USER MODELING FOR MILITARY TRAINING:
INTELLIGENT INTERFACE AGENTS

Sheila B. Banks, Martin R. Stytz, Eugene Santos, Jr., and Scott M. Brown

Artificial
Virtual

Intelligence
Environments

Laboratory
Laboratory

Department of Electrical and Computer Engineering
Air Force Institute of Technology
Wright-Patterson Air Force Base, OH 45433

INTRODUCTION

The current state of operation for users within a
distributed virtual environment (DVE), especially those
for the military training community, places an
unmanageable cognitive burden upon the user. The
user must attempt to understand the environment,
which may contain thousands of both real world and
synthetic components; extract relevant information from
this complex environment; and, within a fixed time
frame, analyze the information determined to be
relevant. However, the user’s purpose is typically to
make decisions based upon the relevant information.
Because the information is difficultto locate and has a
short time period of relevance, human decision making
necessarily suffers. While some advances in user
interface design can alleviate some of this problem, the
basic problem of information overload cannot be
addressed simply through development of a better
interface or with the use of ad hoc decision support
tools.

Current intelligent user interface (IUI) research is
primarily focused on human-computer interaction issues
related to the abilities and usability of interfaces. Thus
far, research to enable intelligent interfaces has
minimally addressed the development of a basic
knowledge structure suitable for representing the
interface intelligence required to make the complexity of
DVEs transparent to the user. Current intelligent
interfaceagents lack the representational complexity to
manage the uncertainty and dynamics involved in
predicting user intent and modeling user behavior. Our
work was undertaken to overcome these shortfalls.

An accurate cognitive model of the user is considered to
benecessary foreffective prediction of user intent. The
problem with most cognitive models for intelligent user
interfacesis that they rely upon rule-based intelligence
structures. Rule-based representations for current
intelligent user interfaceslack flexibility and power in
two key areas: representation of uncertainty and
dynamic user modeling. Employing a knowledge
representation that correctly captures and models
uncertainty in human-computer interaction can improve
the modeling of the user and the user interface’s
behavior. One representation that is ideal for
representing uncertainty is a Bayesian Network (BN).
A BN is a mathematically sound portrayal of

uncertainty that models the probabilistic relationships
between items. Bayesian techniques have attractive
properties for developing interface intelligence because
they can capture uncertainty, which is required to model
human intent. Also, Bayesian techniques are extremely
useful in predicting future events. Finally, these
techniques are wuseful for expressing qualitative
relationships (causalities) among beliefs and for
processing these relationships in a way that yields
intuitively plausible conclusions.

To investigate and evaluate the use of BNs for
intelligent user interfaces, we developed an intelligent
agent called the Intelligent Interface Agent (IIA) that
uses a model of user behavior to predict future user
behavior or user intent and to suggest adaptations. An
intelligent agent is a computer entity that collaborates
with and helps a user. The roles of an intelligent agent
include perception of dynamic conditions in the
environment; action to affect the environment; and
reasoning to interpret perceptions, solve problems, draw
inferences, and determine actions. These intelligent
agent roles support the needs of intelligent user
interfaces. For the intelligent agent to fulfill its roles, it
must have the ability to reason. The reasoning
capability is enabled by the following activities:
collecting domain metrics, transitioning metrics into a
representation, storing information, and inferencing over
the stored information. These actions work together to
provide the DVE participant with an environment where
the user interface can make intelligent decisions and
enhance the decision making process of the user.

This paper will first provide the motivation and
background for our current effortsand then present the

knowledge representation for ITA that supports effective
user intent prediction by incorporating the ability to

model both the uncertainty in user intent and dynamic

user behavior. The proof of concept of IIA has been
implemented and the paper will also present the results

of the implementation and the viability of the IIA. We

also address the incorporation of this intelligent

interface agent into modern user interface technology

within a military training DVE. Finally, we will draw
conclusions from the current IIA design and

implementation and present promising avenues for
future research in the development of an intelligent

interface agent using Bayesian Networks.

BACKGROUND

It is widely agreed that basing decisions on an accurate
cognitive model of the user is important for effective
prediction of user intent and that the interfaceshould be
able to collect and model information about false
inferences [15, 24]. Collecting such data is cognitively

and computationally difficult. DeWitt notes that not all

naturalistic (i.e., observable) properties play an
interesting role in a user’s causal model [5]. That is,

only certain observable actions and information in a
user’s “world” will have relevance to that user.

Therefore, to effectively and efficiently capture user
intent, our model should not attempt to model every
possible action the user may exhibit, but only those

that are relevant, i.e., most likely to be exhibited.

Many research intelligent interfaces use rule-based
intelligence [6]. Rule-based representations, like those
used in most intelligent user interfaces, fail in two key
areas: representing uncertainty and dynamic user
modeling. The use of “probability modules” [25] is an
ad hoc approach to determining answer reliability or
uncertainty. Furthermore, the addition and deletion of
rules to dynamically model a user is ad hoc. Therefore,
knowledge representations that can dynamically capture
and model uncertainty in human-computer interaction
can improve the modeling of the user and user interface
states in an intelligent user interface. One knowledge
representation that is ideal for representing uncertainty
is a Bayesian Network (BN)' [3, 16]. A Bayesian
network is a mathematically correct and semantically
sound model for representing uncertainty that provides a
means to show probabilistic relationships between
items.

An intelligent agent is a computer entity that
collaborates with and helps a user by perceiving
dynamic conditions in the environment; acting to affect
conditions in the environment; reasoning to interpret
perceptions and solve problems; drawing inferences; and
determining actions [1, 10]. The roles of an agent
match the roles of today's intelligent user interfaces:
knowledge-based interaction, self-adaptation, and
automatic generation [17]. Self adaptation involves the
intelligent interface improving its own performance
based on perceived and stored behavior. Automatic
generation takes place when the interface uses its
existing knowledge base to generate an interfacethat is
particular to the current state of the knowledge base.
An intelligent interfaceagent supports development of
compact, portable intelligence that is independent of a
particularapplicationinterface.

The PESKI environment is an intelligent system
designed to develop intelligent systems [18]. PESKI is
an integrated knowledge-based system framework that
combines the functions of natural language interface,

I See http://www.afit.af.mil/Schools/EN/AY/ for an
excellent resource on Bayesian Networks.

knowledge base inferencing, explanation and
interpretation, and knowledge acquisition and
maintenance into a single, consolidated application.
PESKI integrates the following closely interrelated, yet
specialized tools: (1) Intelligent User Interface, (2)
Inference Engine, (3) Knowledge Acquisition, (4)
Knowledge Base Verification and Validation, and (5)
Data Mining. The PESKI environment was used for
our initial tests concerning the implementation and
usability of the Intelligent Interface Agent.

INTELLIGENT INTERFACE AGENT
REPRESENTATION

The overriding goal for our prototype intelligent user
interface development was to assist the user with
managing the complexities of a software system through
the use of intelligence techniques. The intelligent user
interface also provides access to the software system
tools and applications within the prototype intelligent
system environment.

The intelligent user interface is based upon an
intelligent interface agent (ITA) architecture [8]. The IIA
controls the communications and intelligence aspects of
the interface and is composed of three layers: the
adaptation layer, the adaptive layer, and the
communications layer. The adaptation layer manages
and tracks all adaptations the user makes to the IUIL
The adaptive layer communicates directly between the
IIA and the interface presentation to perform interface
initiated adaptations to the IUI based on perceived user
behavior. Finally, the communications layer controls
the various modes of communication available to the
interface such as structured text, graphical manipulation,
and natural language.

ITA employs a knowledge representation and a domain
metric protocol to manage intelligence to satisfy the
intelligent interface requirements mentioned previously.
The basic representation for the 11A’s knowledge is a
Bayesian-based network called the Interface Learning
Network (ILN). Because user behavior is not
deterministic, using an uncertainty-based network
representation for user behavior is appropriate. This
representation can portray a large amount of information
using a small collection of interface domain metrics.
The second element of the IIA’s reasoning ability is a
domain metric collection protocol. These metrics are
called interface domain metrics. Interface domain
metrics can be any type of data that a user interfacecan
collect from the application domain or the user at
runtime. The number and type of interface domain
metrics collected is solely based on knowledge required
for user interface reasoning. Information about the
application domain can be acquired from a single
interface domain metric or combinations of different
types of metrics. The collected interface domain
metrics then need to be transformed into meaningful
information. In IIA, this transformation includes

updating the information maintained in the interface
learning network. As a result of this continuous update
of domain metric data, when the user interface agent
must make a decision, the agent can draw upon the
most recent knowledge stored in the ITA’s network.

The IIA unique representation dynamically captures and
models user behavior and dynamically captures and
models uncertainty in the agent's reasoning process.
ITA has the ability to alter its own topology to better
adapt itself to modeling a particular user. IIA's sound
semantics and mathematical basis enhance its ability to
make correct, intelligent inferences about the user's
needs.

The Interface Learning Network

The Interface Learning Network (ILN) is the heart of the
ITA architecture. The Bayesian network knowledge
representation captures, stores, and models user and
interfacebehavior. The network is composed of two
semantically different nodes: interface learning nodes
and interfaceinformation nodes. The network is also
composed of containers that store learned user and user
class behavior data and a network communications
facility.

Interface Learning Node. Semantically, the interface
learning node represents behavior the interface has
collected about a particular system user or class of
users. This node is named according to the behavior
collected. Each node’s probability is stored as a
fraction. The denominator of the fraction represents the
number of learning occurrences that affect the node. The
numerator of the fraction represents the number of
learning occurrencesthat add to the truthfulness of the
node (i.e., a higher probability).

After the node is instantiated, the interface learning
network loads stored data about the current system user
into the interfacelearning node. Whenever the system
user exhibits behavior represented by the node, the
interfacewill call the node's update method to record
the behavior.

Interface Information Node. Semantically, the
interface information node represents a possible user
state. Each interfaceinformation node is supported by
two or more interfacelearning nodes and zero or more
interfaceinformation nodes. The node sits “dormant”
until the interface queries it for its probability, in order
to make inferencesas to the user’s future state, which
may be interpreted as future user action or intent.
When queried, the node combines the probabilities
using Bayes Theorem. The resulting probability
represents the probability the node’s state is true. This
node is named after the state it represents.

Dynamic Interface Learning Networks

The networks used currently [7, 8, 9] are pedagogical
examples. While they represent the concepts and
advantages of using BNs as a knowledge representation

in intelligent user interfaces, they represent only a
microcosm of the entire system and the possible actions
a user may perform while using the system. A brute
force method to creating an interface learning network to

represent the user’s actions is to have a single node for
each action possible in the system. This ILN could
potentially have thousands of interface information
nodes and approximately as many interface learning
nodes. This approach, creating a node for every
possible action in our system and allowing this node’s

dependencies to be connected, provides exact
representation and the most accurate representation of
the possible actions a user could performat any time.

However, there are two main problems with this

approach. First, since our user will rarely if ever
exhibit certain actions, the probability of certain nodes
will be very small. When combining probabilities,

these “irrelevant” probabilities can have the effect of
ignoring the relevant node’s probability. In DeWitt’s

terms, these actions are not “causally efficacious.”
Secondly, it is well known that belief propagation in
BNs is NP-hard [4]. Therefore, an approximation to

our network that models only relevant nodes and is a
good tradeoff between computational complexity and
representation exactness is desired. This requirement
necessitates a dynamic ILN structure, where we add and
remove relevant nodes in our ILN. However, the
methodology to determine what nodes are relevant can
bedifficult.

Methodology. As mentioned previously, there are
computational limits of modeling every possible action
the user may perform as an ILN. However, for any
given user, that user will only display a subset of all
possible actions during a given interaction with the
system. Yet, the subset of possible actions may be too
large to use as a basis of a complete ILN. Therefore, we
must restrict our interface learning network further.

There has been much research in the field of
approximating BNs [4, 19]. Current techniques revolve
around stochastic simulation, Likelihood Weighting,
and Logic Sampling. Since a user will only exhibit a
subset of all possible actions, we only allow a total of
the N most relevant nodes to be present at any time in
our network. When a user performs an action, this
action may or may not be represented in the ILN. Ifit
is, we update the network and calculate the new
probabilities. Ifit is not, we modify the existing ILN
topology. In our current implementation, we limit the
number of nodes allowed in the user’s ILN at any time.
If the user performs an action that is not represented in
the current network, we add a node representing that
action to the network. If we have reached our network
size limitation, we delete the lowest probability node
from the network. In this way, the most relevant and
highest probability nodes are present in our network at
all times.

Metrics. Using this methodology for dynamically
changing a user’s ILN, we now must find the best

method to represent a particular user and ensure the
resulting ILN is truly representative of our user. We
define several objective metrics (versus subjective
usability comparisons addressed later in this paper) that
give us insight into the performance of our ILN.
Observation of these metrics give us insight into both
the effectiveness and efficiency performance of our
network.

Absolute thrashing is the result of an observable
property, represented as a node, repeatedly entering and
leaving the relevancy set. We are concerned with
adding a node to the interfacelearning network only to
have it never queried and leave the network some time
later.

User thrashing occurs when a user’s intent and the
system’s measure of intent, as represented by the
interface learning network, swings from one extreme to
another. We also desire to avoid thrashing of the
system’s measure of user intent so we can make
accurate predictions of the user’s intent. As a concrete
example, consider an aunt who is known to have drastic
mood swings. You are aware of this, and develop ways
of observing her current behavior to find a promising
way of approaching her. You never vary your approach
drastically.

Rate of divergence is a measure of how quickly a node
leaves the interface learning network. We are concerned
with ensuring a node that was added to our network,
but is not used often, will exit the network quickly and
allow more useful nodes in the relevancy set.

Class thrashing is the result of a user who is
diametrically opposed to the user class and, as a result,
the network initially does not represent a user well.
Consequently, the network must “learn back” a user’s
behavior. This type of thrashing not only affectsthe
user by making incorrect inferences, but affectsthe user
class where the misplaced user is currently a member.

Rate of convergence is how fast past observed behavior
is overcome by changes in current behavior and how
quickly the probability of a node will settle out to a
particular value. This measure is important in
conjunction with class thrashing. We desire to know
how fast a network will allow a user to overcome past
behavior. For example, a user may exhibit a particular
behavior for a “long” time and then suddenly change
behavior, perhaps as the result of some new stimuli in
the user’s environment. A fast rate of convergence will
quickly allow the user model to overcome the past
behavior and accurately model the current behavior.

USER MODELS AND USER INTENT

Determining how to construct a network to accurately
model a user is difficult at best. Furthermore, once we
have built a user model, how do we modify it to more
accurately model a user? Two main schools of thought
exist on the construction of user models. The first uses
“hand-coded” user models. That is, the system

designer determines how best to model the users by
constructing the user models a priori. Examples of
“hand-coded” user models include Jameson [11] and
Maes [12]. Hand-coded user models are typically
static. Once they are designed, they will not change
structure. The second method uses “machine-coded”
user models. That is, a user model is constructed by
the system as it “learns” more about the user. These
models are dynamic where the structure changes over
time. Jameson [11] and Harrington [7] provide
examples of dynamic user models. Both methods have
advantages and disadvantages; however, we are
concerned with issues that impact both hand and
machine-coded user models. These issues are discussed
below.

Relevancy and User Intent

As mentioned previously, to accurately predict user
intent, we must have an accurate cognitive model of the
user. Fortunately, modeling every possible naturalistic
property in the user’s world does not lead to the most
accurate model [5]. If this were not the case, we would
have little hope in using numerical uncertainty
management techniques such as Bayesian Networks due
to the computational inefficiency of large networks [18].

DeWitt users the term “causally efficacious” to describe
naturalistic properties that play an interesting causal
role in cognitive functions [5]. He argues that not
everything observable is of interest when we make
decisions. DeWitt’s philosophical argument has direct
analogy in user models. As mentioned previously, a
user model should not include every possible piece of
information about the user’s world. To include
information not causally efficaciousto a user model
needlessly complicates the model both semantically and
computationally. In other words, the less causally
efficacious a property is to another, the more likely it is
we can ignore it.

We use the term relevancy set to describe those
properties, represented as nodes, included in a user’s
interfacelearning network. Relevancy set and ILN are
used interchangeably; however, the network fully
captures the causality of the model (nodes, arcs, and
probabilities), while the relevancy set only captures the
nodes in the network. For hand-coded models, the
relevancy set will not change. For machine-coded
models, the relevancy set may change with use. A
relevancy neighborhood are those properties that are
immediately causally efficaciousto the decision under
consideration. ~As an example, a user’s interface
learning network may contain the possible
communication modes and tools a user may use, given
the user’s class and individual preferenceslearned by
the user’s interface learning network, as well as several
knowledge bases used previously.

The current implementation of our IIA uses a dynamic
interfacelearning network that monitors “hand-coded”

user actions [2]. That is, we determine a priori the
actions we will monitor to limit the number of user
actions that must be evaluated in the system. IIA,
while currently incorporating some “hand-coded”
model features, is a dynamic structure that allows the
dynamic addition and deletion of nodes as IIA learns
more about the user. We limit the number of nodes
allowed in the user’s interfacelearning network at any
one time. If the user performs an action that is not
represented in the current relevancy set, we add it to the
network. If we have reached our current network size
limitation, we delete the lowest probability node from
the network. This method ensures the most relevant
actions are in our relevancy set at any given time.

User Classes

A user class is a generalization of a number of users
sharing common characteristics. User classes have been
used in a number of systems for various reasons [11,
12]. For example, the prototype implementation of IIA
within PESKI segregates users into the following user
classes: application users, application experts,
knowledge engineers, and computer scientists [7]. User
classes serve two main purposes. New users to the
system will have their individual interface learning
nodes set to the most uncertain probability. However,
user class information learning nodes will contain
probabilities of the class to which the user belongs.
Therefore, the user class helps bias the agent initially
towards this class. As the user works with the system,
the preferences are captured in the individual user
interface learning nodes and IIA makes better
predictions concerning the user’s intent. Analogously,
a real-world personal assistant can not be expected to
accurately predict an employer’s actions the first day.
However, based on previous employers with similar
backgrounds, the personal assistant attempts to
determine what information the employer will need and
when. As the assistant learns more about the
employer’s behaviors, beliefs, and intentions,
prediction becomes more accurate. Secondly, by
collecting user class data, system designers can
determine what communication modes, tools, etc. are
being used by a particular class. This information can
then be used systematically to motivate future
improvements to the system.

Several problems can arise from user classification.
First, a user may belong to more than one user class.
For example, consider the computer scientist concerned
with both the development of the intelligent system
(requirements, design, implementation, maintenance)
and the knowledge engineering of that system. As the
user works with the system, some of the actions are
best categorized by the computer scientist class, while
others are best characterizedby the knowledge engineer
user class. Both the user and the user class may suffer
as a result. Another major problem is the
misclassification of users. IIA within PESKI allows the

user to select the user class when using the system for
the first time. If this user determines the user class
incorrectly, it is possible that the actions may be
diametrically opposed to those of the class in which the
user has placed himself. Once again, both the user and
the user class suffer. We desire to minimize these
problems by identifying when they occur.

The Correction Model

This section addresses when and how to dynamically
change the wunderlying reasoning mechanism(s)
employed by IIA. We have developed several
discriminators for determining when a particular
problem is occurring in the network. Each
discriminator is associated with a different metric
presented previously (e.g., class thrashing, absolute
thrashing) and has an associated method to correct the
problem (e.g., changing the user’s class, slowing the
rate of divergence) and a utility value. This utility is a
measure of the discriminator’s “importance” with
respect to the impact it has on correcting the learning
network so it makes more correct suggestions.

The scenario for having a discriminator suggest changes
to an incorrect interface leaning network is based on the
concept of a contractual bidding process, where the
discriminator with the highest utility “wins” the
contract to correct the network. We model each
discriminator as an agent. These agents engage in a
“bidding process” to recommend changes to the
interface learning network. = A manager agent is
responsible for determining when a contract is available,
announcing the contract to be filled, receiving bids from
the bidder agents, evaluating the utility of the bids, and
finally accepting or rejecting the bids based on their
utility.

A contract announcement is made when a correctness
metric is below an empirically chosen threshold. This
metric is an exponentially smoothed average of the
number or correct suggestions to the total number of
suggestions made by the interface agent. Bids are made
by the bidder agents. When the manager agent has
received all bids or the contract announcement has
expired, the manager determines the bidder agent with
the best bid, represented by the highest utility, and
awards the contract by allowing this bidding agent to
effect its changes to the network.

The utility is based on the correctness metric’s
magnitude of improvement if the changes were
implemented at some point in time prior to the
correctness metric falling below the threshold and the
agents’ past effectivenessin providing changes to the
network. The manager evaluates the utility by making
the proposed changes to the “oldest” interfacelearning
network stored in the history. Then, for each
suggestion made to the user, the manager determines
what the new suggestion(s) would be, based on the
bidder agent’s proposed changes and any evidence

stored in the history. The utility is then simply the
number of correct suggestions to the number of
suggestions made over the history. This utility is
multiplied by the bidder’s effectiveness. The agent’s
effectiveness is updated by simple reinforcement
learning, where the “winning agent” receives positive
learning. The reinforcement learning takes into account
those bidder agents that are determined to be “helpful.”

We can adopt any number of bid strategies. Currently,
the negotiation protocol function and negotiation
strategy are defined generally the same as Muller [13],
which is a sealed-bid, single award strategy. That is,
the other agent have no idea what “price” (utility) the
other agents are bidding.

USABILITY STUDY OF IIA

Use of the ITA does not necessarily ensure a usable
interface for a software system. Therefore, usability
testing is required. Usability has been shown to be a
prime factor in determining the user acceptance of
interaction devices and the form of interaction [14]. In
traditional usability studies, a series of interface
prototypes coupled with user evaluation are usually
necessary to determine the final design. Our work
pioneers the application of usability concepts and
metrics to the design and evaluation of an intelligent
interfaceagent rather than to merely the interface. To

simplify initial testing procedures, these IIA usability
studies were conducted within the PESKI environment.

Usability testing

ITA usability testing was performed with standard
time/step analysis and user feedback sessions. There
were four tests used to evaluate the usability of the
interface intelligence. The first test quantifies
procedures the user must follow to get work done. User
acceptance of the interface intelligence is captured in the
second test. The third test measures the responsiveness
burden the intelligence places on the interface. The
final test examines how closely the model actually
represents user intent. Harrington, et. al. [9] gives
detailed results concerning the usability study and
includes the following information: study sample size,
data collected for physical work requirements, surveys
and data collected for acceptance and responsive testing,
and measurements taken from the interface intelligent
network for accuracy testing.

Physical work requirements and results. Collecting
data about the physical work a user is required to do is
one way to evaluate the usefulness of the interface
intelligence. Physical work requirements such as
keystrokes, menu selections, reading, and button
presses were collected for a user operating the interface
intelligence. The current implementation of the IIA
makes suggestions pertaining to what system function,
communication mode, and file the user wants to access
at system startup. Our results show that using the

ITA’s suggestions yields a considerable savings in
physical work for the user.

Acceptance testing of the IIA and results. User
acceptance data was collected by exposing a number of
users to the interface intelligence and eliciting user
opinion on a written survey. We conducted a pilot user
acceptance study for the IIA. The test results are
divided into three general areas: timeliness of
operations, complexity of operations, and usefulness of
the I1A.

Users were generally satisfied with the timeliness of
operations, although they seem to find the automatic
operation perform by the IIA slightly slower than
manned performance of the same operations. Users
generally found the IIA to be useful, although these
results are most probably influenced by the results for
user opinion on timeliness and complexity.

Responsiveness testing of the IIA and results.

Responsiveness of an interface is an important criteria
for interface users because it indicates how well the
interface helps the user accomplish tasks. Our testing of
the responsiveness of the interface was based on user
opinions and empirical data. The user opinions are
collected in a manner similar to that for user acceptance
data and empirical data is taken by collecting real time
data during interface functions that are influenced by the
interface intelligent network. Together, these data
provide a good indication of the acceptability of the
intelligent user interface's responsiveness.

The results of the responsiveness study for the IIA
indicate that IIA creates some user noticeable pauses.
The pauses arise from update calls to the inferencing
mechanism and execution calls for the graphical
communication mechanism. The user acceptance study
shows that users found the pauses noticeable but
acceptable.

Accuracy testing of the user model and results. A
study of the IIA's ability to predict future user behavior
is necessary to determine if the IIA accurately models
user intent. This can be accomplished by observing the
dynamics of the agent's suggestion generation
capabilities when given a set of test cases that mimic
user behavior. Two representative test cases used for
this researchto explore the accuracy of the user model
were single focus and double suggestion.

The first test evaluates IIA’s ability to rapidly adapt to
auser’s change in preferences between two options. In
the single focus case, the probabilities of two interface
network nodes are tracked through the case of a user
change of preference. The user begins by selecting the
Data Mining function and, after the initial 15 times, the
user switches preferenceto the Inference Engine. For
this case, only the function suggestion is evaluated.
The results of this test are shown in Figure 1. These
results show the IIA's ability to adapt to the user's
change in preference. In this case, the IIA is able to

respond in only two iterations to the change in user
behavior.

User is Using Data Mining (UDM) sing Inference Engine(UIE)

1.00 . UbM:
0.90
0.80
010
0.60
Probability 050K
040
0.30
0.20

0.10

0.00
0 35 40

Figure 1: Overcoming Evidence to Adapt Single
Focus Case.

The double suggestion test case differs from the
previous in that the focus of the user is on a
combination of suggestions that may include filename,
system function, and communication mode. A
combination or double suggestion must be completely
true for the user to acceptit. In this case, the user’s
first 10 selections are for the Inference Engine function
with Text Communication and filename “Full5.bkb”
and then switches preference to the Knowledge
Acquisition function with Graphical Communication
and filename “Afit.bkb.” The results of this test are
shown in Figure 2. These results show the IIA's

ability to adapt to the user's change in preferences.

Also, the acceptance and rejection of suggestions,
especially the rejection of suggestions that are partially
but not fully correct, affectthe probability distribution
throughout the network.

k)

User
with UFB)

n(UGC)

UKA/UGC and UAB become
primary suggestions

Probability

10 15 20 25 30 35 40

Figure 2: Overcoming Evidence to Adapt Double
Suggestion Case.

Usability Results

The usability testing performed for ITA indicates great
promise for this interface intelligence agent. The
mathematical accuracy and ability of the IIA to model
user intent show the appropriateness of applying
Bayesian techniques to intelligent user interfaces. The
responsiveness, work, and user preferencestudies show
that the technique is acceptable, but requires refinement

in responsiveness. Finally, the ability to capture
uncertainty through Bayesian techniques has immense
value to the accuracy and dynamics of IIA's predictions.
The usability testing also shows that the intelligent
user interface can adapt its suggestion based on changes
in the user's behavior. This supports the claim that the
ITIA does model user intent. However, the test results
also show the changes occur only gradually.
Additional accuracy testing also highlighted that
misuse of the ITA can lead to an inaccurate model.

INCORPORATION OF ITA INTO A
MILITARY TRAINING DVE: SIRDS

An ideal DVE interface for the military training
environment would enable the user to perform a wide
variety of useful work without hindering the observation
of the virtual environment. The interface would provide
convenient access to virtual environment display
parameters, analysis outputs, conferencing and
collaboration capabilities, intelligent agents, motion
and orientation controls, and situation awareness aids.
The interface would also allow the user to directly
manipulate objects within the virtual environment and
provide familiar interface mechanisms.

To achieve these objectives, we require a
comprehensive software engineering, knowledge
engineering, and knowledge acquisition methodology
for Symbiotic Information Reasoning and Decision
Support (SIRDS). The name for the methodology is
descriptive of our intent. The interface should be
symbiotic, that is work tasks should be appropriately
partitioned between the computer and the user. The
computer requires the user to provide guidance and
insight into the information that is necessary and to
draw complex, or high level, inferencesfrom the data.
The user, on the other hand, looks to the computer to
perform data acquisition and management, low level
quantitative and qualitative data analysis, and routine
inference to enable decision support, as well as to
manage the data and its display. A symbiotic approach
is necessary because the objective is to let the user and
the computer share the taskload. The key interface
design question is identifying a human-centered task
partitioning between the computer and the human. The
Information Reasoning component of the interfacedeals
with the issues related to abstracting and analyzing
information. The Decision Support aspect relates to the
need to enable the user to understand the relevant data
and to perform necessary analysis to allow the system
to provide information highlighting and user focus of
attention support.

Achievement of SIRDS requires the development of an
adaptive, intelligent, learning man-machine interface.
SIRDS addresses a wide range of cognitive issues, as
well as data fusion, ambiguity resolution,
representational mapping, mixed initiative dialogue,
and other agent and data visualization factors that must

be considered. Construction of the interfacerequires a
mix of traditional human-computer interaction, data
visualization, and intelligent agent capabilities within a
software engineering framework. The framework
supports the symbiosis of human cognition and
computational power required to deal with complex
DVEs. Intelligent agents are a key aspect of SIRDS,
and they perform information fusion, analysis, and
abstraction, as well as deriving information
requirements and controlling information display.
Agents within SIRDS are of two types, one for the task
of reasoning to direct system data acquisition,
assessment, and information synthesis; and the other for
reasoning about information display. However, the
same software architecture and development
methodology is employed to realize both types of
agents.

In addition to performing information retrieval and
analysis, SIRDS relies upon information visualization
techniques to enable the user to understand the derived
information and available processing options. To
maximize user effectivenessin an information dense
environment, SIRDS also operates in anticipation of
user information needs. To do so, SIRDS must first
ascertain user information requirements, initiate data
retrieval operations, and assist with analysis of the
resulting relevant information.

The first step toward realizing this vision is the
development of a design methodology for intelligent
agents for the control of information display and for
providing user assistance in the integration of and
access to information. In our view, the development of
agents for information display should be performed in
parallel with the design and development of the
traditional aspects of human-computer interaction and
information presentation. To be comprehensive, the
methodology must address information representation
and visualization by the interface agents, the software
design of these agents, usability criteria for agents, and
metrics for determining the necessary agents for interface
control.

We have begun to address these needs by developing
various prototype systems within our Labs. The
Information Pod [20] addresses the need for a user
interface software architecture and the Sentinel [21] the
need for information integration and analysis. The
Intelligent Interface Agent (IIA) addresses the need for
determining user intent and intelligent information
presentation. IIA is integrated with the Information Pod
and Sentinel projects to produce an intelligent user
interface to a DVE. The Synthetic BattleBridge (SBB)
[22] virtual environment project, which uses DVE
technology [23, IEEE 1278-1993] to achieve a
complicated, purposeful virtual environment, is the host
military training DVE application for SIRDS. We
believe that our approach is scaleable in breadth and in
depth across the required elements of software
architecture; intelligent information integration and

analysis; and intelligent information presentation and
user modeling.

CONCLUSIONS AND FUTURE WORK

In this paper we described the knowledge representation
necessary for user modeling and for the prediction of
user intent to create an adaptive distributed virtual
environment user interface. This intelligent agent, IIA,
provides an effectiveknowledge representation for user,
user class, and interface behavior. The use of Bayesian
networks over rule-based systems to accurately model
the user better captures the uncertainty of user actions
by using sound semantics and a firm mathematical
basis. Initial tests show noticeable savings in the
user’s physical workload while accurately predicting
users’ behavior. We have presented several metrics that
provide an insight into the performanceof our network.
Furthermore, the momentum of learned behavior in one
direction can be reversed and changed to another
direction of behavior quickly.

The research undertaken arises from the vision that
DVEs provide a potentially revolutionary means for
humans to interact with each other and with computers
within a military training environment. However, to
achieve this potential, techniques that allow users to
accomplish a wide variety of work and communication
within a DVE must be developed. Our approach to an
adaptive user interface for virtual environments, SIRDS,
provides one means to allow users effectiveaccess and
use of the virtual environment and its data. Prototypes
within SIRDS development have shown capabilities in
a wide range of issues that includes user intent
inferencing and user model. These capabilities form the
basis of a self-consistent, adaptive, learning interface
system for virtual environments.

Future efforts propose a dynamic meta-level of
inferencing, capable of modifying the user’s ILN
topology as the user performs actions. To realize this,
we must be able to determine “real-time” what is
happening with the user. Most usability studies are
done “off-line” and have no immediate bearing on the
user model. In addition, the ability of this network to
model user behavior can be expanded by designing the
interface to understand the user behavior. For example,
if the interface measures patterns of indicator swings the
interface may begin to classify these patterns. The
interface may then be able to assign patterns to user
traits, such as moods. The incorporation of temporal
reasoning into this representation would allow the
interface to predict user traits based on the patterns [26].

REFERENCES

1. Baecker, R. M. and others. Readings in Human-
Computer Interaction: Toward the Year 2000,
Second Edition, San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1995.

10.

11.

12.

13.

14.

15.

16.

Brown, S.M., Harrington R.A., Santos, E. Jr., and
Banks, S.B. “A dynamic Bayesian intelligent
agent,” Proc. of Interfaces ‘97 - Man-Machine
Interaction, Montpellier, France, May 1997, pp.
118-121.

Charniak, Eugene. ‘“Bayesian Networks without
Tears,” AI Magazine, Winter:50-63, 1991.

Cooper, G.F. “The computational complexity of
probabilistic inference using Bayesian belief
networks,” Artificial Intelligence, 42:393-405,
1990.

DeWitt, R. “Vagueness, semantics, and the

language of thought.” Psyche, 1993.

Gonzalez, A.J. and Dankel, D.D. The Engineering
of Knowledge-Based Systems, Englewood Cliffs,
NJ: Prentice Hall, 1993.

Harrington R. A., Banks, S. B. and Santos, Jr., E.
“Development of an Intelligent User Interfacefor a
Generic Expert System,” In M. Gasser (Ed.), On-
line Proc. of the ‘96 MAICS Conference. URL:
http://www.cs.indiana.edu/event/maics96/Proceedi
ngs/ harrington.html, 1996.

Harrington, R.A., Banks, S.B., Santos, E. Jr.
“GESIA: Uncertainty-Based Reasoning for a

Generic Expert System Intelligent User Interface,”

Proc. of the 8th International Conference on Tools
with Artificial Intelligence, Toulouse, France, 16 -
19 November, 1996, pp. 52-55..

Harrington R. A., et al. The PESKI Intelligent
User Interface. Technical Report AFIT/EN/TR96-
03, Department of Electrical and Computer
Engineering, Air Force Institute of Technology,
1996.
Hayes-Roth, B.
intelligent systems,”
72:329-365, 1995.
Jameson, A. “Numeric uncertainty management in
user and student modeling: an overview of
systems and issues,” User Modeling and User-
Adapted Interactions, 5, 1995.

Maes, P. “Agents that reduce work and
information overload,” Communications of the
ACM, 37(7):811-821, 1994.

Muller, J.P. “A cooperation model for
autonomous agents.” In J.P. Muller, M.J.
Woolridge, and N.R. Jennings (Eds.), Intelligent
Agents III: Agent Theories, Architectures, and
Languages, Proceedings of the European
Conference of Artificial Intelligence ‘96 Workshop,
August, 1996, pp. 245-260.

Nielsen, J. Usability Engineering, Cambridge,
MA: Academic Press Professional, 1993.
Opperman, R. “Adaptively supported adaptivity,”
International ~ Journal of Human-Computer
Studies, 40:455-472, 1994.

Pearl, J. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, San
Mateo, CA: Morgan Kaufmann, 1988.

“An architecture for adaptive
Artificial Intelligence,

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Puerta, A.R. “The Study of Models of Intelligent
Interfaces,” In Proceedings of the 1993
International Workshop on Intelligent User
Interfaces, 1993.

Santos, E. Jr., and Santos, E. Sr. Bayesian
Knowledge-Bases, Technical Report
AFIT/EN/TR96-05, Department of Electrical and
Computer Engineering, Air Force Institute of
Technology, 1996.

Santos, E. Jr., Shimony, S.E., and Williams, E.
“Hybrid Algorithms for approximate belief
updating in Bayes nets,” International Journal of
Approximate Reasoning, to appear, 1997.

Stytz, M.R.; Banks, S.B.; Kesterman, J.J.;
Rohrer, JJ; and Vanderburgh, J.C.
“Requirements, Design, and Implementation of the
Information Pod Interface,” Proc. of the 7th
International Conference on Human-Computer
Interaction, San Francisco, CA, 24 - 29 August
1997, to appear.

Stytz, M.R. and Block, E.
awareness assistance to users
dynamic, complex virtual environments,”
Presence: Teleoperators ~ and Virtual
Environments, 2(4):297-313, Fall 1993.

Stytz, M.R., Block, E., Soltz, B., and Wilson, K.
“The synthetic battlebridge: a tool for large-scale
virtual environments,” IEEE Computer Graphics
and Applications, 16(1):16-26, January 1996.

Stytz, M.R. “Distributed virtual environments,”
IEEE Computer Graphics and Applications,
16(3):19-31, May 1996.

Thomas, C.G. “Design, implementation, and
evaluation of an adaptive user interface,”
Knowledge-Based Systems, 6:230-238, 1993.
Winston, P.H. Artificial Intelligence, 3rd Ed,
Reading, MA: Addison-Wesley, 1992.

Young, J.D. and Santos, E. Jr. “Introduction to
temporal Bayesian networks,” In M. Gasser (Ed.),
On-line Proc. of the ‘96 MAICS Conference.
URL: http://www.cs.indiana.edu/event/maics96/
Proceedings/Y oung/maics-96.html, 1996.

“Providing situation
of large-scale,

