced during an HLA federation
execution is far more complicated than it
was for Distributed Interactive Simulation
(DIS). Logging and analyzing HLA
federation execution data has been the topic
of much debate and many papers within the
M&S community. For DIS, it was sufficient
(more or less) to simply "catch" all of the
data packets, or Protocol Data Units
(PDUs), and store them in a file. For an HLA
federation execution, on the other hand, it is
not efficient to have one (logger) federate
receive all data passed around during the
exercise. This approach is not effective for
many reasons, including the fact that it
counteracts the advantages in the reduction
of network bandwidth consumption provided

by the HLA declaration management and
data distribution service categories.

For the purposes of this experiment,
however, a "simple-minded" DIS-like logger
captures all object discoveries, attribute
updates, interactions, and object removals
and logs them. This is sufficient to provide
the post-execution debugging, analysis, and
playback support required by the
participants. Such a log and playback utility
has been created which leverages the run-
time type identification features of the RTI
to achieve "FOM-independence."

Ground Truth Display: In order to provide
visual representation of the scenario as it
unfolds, an interface between the HLA RTI
and an existing 3D graphics system,
FTEWA, was established. FTEWA, or Force
Threat Evaluation and Weapons
Assignment, is a prototype air-defense
shipboard system developed at JHU/APL
which is currently installed onboard the USS
Kitty Hawk, the USS Cowpens, and the USS
La Salle. FTEWA provides a real-time 3D
picture of the tactical situation, and a
number of planning, analysis, and alert tools
to assist the commander in making
informed decisions in time-critical situations.
The graphics capability of FTEWA is used
to display the positions and orientations of
all entities in the scenario, with accurate 3D
models, as the federation execution
progresses. The models used to represent
scenario entities are dynamically scaled to
enable effective engagement-level and
theater-level views of the scenario.

Network Architecture

Each of the federates in the exercise was
hosted in a secure facility within JHU/APL.
The facilities are the Command and Control
Systems Laboratory (CCSL), the Combat
Systems Evaluation Laboratory (CSEL), the
Mission Planning Development Laboratory
(MPDL), the Space Department War Room
also known as the Defense Systems
Analysis Center (DSAC), and the Warfare
Analysis Laboratory (WAL). These
classified facilities are connected by a
secure fiber optic local area network. The
federates are hosted on a variety of
computer platforms as indicated below:
(See Figure 5)

WAL

TEL (Pentium NT)

Tank (Pentium NT)

Data Logger (Sun)

APL
SECNET

CSEL
Imaging UAV GCS (SGI)

Imaging UAV (Sun)

CCSL

VSBS (SGI) DSAC
Tactical Event
 System (SGI)

Communications Link (Sun)

Ground Truth Display (SGI)

TEL Support (Pentium NT)

MPDL
Tomahawk (SGI)

Targeting UAV (SGI)
Targeting UAV GCS (SGI)

Figure 5: Secure Network Architecture

LESSONS LEARNED

An old saying applies: How do you get good
judgment? Experience. How do you get
experience? Bad judgment. In the course
of creating this HLA federation, many
problems were discovered and overcome.
Some of the solutions and methodologies
employed have wider application than this
single instance. Future projects may benefit
from our experiences in the areas of FOM
creation, coding for the RTI, and human
interfaces under HLA.

FOM Creation Process

 This section describes the process used to
create the FOM for the HLA federation
described in this paper. While we found the
FOM to be a very useful “blueprint” for
coordinating efforts among the federates, it
alone was not sufficient. Thus, we found it
necessary to supplement the FOM with
additional information.

The development of the Federation Object
Model (FOM) was a three-step group-
oriented process. The first step was the
dissemination of a high-level description of
the domain problem among the federation
analysts. The second step was to develop
consensus on the federation structure. The
third, and final step, was writing the FOM.
This three-step process is described below.
See Reference [1].

Step 1: Disseminating a high-level
description of the domain problem

As is true of all object-oriented simulation
designs, a high-level understanding of the
domain problem is needed prior to creating

an object model. Thus, scenario
documentation, while not explicitly
enumerated as part of the Object Model
Template (OMT), is a prerequisite to
developing the FOM. The participating
analysts, selected for their domain
knowledge in specific subsystems, were, for
the most part, unfamiliar with the larger
weapon system concepts. To correct this
deficit, a document describing the weapon
system concepts and proposed test
scenarios was written and disseminated
among the analysts.

Step 2: Mapping the domain problem
into an HLA federation object structure

After the analysis participants reviewed the
weapon system concept descriptions, an all-
day meeting was held among the simulation
analysts. Specifically, the objectives of this
meeting were to specify the object structure
of the HLA federation, to parse this
federation into constituent federates, and to
assign responsibilities for each of the
federates. This meeting was led by an
individual who worked at a blackboard
gathering inputs from the subsystem
analysts.

Listing the object classes: During the first
part of this meeting, we created a list of the
concrete objects and corresponding classes
that constituted the domain problem. The
primary purpose of this list was to
completely represent the problem domain.
For this reason, we restricted our list to
concrete classes, and deferred discussion
of class hierarchies to later. Having listed
the constituent concrete classes and class
objects in the federation, object modeling
responsibilities were assigned among the
analysts.

Tabulating the object class attributes:
Having compiled a complete list of classes
and class objects, the next step was to
create the FOM class attribute table.

The first step toward creating the FOM class
attribute table was to determine how the
object ownership was to be distributed
among the constituent federates. This is
needed because the FOM class attribute
table should only list those class attributes
that are passed through the RTI from
federate to federate. The only way to
identify these attributes is to know which
object is in which federate. Note that our

federation did not invoke any of the RTI
services that transfer object ownership on
request between federates.

Although it is not part of the FOM, we found
it necessary to select an earth model and
coordinate system. Without an established
agreement on this, it would be impossible to
avoid ambiguities in interpreting much of
the exchanged attribute data. We selected
a WGS84 earth model and expressed all
translational and rotational attribute data
with respect to the Earth-Centered-Earth-
Fixed (ECEF) system. All federates linked
to a standard library of subroutines to
translate between the ECEF and Latitude,
Longitude, Altitude coordinate systems.

We used a systematic approach to create a
class attribute table that only contained
necessary and sufficient attributes. First,
we stepped through each listed object and
had the modeler of that object list those
attributes that he thought would be needed
by an object in another federate. After this
was done, we went back through each of
the tabulated attributes and asked, “Does
any object in any other federate need to
know about this attribute?” When the
response was negative, the attribute was
struck from the list. In addition, we asked if
there were any class attributes that were not
currently listed, but were needed by other
federates and made attribute additions
accordingly.

Alternatively, we could have skipped asking
the object modeler for attributes that he
thought might be useful for objects in other
federates. However, we found this to be a
useful way to exchange modeling
information.

Tabulating the interactions and
interaction parameters: In the latter part
of the meeting, we tabulated the FOM
object interactions and interaction
parameters. This interaction table was
created by stepping through the federates,
as was done with the object class attributes.

Initially, there was some confusion about
class interactions that arose from the fact
that object class interactions are used
differently than C++ member functions. In
particular, there are two salient differences.
First, interactions send information “one way
only.” Thus, it takes a query interaction and
a response interaction to approximate a

function call that returns data. Second,
unlike C++ class member functions, RTI-
supported interactions are directed to
classes, not class objects. To effectively
direct an interaction to a single object, one
must include the identity of the receiving
object as an interaction parameter. The
interaction will be sent to all the instantiated
class objects, each of which must check the
parameter list to determine if it is the
intended recipient.

Step 3: Documenting FOM Meeting
Outputs in OMT Format

The third step was to assign a FOM point-
of-contact tasked with compiling the
tabulated data from step 2 into an OMT
document and a FED file using the OMDT
tool developed by AEgis Research. This
point-of-contact was also tasked to organize
the concrete classes into an inheritance
hierarchy. These FOM and FED file
documents were maintained by the point-of-
contact on a homepage on the JHU/APL
intranet. Corrections and modification to
the FOM were made by e-mail to the FOM
point-of-contact. No further “all-hands”
FOM development meetings were needed,
as we found feedback via e-mail to be
sufficient.

Coding Techniques

Since the federate developers did not have
the benefit of an existing base of reusable
code, each federate was required to create
all of the low-level HLA/RTI federate
ambassador code from scratch. Collectively
the model developers found the coding of
the federate ambassador segments to be
tedious and repetitive. There was a large
amount of duplicated effort because each
developer created RTI ambassador code
segments to perform similar functions but
implemented these segments with slightly
different approaches. This created more
work later in the testing phase where similar
bugs were discovered and repaired multiple
times because some of the approaches had
similar problems. Although our HLA/RTI
development effort was not optimal in terms
of time efficiency, we did succeed in
increasing corporate knowledge of the
RTI/HLA low-level communications
procedures. Attaining this corporate
knowledge was one of the objectives of our
project, so the extra time invested was not
wasted effort. Below, we suggest some

strategies for reducing the time and staffing
requirements for HLA/RTI development.

One way that we might have reduced our
federate integration costs is to have one
developer create a generic federate
ambassador template. The template would
include all of the interaction and attribute
handling code that is needed by all of the
federation members. Federation members
could then use this template for their
individual federate ambassador
development. Methods that are not required
by a given federation member could simply
be cut from that member’s copy of the
template. This approach would greatly
reduce the amount of duplicated effort in
both the coding and testing phases of the
federate ambassador development. In
addition, it would guarantee a consistent
data-type interpretation of exchanged data.

Another improvement to our federate
ambassador coding would be to represent
the interactions as object classes. If each
federate had a local copy of a set of
commonly used interaction object classes,
they could use the class-provided
interaction services rather than having to
custom-code them into every ambassador.
By promoting code reuse, these interaction
object classes could potentially yield a
significant reduction in the cost of federate
ambassador coding. For example, in our
scenario the Tomahawk and QRDS missile
send target kill interactions indicating that a
target in the simulation has been killed. The
tank, TEL, and TEL support federates all
receive the target kill interaction and
remove themselves from the simulation if
they are identified as killed. If the target-kill
interaction is coded as an object, each
object that uses it can call the appropriate
send or receive member functions without
creating new code in each federate
ambassador. (See Figure 6)

TEL
Support
Object

QRDS
Missile
Object

Tomahawk
Missile
Object

TEL
Object

Tank
Object

Target Kill
Interaction

Object

Figure 6: Object Oriented Code
Structure

The interaction objects would encapsulate
all of the data needed to send and receive
interactions to the RTI. This strategy
reduces the amount of redundant code and
increases the number of data-type
mismatch errors that are caught during
compilation avoiding costly runtime
debugging.

Finally, there is a need for tools such as an
automatic code generator to create the
federate ambassador for each federate.
Currently, coding for the HLA requires a
great deal of time and tedium to implement
simple functions which could well be
automated (e.g., extracting data from an
attribute or parameter list). Such a code
generator needs to take as input a file that
contains all of the information contained in
the federate ambassadors. (See Figure 7)
The OMDT- developed by the AEgis
Research Corporation outputs a file (the
OMDT file) that would be suitable for such a
code generator. This file contains data type
information and information indicating the
sending and receiving objects for
interactions. The source code generated
would provide the template code for each
HLA object. “Stub” member functions would
be created which would allow programmers
to quickly customize the generic template to
each specific model.

Fed.
Amb.
Obj. 2

Fed.
Amb.

Obj. N

Fed.
Amb.
Obj. 1

Inter-
action
Obj. 1

Inter-
action
Obj. 2

Inter-
action
Obj. N

. .

.

. .

.

Code
Generator

Object-
Oriented
Source
Code

OMDT
File

Figure 7: Automated HLA Code
Generation System

There is also a need for a common tool set
for federation developers. This tool set
could provide facilities for coordinate
conversions, external object discovery and
tracking, and attribute update regulation.
For example, as a result of our federation
development we had several different
implementations of methods for discovering
and tracking objects external to a given

object in the exercise. This redundancy
could have been eliminated if such a tool kit
had been available. Integrators of legacy
and other types of systems who do not want
to use the tool kit code would not be
required to do so. On the other hand,
developers of new models could use
common routines for tasks like coordinate
conversion to produce more accurate
results. For example, in our federation we
shared a common set of coordinate
conversion routines.

Human Interface Issues

The Virtual Strike Battle Station (VSBS) and
the Imaging UAV Ground Control Station
(GCS) are the two human-in-the-loop
federates in our exercise. The architecture
of both federates is similar in that the
HLA/RTI functionality is separated from the
human interface. This separation allows the
human interface to operate somewhat
independently from the RTI. For example,
if either of the federates were required to
operate in a DIS exercise there would be
only minor changes in the human interface
modules. The HLA/RTI process would
simply be replaced by a DIS
communications process.

Virtual Strike Battle Station: The VSBS
human interface (VSBS-HI) consists of a
VR4 CiberMaxx head-mounted display, a
Sense 8 pinch data glove, and an
Ascension Flock of Birds magnetic position
tracking system. These components
together with the Sense 8 WorldToolKit
simulation engine hosted on an SGI Reality
Engine are the core of the user interface.
Voice recognition is accomplished using the
Kersweil Voice software package on a
Pentium-based PC. The VSBS-HI receives
images of the Strike Manager console from
the Strike Manager process. These images
are incorporated into the virtual
environment as hanging two-dimensional
displays. The displays are updated regularly
to provide situational awareness as the
exercise unfolds. The user initiates actions
by gesturing with the data glove or speaking
voice commands. The gesture and voice
recognition interfaces translate these
actions into messages that are sent to the
RTI and Strike Manager processes for
interpretation and processing.

The VSBS-HI constrains the federation to
execute in real time because the human

operator naturally perceives and acts on
data in real time. Similarly, the Imaging
UAV Ground Control Station (GCS)
requires real-time federation execution. In
addition, the GCS places a much higher
data-rate requirement on the federation
members because it requires the operator to
view, interpret, and act on real-time video.
User interaction with the GCS is achieved
through the Interactive Visualization
Interface.

Interactive Visualization Interface: The
Imaging Unmanned Aerial Vehicle (UAV)
Ground Control Station (GCS) emulates a
Predator UAV payload operator station.
The payload operator in the real-world
system controls the sensor, pointing angles,
and zoom factor of the sensor package.
The operator requires immediate feedback
through the video generation system when a
control is activated. For example, when the
operator presses the "pan" button, the
display should pan immediately. Real-world
delays are an exception and should be
modeled accurately.

More to the point of a distributed interactive
simulation, a surface object under
surveillance should move smoothly and
realistically over terrain. It must not be
allowed to "fly," "tunnel," or "teleport."
Given the fact that some simulations will not
generate updates at the required frame rate
for smooth animation (approximately
twenty-four frames per second), an
interpolation or extrapolation technique is
required. (See Reference [2]) By slightly
delaying the rendering of data, linear
interpolation may be used instead of
extrapolation, thereby removing issues
associated with inaccurate extrapolation of
future events. This delay must be small
enough (e.g., 100 milliseconds) so that
there is no performance bias introduced into
the simulation. In addition, the extrapolated
positions must be adjusted further to
constrain the objects to the terrain altitude.

Human Interface Lessons Learned:
Incorporating a human interface into an
HLA-compliant distributed simulation
presented several challenges. While not as
restrictive as a hardware-in-the-loop
simulation, real time performance issues
had to be addressed.

One of the design rules enforced for HLA-
compliant simulations with complex user

interfaces was the concept of separation
between the user interface and the HLA/RTI
interface. Separate processes and/or
threads should be used to allow smooth
updates of the user interface data without
being tied to the HLA/RTI “tick” loop. This
allows the user interface to update at an
independent rate from the HLA/RTI “tick”
loop. Without this separation, small delays
in the RTI or other federates can cause jitter
in visualization renderings. Sudden jumps
in object positions can be filtered or
interpolated to produce smoothly moving
imagery. (See Reference [2])

CONCLUSION

Summary

This HLA-compliant simulation addressed
several issues involved with use of the RTI
in a real-time, human-in-the-loop situation.
A hierarchical federation containing fifteen
(15) instantiated classes was used to
investigate two time-critical power-
projection scenarios. The simulation was
distributed over several JHU/APL laboratory
facilities connected by a secure fiber optic
network. Real-time visualization hardware
and virtual reality workstations provided the
human-in-the-loop elements (UAV Payload
Operator and Command and Control
Operators) to the simulation. Several
lessons learned are presented and
suggestions for future HLA/RTI tools are
made as follows:

-- Establish a scenario and FOM early
in the development process

-- Use the FOM as a coordination
mechanism throughout the
development process

-- Establish a generic federation
ambassador template for use by all
federates

-- Utilize object-oriented coding
methodologies to implement
federate ambassador

-- Investigate possibility of automated
code generation techniques for
federate ambassador template

-- Separate user interface processes
from HLA/RTI interface processes

Future Work

Future related efforts could include the
following:

-- Incorporating a Synthetic Aperture
Radar model into the Imaging UAV
simulation

-- Expanding the threat simulations to
improve the realism of the threat
behavior

-- Formalize the FOM for inclusion in
the Modeling and Simulation
Resource Repository (MSRR)

REFERENCES

[1] Lutz, Robert, “HLA Object Model
Development: A Process View,”
Presented at Simulation
Interoperability Workshop, March 3-7,
1997

[2] Lin, Kuo-Chi, et. al., “Smoothing of
Dead Reckoning Image in Distributed
Interact Simulation,” J. Aircraft, Vol.
33, No. 2, 1995, pp. 450-452

