
Abstract -
Developing an Automated Documentation Environment

PATRICIA MESSIER ADAMS

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

ORLANDO, FLORIDA, USA

A vast amount of data is generated in the production of modern software systems such as training
systems, requiring well-monitored yet heretofore time-consuming maintenance and configuration
management. The paper’s premise is that development and management of software documentation for
training systems can now benefit from the utilization of recently innovated automated documentation tools
and CASE tools. Tools now at the disposal of the industry have the ability to automate document
generation and management for integration within a distributed environment. The time and thereby cost
savings associated with such automation is incalculable.

An example is demonstrated using the development of Software Development Folders (SDFs) for the
Joint Simulation System (JSIMS) Enterprise. The SDFs, considered prototypical for Build 0, were created
and refined using an Enterprise-selected document automation tool, in conjunction with a modeling CASE
tool. The document automation tool facilitated the insertion of script commands to document various
types of data associated with the object-oriented Categories and Classes. The tools’ capability to so
“link” to diverse data in a distributed environment is further augmented by utilizing hyperlink capability and
Internet Web directories. Such ability to automatically gather distributed information provides a training
audience with “at-a-glance” views of specific documentation. Pertinent data can be accessed in real time
from just one source.

Using an automated system is advantageous simply because the data can be updated on a requisite
basis without the obvious risk of missing some crucial piece of the puzzle. Automation allows training
participants to more fully concentrate on their lesson activities without the necessity of opening many
sources to ensure they are in possession of the latest data. Of greatest consequence, however, is not
the automation itself, but the potential widespread usage of available technology to enable such a
networked system.

Biographical Sketch -

Ms. Adams is highly specialized in software documentation, with particular expertise in those produced by
MIL-STDs 498, 2167A and 1644B. Extensive experience in the publications field has afforded her numerous
topics with which to work, with emphasis on software development manuals and guides for F-18 simulated
aircraft maintenance trainers. In addition, she developed curriculum materials to facilitate training in C-7 and
C-11 aircraft carrier catapults. She is presently a member of the Joint Simulation System (JSIMS) Mission
Space Objects (MSO) Integrated Product Team (IPT) based in Orlando, Florida, USA. The Software
Development Folders generated and maintained by Ms. Adams for MS0 Categories and Object Classes
were created with scripts she wrote using tools enabling the automated generation and update of the folders.
She is a member of the JSIMS Enterprise Process Group (JEPG) and the SAIC Software Engineering
Process Group (SEPG).

Developing an Automated Documentation Environment
PATRICIA MESSIER ADAMS

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

ORLANDO, FLORIDA, USA

OVERVIEW

Documentation for training software systems
has heretofore been burdened with vast
amounts of data requiring well-monitored yet
time-consuming maintenance and
configuration management. Development and
management of software documentation for
training systems can now benefit from the
utilization of recently devised automated
documentation tools and CASE tools. In
recent months, the facilitation of such
management through automation has been
examined with regard to such newly innovated
document automation tools as well as the
utilization of Internet Web sites for automated
data updates within a distributed environment.
As an example, Software Development
Folders (SDFs) for the Joint Simulation
System (JSIMS) Build 0 were developed
using an automated documentation tool
created for a word processing application in
conjunction with a modeling CASE tool. The
modeling CASE tool creates a “Model”
containing Categories and Classes and their
respective documentation and appropriate
diagrams. The automation tool extracts such
pertinent data from the Model and creates a
document comprised of “links” to the actual
work products amid a textual environment.
Any automated features not readily provided
for by the automation tool and not residing in
the Model are generated using hyperlink
capability and Internet Web directories.

THE CASE FOR AUTOMATION

The grea tes t advantage to us ing an
automated system is, simply, that the data
can be updated and managed on a requisite
basis without the obvious risk of missing some
piece of the puzzle. Automation allows
training participants to more fully concentrate
on their lesson activities without the necessity
of opening many sources to ensure that they
are in possession of the latest data. The
training audience can access a full set of

continually updated information on a given
Class or Category, for example, a Sensor
Category. In an automated environment, the
Model is modified by the developer wherever
it resides. In turn, the documentation
manager has merely to regenerate the
appropriate SDF and the updated data will be
automatically included. Such ab i l i t y to
automatically gather distributed information
provides a training audience with “at-a-glance”
views of specific documentation. Pertinent
data can be accessed in real time from just
one source.

CONTENTS

The SDFs, as a case in point, exist as
electronic media, albeit in a word processing
file. In this case, the majority of the data is
available on-line only, since it can be
accessed solely through “links” to the actual
work products, such as the model itself,
hyperlinks to Web pages (or files), source
code files, test cases, the System Problem
Report (SPR) system, etc. The data
contained therein can exist as a composite of
each of the Categories and their decomposed
levels at given points in time to enable the
preservation of historical data. The SDF
manager and, later, the training manager
have only to make a copy before
regenerating.

MaINTENANCE

SDFs are captured at end-of-build points and
can thereafter repose in a Web-based
document management system that allows
them to be saved as documents that can fulfill
contractual requirements. Formatting
anomalies may arise as a result of the
conversion and need to be corrected.
Additionally, the management system allows
restricted access to the documents, so that
only persons such as QA, the SDF manager,
the IMS manager, and a designated customer
representative can view them during their

2

inception. Such restr icted access is
necessary given the proprietary and/or
classified nature of the source code and other
products. Thereafter the training audience
would have access to the SDFs to flesh out
their understanding of the training process.

SDFs can also be maintained, throughout the
Build cycle, in the same Web-based
document management system, although the
SDF manager, in this case, must be also
given “write” privileges to enable incremental
document regeneration. The unique nature of
SDFs necessitates explicit project-specific
provisos which outline how validation will
proceed and at what intervals the SDFs are to
be configured.

CONSTRUCTING THE DOCUMENTS

Documentation automation tools often provide
various pre-smithed templates which may give
the documentation manager an idea of how to
proceed. In this case, none of the templates
were utilized as originally devised, requiring
significantly more tailored scripts. Although
such tailoring of templates requires a great
amount of toolsmithing, in the end the
automat ion process makes the ef for t
worthwhile. A template assures that
documentation can be standardized across
training systems, projects, teams, et al. The
Software Development Plan (SDP) could be
the definitive authority on document
organization; any documentation required by
a project follows the plan explicitly.

Automation tools insert, at the manager’s
prompting, a series of commands which
“instruct” the word processing document to
traverse to the selected Model and extract
specified blocks of data. The commands are
not “links” per se, since they do not
automatically update whenever the Model is
updated. Updates occur only when the
document is generated or regenerated.

ADDING TO THE TEMPLATE

necessarily residing in the Model, e.g. source
code, test cases, SPRs, review minutes, etc.
In that case, the word processing application
enables the insertion of hyperlinks that can
connect to this data. Updates to such sites
would necessitate privileges being to those
who need to make the changes. Ideally, the
sites wi l l be Web-based to faci l i tate
communication between the office PC (where
the automated documents reside) and the
software development environment (where
source code and test cases would reside).
Otherwise an inordinate amount of time
copying files will be required, defeating the
purpose of an automated environment.

Links can also be added which point to
documentation required for specific exercises
associated with a given Class or Category.
The greatest advantage is that, during
training, the student can access all data
required via one single file, a file essentially
created and managed by the push of a button.

GENERATING THE DOCUMENTS

It is suggested that a minimally populated
Model be utilized to test the scripts, one that
contains, at the very least, the features that
need to be extracted. Upon generation, a file
separate from the template is created, called
<filename>Gen.doc. The template remains
as originally created and can be used
limitlessly. Thus, when a Class template is
created, it can be utilized for each Class
residing in the Model. Likewise, when a
Category template is created, it can be utilized
for each Category in the Model.

When the test is concluded with no errors,
then the template can be generated utilizing
the definitive Model.

Similarly, other types of document templates
can be utilized cross-product teams with their
respective Models. It is simply a matter of
entering into the command what Model needs
to be used. Again, the templates need to be
tested with mini-models prior to actual
generation with the team’s own model.

Other kinds of data might be necessary to
include in the documentation. For example,
SDFs contain additional requisite data not

MAINTAINING THE DOCUMENTS

The intervals at which regeneration needs to
be enacted are project-specific decisions. In
JSIMS’ case, Build 0 was a prototype, and
SDFs were generated as an exercise in
developing the automated environment.
Ideally, the SDFs should be captured as
preliminaries when Classes and Categories
have been defined, and finalized after
integration, when the code shou ld be
considered a final product. Any changes
made thereafter are documented through
SPRs in the DDTS system, and automatically
updated in the SDFs through the hot link to
that Web-based system. At this point the
documentation is contro l led by the
configuration management system. The
configuration manager would assume the
primary responsibility of managing the
documentation and ensuring that it is made
readily available to the pertinent training
audience. The time savings involved with
automating the previously labor-intensive
update process increases productivity, making
the updates quick and less likely to contain
erroneous data. There are cost and time
savings implications of real-time updates.

IDENTIFYING MILESTONES

Project-discretionary milestones can be
identified to capture “snapshots” of the
documentation. These milestones could be
design reviews, peer reviews, and/or
management reviews. Similarly, the project
may define coordination or synchronization
points at which certain software products are
expected to be completed and captured in the
documentation. If a project is designed as a
series of builds with phases contained therein,
then identification is required of what phases
would be yielding what products and whether
those products require documentation
updates. In each case, the designated
documentation manager should be included in
the review, coordination point, or phase
identification process to expedite the updates.

CONFIGURATION MANAGEMENT

Typically, documentation is updated when
products are configured (controlled) by
configuration management and thereby
archived in the CM library. When data will be
regenerated and captured is determined by
the project design and is a management
decision; some do not configure products until
certain phases and/or coordination points are
completed, yet documentation updates are
crucial. A dynamic project that generates
products and product updates at accelerated
intervals would require the documentation
updates to occur at regular intervals as well
without waiting for review, coordination points,
or phase completion. The “Preliminary/Final”
recommendation fits nicely into this scenario:
SDFs established, initially generated with a
sketchily populated Model, configured as a
“Preliminary.” Thereafter, updates occur as
the development process unfolds, until after
integration, when the “Finals” will contain a
fully populated document which are
dynamically current for the training system.

SECURITY AND STORAGE

The archival of documentation differs
according to the sensitivity of the data
contained therein. SDFs, for example,
contain source code which, whi le not
necessarily classified, still are of a proprietary
nature that would require security provisions.
Storing the documents on a Web-based drive,
preferably an FTP (File Transfer Protocol)
site, is ideal: visible links need not exist and
privileges given only to those who need to
view/manage them.

SUMMATION

Investigating which automated documentation
tools exist and which would operate at
optimum capacity is a matter of examining
what the in i t ia l software development
environment will contain, i.e., what platform,
what software applications are presently at
disposal, and what is stipulated by the
contract. On occasion, one tool is preferred
over another but is constrained by the
operating system. The selection of a tool that

can function on multiple platforms is always
preferable. That way, if the software
environment changes, the tool is flexible
enough to change with it.

For developing an automated documentation
environment, the primary focus should be on
the automated na tu re o f the data
management and to maintain that integrity
throughout the development process,
constantly ensuring that all avenues are
utilized and exp lo red . Of greatest
consequence, however, is not the automation
itself, but the potential widespread usage of
available technology to enable efficient
management of a networked training system.

	1A:

