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ABSTRACT

Although embedded training has become the preferred approach for training military forces, it is
surrounded by a variety of technical challenges.  The Inter-Vehicle Embedded Science and Technology
(INVEST) Science and Technology Objective (STO) program explores technologies required to embed
simulation in combat vehicles.  One of these requirements is to provide a simulation environment in which
computer generated forces, manned simulators, and live vehicles may interact in real-time. Unfortunately,
providing this geographically distributed and untethered real-time interaction is severely limited by the
communications requirements imposed by the need to convey large amounts of data between the
respective players.   By extending the concept of Distributed Interactive Simulation (DIS) dead-reckoning,
a vehicle movement method, to the behavioral level, this limitation may be mitigated.  The Vehicle Model
Generation and Optimization for Embedded Simulation (VMGOES) project at the University of Central
Florida is focusing on this aspect of the INVEST program. This paper presents the specifications and
development process of VMGOES.
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INTRODUCTION

The combination of computer simulation and
networking technologies has provided the U.S.
military forces with an effective means of training
through the use of Distributed Interactive
Simulation (DIS).  DIS is an architecture for
building large-scale simulation models from a set
of independent simulator nodes (Smith, 1992) that
represent one or more entities in the battlefield
simulation.  By communicating over a network via
a common protocol, these entities are able to exist
simultaneously and interact meaningfully in the
same virtual environment.  Currently, however, the
ability of live vehicles to interact with these
simulated forces in the virtual world is constrained
by the communication requirements needed for
real-time interoperability.  Eliminating or reducing
this impediment would enhance military training in
a number of ways.   For example, it would
diminish the costs associated with having live
vehicles travel to maneuver ranges for live
exercises.  Also, by shifting more of the training to
operational units, it would reduce the costs
associated with the training schools.  In essence,
the military could rely less on formal school-house
training, more on deployable training systems, and
fundamentally make training more readily available
on an “as-needed” basis.

To accomplish these objectives, the Department
of Defense has recently initiated an effort to
determine how embedded training and advanced
simulation technologies could be used to
overcome the obstacles surrounding this
technology.  One problem, for instance, is that in
order for a driver of a live vehicle to train in a
virtual domain, he must be able to traverse the
artificial/virtual terrain.  Correspondingly, he must
be able to see the other live and virtual entities on
the virtual battlefield and interact with them in real
time.  To accomplish this, the embedded training
systems must sustain the transfer of massive
volumes of data.  Unfortunately, the networking
and communications limitations of currently fielded

systems make the transfer of this data using
current DIS supported techniques a strenuous
task.

Current forms of DIS dead-reckoning are viewed
as vehicle movement methods that are used to
reduce DIS packet traffic.  By communicating a
given vehicle’s location, velocity and acceleration
to other DIS simulators, the models residing on
these simulators can predict the unperturbed near
term physical location of the vehicle. In the event
that this vehicle begins to deviate from its
predicted path, the simulator responsible for
creating the entity will send out an update of the
vehicle’s true location to the other simulators.
Thus, the predictive utility of the dead-reckoning
model is pivotal to the success of network traffic
minimization.

The requirement to transfer enormous volumes of
data coupled with the communication limitations of
currently fielded systems makes using currently
existing DIS methods an inadequate approach.
Bahr and DeMara (1996) suggest that extending
the concept of DIS dead reckoning to the
behavioral level may reduce DIS traffic more than
merely applying DIS dead reckoning to vehicle
movement tasks.  Figure 1 illustrates the DIS dead
reckoning concept applied to embedded training
and simulation.  As indicated by Figure 1, this
concept requires the distributed processing of
multiple vehicle models because every live or
simulated vehicle is represented by a model and
every model is resident on every vehicle.  The
vehicle model (VM) serves to predict the actions of
the vehicle it represents.  When the actions of the
vehicle are consistent with the actions predicted
by the vehicle’s model, all of the copies of that
vehicle’s model are correctly reflecting the live
vehicle’s actions. In this instance, the interaction
between the other vehicles and the vehicle model
in the virtual world is an accurate representation of
the vehicles’ interactions in the real world.
However, if the actions of the vehicle are not
consistent with the actions predicted by the
vehicle’s model, the copies of that vehicle’s model



are not correctly reflecting the live vehicle’s
actions.  In this instance, the interaction between
the other vehicles and the vehicle model is not
consistent with their real world interaction.

As indicated in Figure 1, a system that extends the
DIS dead-reckoning concept to the behavioral
level requires the identification of discrepancies
between the behavior of an actual vehicle and that
vehicle’s model.  The portion of this system that
identifies and classifies these discrepancies is
referred to as the Difference Analysis Engine
(DAE) in Figure 1.  By comparing the state of the
vehicle model with the state of the actual entity,
the DAE identifies whether discrepancies in the
behavior as well as the position exist.  If there are
discrepancies, the DAE determines whether an
update is necessary and what that update should
be.  The types of information provided by the DAE
are specified in a future section of this paper.

Figure 1.  DIS Dead-Reckoning Approach
Extended to Behavioral Level

This paper offers a framework for the development
of the VM and the DAE.  Also, this paper
addresses the integration of the two components
into the full system known as Vehicle Model
Generation and Optimization for Embedded
Simulation (VMGOES).

SCOPE OF MODEL

Frequently, DIS simulations use computer
controlled combatants known as Computer
Generated Forces (CGFs) to populate the
battlefield.  The behavior of a CGF may be
generated by a human operator assisted by
software, in which case the class of CGF is
referred to as a semi-automated force (SAF) or
generated completely by software, in which case
the class of CGF is referred to as an autonomous
force (AF).   The behaviors generated by CGFs
are based on doctrine and represent a wide
variety of tasks with a reasonable level of detail.
Because these behavioral models are fashioned
entirely by doctrine, they emulate standard
procedures that are acquired from declarative
knowledge (i.e., manuals and interviews) and
provide a range of feasible behavior.  However,
these models of behavior provide no
representation for the 1) implicit knowledge or 2)
intrinsic performance characteristics that make
“live entities” unique from one another.  For
example, the current CGF behavioral models used
in DIS exercises may simulate the movement of a
vehicle to a given location by some standard
movement model, but they do not “individualize”
that movement method by either assigning or
simulating human performance characteristics
(e.g., tendency to hug the side of the road,
propensity to maintain speed above speed limit,
etc.) to it. Thus, behavioral models fashioned
entirely by doctrine are often characterized as
yielding responses that are  “canned”,
"predictable", or “too perfect”.  However, the fact
that these behaviors are "canned" or
"preprogrammed" in no way suggests that these
behaviors are simplistic.  Prevalent SAF systems
have integrated hundreds of thousands of lines of
code to successfully emulate the command and
control hierarchy of a military unit and its operation
on the battlefield.   By providing a variety of
planned behaviors (e.g., "Conduct a Tactical Road
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March", "Attack By Fire", "Service Station
Resupply", etc.), situational awareness and
assessment, and reactive behaviors (e.g., "Breach
a Minefield", "Call for Indirect Fire", "Actions on
Contact", etc.), they have successfully provided
suitable friendly and enemy forces to populate the
battlefield.

The models to be used in this project are
conceptually similar to CGF models, but they are
distinguishable by the addition of human
performance characteristics in the model.  In other
words, whereas a CGF may emulate the selection
of a vehicle's cover and concealment position,
extending the DIS dead-reckoning concept to the
behavioral level requires the prediction  of the
vehicle's actual cover and concealment position.
This necessary increase in detail for the VM
coupled with the research oriented nature of this
project, limits the initial efforts for VMGOES to an
exercise smaller in scope than one may find in a
typical DIS exercise.

The exercise used in VMGOES centers around a
Blufor M1A2 tank platoon or section performing a
Tactical Road March and executing an Actions on
Contact task in response to a potential enemy
threat (i.e., an Opfor T-72 platoon, section, or
vehicle).  A variety of control parameters can be
modified by the VMGOES model users. This
allows the users to more fully exercise the model
to evaluate its ability to generalize. These
parameters are categorized in two groups: (1) task
parameters and (2) operational parameters. These
parameters and their permissible ranges are
defined below.

Task parameters that may be changed by the
evaluators are expressed by task. These tasks
include Tactical Road March and tasks related to
Actions on Contact maneuvers.

Tactical Road March Parameters

Tactical Road March parameters that may be
modified include the route and march rate.

Route - may be defined within the constraints of
the assumptions/conditions (listed under
Assumptions section).

March rate - must be defined within the
acceptable limits of the march rates delimited in
simulation.

Actions on Contact Parameters

Rules of engagement is the only parameter that
may be modified to influence this task.
Rules of engagement - may be initialized as
free, tight, or hold to either all or none of the
Blufor M1A2 entities.

Operational Parameters

The following operational parameters may be
changed in a VMGOES exercise:

Terrain - area where scenario is executed within
constraints of the Assumptions section

Blufor Unit Size - tank section or tank platoon

Opfor Unit Size - single vehicle, tank section or
tank platoon, and

Opfor Unit Location - positioning (location and
direction) of Opfor unit

Assumptions

Lastly, the following conditions/assumptions will
apply to the exercises considered by VMGOES:

1. Terrain does not include bodies of water (e.g.,
lakes, rivers, swamps or ponds).

2. Model does not simulate Command
Overrides, Fragmented Orders, or other
externally initiated changes in orders.

3. Opfor (T-72 vehicles) operate according to
defaulted behavior of simulation unless
specified otherwise for a scenario.

4. Blufor units should begin exercise on route,
have heading directed towards end of route,
and be oriented closely parallel to its position
on the route.

5. Manned module always represents the lead
tank (i.e., platoon leader).

6. There will be no modifications to terrain (e.g.,
obstacles or minefields).

7. M1A2 may not initiate calls for support (e.g.,
indirect fire).

8. The section of terrain east of Barstow Road
and west of Hill 720 in the NTC-0101 terrain
database will be used for development and
tests.

9. The simulation's environmental factors (e.g.,
weather, tactical smoke, etc.) will not change
during a scenario.



10. Tactical Road March tasks may only be
assigned to terrain where the road is
observable.

MODELING PARADIGM

To develop the vehicle model, VMGOES is using a
machine learning technique known as Learning by
Observation (Gonzalez, et al, 1998).  This
technique facilitates the development of
intelligent, computational models of human
behavior.  Although a relatively new concept in the
discipline of machine learning, Learning by
Observation has been successfully used in a
variety of highly complicated, real-world tasks.
Pomerlau (1992), for example, used Learning by
Observation in the development of an
Autonomous Land Vehicle In a Neural Network
(ALVINN).  In this project, Pomerlau trained a
neural network to drive a vehicle through a one-
lane road under ideal environmental conditions.
Moreover, this network was able to generalize its
training to perform satisfactorily in two-lane as well
as in dirt roads, and under adverse environmental
conditions (snow, rain, etc.).  Expanding on this
work, Pomerlau et al. (1994) have developed
“smart” vehicles as part of Advanced Research
Projects Agency's (ARPA's) Unmanned Ground
Vehicle (UGV) program, intended to reduce the
need for human presence in hazardous situations.
These vehicles are capable of driving themselves
at speed up to 55 mph for distances of over 90
miles on public roads.  Moreover, they are capable
of driving both during the day and night, driving on
a variety of roads, avoiding obstacles, and even
performing parallel parking.

With respect to the vehicle models in this project,
Learning by Observation will be used to learn
human decision making skills (e.g., reactive
transitions, route planning, selection of cover and
concealment) and low-level human control
strategies (e.g., route following, scanning, etc.).
Ultimately, these behaviors will be learned through
the observation of a human expert tank
commander.  However, as a preparatory step,
VMGOES is currently developing a VM prototype
by learning these behaviors through the
observation of a ModSAF M1A2 entity.  In other
words, instead of using a human as the expert
whose behavior is learned, VMGOES is initially
using a ModSAF entity as the “expert” whose
behavior is learned.  This prototype model is
referred to as VMModSAF.  It is anticipated that this

prototype work will assist in the identification of
technical issues that may arise in the second
phase of the study and ultimately, will increase the
likelihood of successful results in the final system.

VMGOES DEVELOPMENT

In addition to using ModSAF to supply the M1A2
"expert" entity from which VMModSAF will learn, the
ModSAF system is being used to provide the
simulated environment in which the vehicle
models interact.  This allows VMGOES researchers
to focus on the development of accurate behavior-
based models as opposed to the implementation
issues pertaining to vehicle simulation (e.g.,
physical modeling, weapons modeling, network
interface, etc).  The VM is embedded in ModSAF
and receives input data consistent with sensory
information obtainable from the controls and
display systems resident in an M1A2.  The VM
output contains the commands and parameters
needed to control the vehicle's motion and
weapons' execution.  The DAE, alternatively, runs
as a separate process and receives input from both
the vehicle model and the (live or simulated)
master vehicle's interface.  In both the VMModSAF

and the vehicle model derived from the human
expert (VMMM), this interface supplies sensory
information and dead-reckoning type data
pertinent to the given model's behavior.  This is
also true of the interface to the (live or simulated)
master vehicle.  Once it receives these inputs, the
DAE identifies whether discrepancies exist
between the vehicle models and the master
vehicle and sends out the necessary updates.
The updates sent out by the DAE contain one or
more of following four types of information: 1)
position, orientation and other basic dead-
reckoning information 2)   model parameter
information, 3)   behavior enumeration, or 4) action
enumeration.  Examples of updates containing
these types of information are provided in the
following section.

Software Engineering Model

As illustrated in Figure 2, VMGOES has adopted
an Incremental Model (Schach, 1993) software
engineering process.  Using this type of model,
the product is designed, implemented, integrated,
and tested as a series of thirteen incremental
builds, where each build is represented by a
numbered circle.  Also, each build consists of code
pieces that interact together to provide a specific



functional capability.  For the most part, the stages
down the left-hand column of Figure 2 represent
the VM builds and the stages across the bottom
two rows represent the DAE builds as they are
integrated with the VM.  Of the two rows
representing the DAE builds, the top row
represents the development cycle of VMGOES
using a ModSAF entity as the “expert”, and the
bottom row represents the development cycle of
the VMGOES using the human expert.  Finally,
the integration of the two components (VM and
DAE) occurs at the intersection of the column and
rows.

Figure 2.  VMGOES Development Model

The thirteen VMGOES model builds presented in
Figure 2 are enumerated and defined below
according to their functional divisions.  Builds 1
and 2 can be described as:

1. Train VM1 to replicate reactive behavior
context transitions by observing a ModSAF
M1A2 CGF entity.  In this build the reactive
behaviors are enumerated as a part of the
training set.

2. Train VM2 to replicate reactive behavior
context transitions by observing a ModSAF
M1A2 CGF entity.  In this build the reactive
behaviors are not enumerated as a part of the
training set.

In both Builds 1 and 2, a ModSAF M1A2 entity
serves as the "expert" from which knowledge is
acquired.  Also, both models resulting from these
builds focus on the acquisition of knowledge
pertaining to unit level reactive behaviors.  VM1

and VM2 are both trained with data containing

sensory information (input).  The difference,
however, is that the output data used to train VM1

includes the reactive behavior enumeration,
whereas the VM2 model does not have access to
this enumeration.  As a result, VM2 must
additionally employ some strategy to infer the
reactive behavior type that should be associated
with a given input vector or cluster of vectors.
This second build better reflects the actual task at
hand: to learn behaviors from a human expert.  In
other words, since the human expert will not be
verbalizing or enumerating his behavior, the
methodology for developing the final models in this
project must be capable of inferring what that
behavior is.  It is anticipated that methods
developed in Build 2 will assist in meeting this
requirement.

Builds 3 and 4 can be described as:

3. Train VMModSAF to replicate context transitions
and actions for VMGOES test scenarios by
observing ModSAF M1A2 CGF entity.

4. Train VMMM to replicate context transitions and
actions for VMGOES test scenarios by
observing a human expert in a M1A2 Manned
Module.

The functionality provided by both Builds 3 and 4
is specific to the VMGOES test scenarios as
defined in the VMGOES Requirements Document.
These are briefly described in the Model Scope
section of this paper.  The difference between
Builds 3 and 4 is that Build 3 uses a ModSAF
entity as the "expert", whereas Build 4 uses a
human expert.  As previously discussed, it is
anticipated that modeling strategies learned by the
VMGOES team in Build 3 will be useful in the
development of the final vehicle model (VMMM)
developed in Build 4.

Builds 5 and 6 can be described as:

5. Integrate VMModSAF with DAE dead-reckoning
control (DAEDR) to evaluate VMModSAF/DAEDR for
VMGOES test scenarios.

6. Integrate VMMM with DAEDR to evaluate
VMMM/DAEDR for VMGOES test scenarios.

Builds 5 and 6 are simply integration checkpoints
in the development cycle.  In both of these builds,
the vehicle models are being integrated with the

VM1

VM2

VMMod/ DAEDR

VMMM / DAEDR

DAECTO

DAECTO

DAEUCTO

DAEUCTO

DAEOLL

DAEOLL

1

2

3

4

5

6

7 8

9

10

11

12

13

Start

End



DAEs' basic dead-reckoning control mechanism.
This will enable the DAE to update the vehicle
model position or orientation with basic dead-
reckoning type parameters, in the event that the
VM has deviated from the path pursued by the
master vehicle.

Builds 7, 8, and 9 can be described as:

7. Train DAE context transition override control
(DAECTO) of VMModSAF to recognize context
transitions for VMGOES test scenarios. In this
build, reactive behavior transitions are
supplied as part of the training set.

8. Train DAECTO of VMModSAF to recognize context
transitions for VMGOES test scenarios.  In
this build, reactive behavior transitions are not
supplied as part of the training set.

9. Train DAECTO context transition override
control (DAECTO) of VMMM to recognize context
transitions for VMGOES test scenarios.

In general, these builds focus on the context
transition override control of the DAE.  This control
mechanism allows the DAE to update the VM's
enumerated behavior type and is used when the
DAE identifies the behavior/context of the live
vehicle as being different from the behavior
enumerated by the vehicle's model.  For example,
if the VM is performing a "Withdraw" and the DAE
determines that the live vehicle is performing an
"Assault", the DAE directs the VM to change its
behavior to an Assault.

Specifically, Builds 7 and 8 are using ModSAF as
the "expert" and Build 9 is using a human in a
manned module as the expert.  Additionally, Build
7 and 8, like Builds 1 and 2, are distinguishable
by the availability of behavior enumerations in the
output of the training set.

Builds 10 and 11 can be described as:

10. Train DAE unrecognized context transition
override control (DAEUCTO) of VMModSAF to
recognize unrecognizable context transitions
for VMGOES test scenarios.

11. Train DAEUCTO  of VMMM to recognize
unrecognizable context transitions for
VMGOES test scenarios.

Builds 10 and 11 focus on providing the DAE with
the capability to completely control the vehicle
model, when the DAE is unable to recognize what
the live vehicle is doing.  Again, Build 10 uses the
ModSAF M1A2 entity as the "expert" and Build 11
uses a human expert.

Lastly, Builds 12 and 13 can be described as:

12. Develop procedures for refining previously
trained DAEUCTO/VMModSAF off-line (adjust
DAEUCTO/VM ModSAF parameters or contexts) for
VMGOES test scenarios.

13. Develop procedures for refining previously
trained DAEUCTO/VMMM off-line (adjust
DAEUCTO/VMMM parameters or contexts) for
VMGOES test scenarios.

Once VMGOES becomes functional, it will have
access to more observational data.  Those data
may help further explain behavior.  Builds 12 and
13 capitalize on this fact by providing a
mechanism to capture those data and refine the
vehicle models.

SUMMARY

This paper described a modeling framework for
the development of a system designed to reduce
the communications bandwidth required for an
inter-vehicle embedded simulation exercise.  This
system includes a behavior model of the vehicle in
the exercise and a difference analysis engine
tasked with keeping that model synchronized with
its live counterpart.  Presently, the vehicle model
and the DAE are being developed by using a
ModSAF M1A2 entity as the "expert" from which
knowledge is acquired.  Future endeavors include
efforts to apply the lessons learned from this
phase of the study to the elicitation of knowledge
from a human expert.
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