
IMPLEMENTING VIRTUAL REALITY MODELING LANGUAGE (VRML)
TO CONVEY SIMULATION INFORMATION

Robert Anschuetz (Veridian), Charlie Jones (Veridian),
Mike Garnsey (STRICOM), Paul Dumanoir (STRICOM)

Veridian
3452 Lake Lynda Drive, Suite 215

Orlando, FL 32817
407/658-0044

{anschuer|jonesc}@orlando.veda.com

STRICOM
12350 Research Parkway
Orlando, FL 32826-3275

407/380-4340
{Mike_Garnsey|Paul_Dumanoir}@stricom.army.mil

ABSTRACT

The U.S. Army’s Simulation Training and Instrumentation Command (STRICOM) has sponsored an
initial effort to evaluate the applicability of utilizing the Virtual Reality Modeling Language (VRML)
technology in the Modeling and Simulation (M&S) community. VRML is a platform-independent,
graphical programming language used to generate images across the World Wide Web. In a sense,
VRML is a three- dimensional extension to the HyperText Markup Language (HTML). Several M&S
applications have been demonstrated thus far, with the most ambitious being a VRML stealth viewer that
combines the technologies of VRML, HTML, Java, C++, DIS, HLA, and client/server communication.

AUTHOR BIOGRAPHIES

Mr. Robert Anschuetz is a senior software engineer for Veridian and is the lead engineer for the VRML-
Enabled M&S Information Dissemination R&D project. Mr. Anschuetz holds a Master of Science Degree
in Mathematics from the University of Central Florida and a Bachelor of Science Degree in Computer
Science from Eastern Michigan University. Mr. Anschuetz has over 10 years experience in military
simulation programs.

Mr. Charlie Jones is a visual systems engineer for Veridian and is currently assigned to the VRML-
Enabled M&S Information Dissemination R&D project. Mr. Jones holds a Bachelor of Science Degree in
Computer Science from the University of Central Florida and a Bachelor of Science Degree in
Electronics Engineering Technology from the University of Southern Mississippi. Mr. Jones also has four
years of military experience with the United States Navy.

Mr. Mike Garnsey is a principle investigator in the Synthetic Environment & Technology Management
Division at STRICOM and is the government project manager on the VRML–Enabled M&S Information
Dissemination R&D project. Mr. Garnsey has over seven years of experience in military simulation
networking, protocol, and security architecture implementation; simulation system visualization research;
and intelligent simulation agent/actor technologies.

Mr. Paul Dumanoir is a systems engineer at the STRICOM Engineering Directorate, Modeling &
Simulation Technology Division. He is currently the DISAF / DWN project engineer. Prior to his
involvement with DWN, he worked as software and systems engineer on the CCTT and WARSIM
programs. His interests include dismounted infantry computer generated forces and ModSAF. Mr.
Dumanoir earned a Bachelor of Science Degree in Electrical Engineering from the University of South
Alabama and a Master of Science Degree in Computer Systems from the University of Central Florida.

IMPLEMENTING VIRTUAL REALITY MODELING LANGUAGE (VRML)
TO CONVEY SIMULATION INFORMATION

INTRODUCTION

The U.S. Army’s Simulation Training and
Instrumentation Command (STRICOM) and
Veridian are exploring potential applications of the
Virtual Reality Modeling Language (VRML) for use
in the Modeling and Simulation (M&S) domain.
This paper covers the current ongoing Feasibility
Analysis Study (FAS) concentrating on the use of
VRML in three areas: (1) as a tool to enhance the
visualization capabilities of Modular Semi-
Automated Forces (ModSAF), (2) as an aid to
navigating the Functional Description of the
Battlespace (FDB) internet-hosted database, and
(3) as a generic platform-independent distributed
simulation stealth viewer.

VRML BACKGROUND

VRML is an open graphical modeling language
that is designed to depict three-dimensional
environments across the World Wide Web. Much
like HyperText Markup Language (HTML)
documents, VRML files are human-readable,
interpreted source code viewed using a VRML
browser. VRML browsers are typically
implemented as plug-ins to Internet HTML viewers
such as Netscape Navigator or Microsoft Internet
Explorer.

Since VRML is not compiled or specifically
tailored to a specific computer or graphics board,
it is not as fast as other graphical APIs such as
OpenGL, Direct3D, or Performer. However,
where VRML shines is in platform independence
and in distributed graphics processing over the
Internet. VRML code is easy to write and has
powerful graphics building blocks built into the
language’s keyword list.

M&S VRML STUDY -- OVERVIEW

STRICOM and Veridian staff members have
focused on the following M&S areas to explore
VRML’s applicability in regards to being: (1) a tool
to enhance the visualization capabilities of
ModSAF, (2) an aid to navigating the FDB
internet-hosted database, and (3) a generic
platform-independent distributed simulation
stealth viewer.

1st Focus Area: VRML-Enhanced ModSAF

VRML was used to enhance the prototype work
that Nations had done in providing HTML links to

the ModSAF application. The HTML approach
extends the functionality of ModSAF so that when
a user selects an entity (initially limited to an AH-
64D helicopter or an M1A1 tank) in ModSAF’s
plan view display, a hyper-linked page describing
the entity is displayed within an Internet HTML
browser on the same workstation. The obvious
VRML extension to this prototype effort was to
allow the user the ability to view the entity in three
dimensions. Indeed, this capability was explored
and somewhat implemented, but some difficulties
occurred in the process.

Three-dimensional VRML models of the M1A1
and AH64 vehicles were created, and the
appropriate links were made from the HTML
pages generated for those entities. However, the
prototype ModSAF version that supported
hyperlinking to HTML pages only worked on
computers running the Linux operating system.
Unfortunately, sufficient VRML browsers had not
yet been developed for Linux at the time of the
effort. So, while the VRML concept could be
demonstrated offline on a separate PC with VRML
browser software, an integrated VRML-ModSAF
demonstration capability was not fully realized.

Several other ideas have been discussed for
future ModSAF work, including finishing the
implementation of the hyper-linked three-
dimensional entity information, providing a three-
dimensional courseware package for the ModSAF
user and developer, and providing three-
dimensional previews of entity movements.

2nd Focus Area: VRML-Enhanced FDB

VRML was also used to enhance the FDB system
with three-dimensional support. The FDB is a
repository for simulation developers to access
simulation information such as documents,
algorithms, and vehicle specifications. The FDB
is accessible through password control at Error!
Bookmark not defined. .

Some of the data currently residing on the FDB
cannot be easily represented in the two-
dimensional world of HTML. Using a three-
dimensional representation of the data enables
the user to visualize several objects of the FDB
much more intuitively. Demonstrating key
aspects of the FDB with VRML focuses more on a
user-based, rather than content-based, approach

distribution. For example, the FDB contains a
document repository that represents several
categories of documents. The document
repository has been represented in VRML as a
“virtual library” with bookshelves housing different
types of documents. The user is able to traverse
down the isles of the library and select a document
much like a person would in the real world.

Several other VRML applications for the FDB will
be explored, including allowing the user to preview
a terrain database before downloading, enabling
the user to view a vehicle and its parts in three-
dimensions, and providing a three-dimensional
tutorial of the FDB’s purpose and content.

3rd Focus Area: VRML Stealth Viewer

The rest of this paper will be devoted to the
discussion of the development of a DIS/HLA
compliant VRML stealth viewer. The impetus for
developing this VRML stealth viewer was to
determine and demonstrate the strengths and
weaknesses of VRML as a three-dimensional
visualization tool for distributed simulation
exercises. Based on insights gained from the first
two focus areas, the project team set out to
develop a VRML stealth that would minimally
provide the user the ability to navigate around a
simulation database, view live entity updates, and
allow the user to hyperlink from certain features or
objects within the database to areas which would
provide additional information. Most importantly,
the computer that ran the VRML stealth
application would not have to be pre-loaded with
any simulation software or databases, and could
be any computer platform outfitted with an Internet
browser and VRML plug-in.

But why use VRML? As indicated earlier, VRML is
not intended for dynamic rendering of complex
“out-the-window” views at high frame update rates.
However, even with the current generation of non-
optimized VRML browsers, three-dimensional
navigation through fairly large and complex VRML
virtual environments is achievable with marginal
but adequate performance on personal computers.
Additionally, VRML provides compelling support
for attaching or ‘hyper-linking’ augmented content
to any arbitrary three-dimensional object or feature
in the displayed view. Finally, while features such
as platform independence, three-dimensional
graphics, and internet-friendly user interface are
not the unique domain of VRML, it is important to
note that such capabilities are realized in VRML in
an open, standards-based modeling language
f ramework ve rsus a Java, c/c++, etc.
programming language implementation.

That said, the culmination of this phase of the
project was the live technology demonstration
involving a link from the VRML stealth viewer
located at STRICOM’s Engineering Computer
Resource Center (ECRC) to the Advanced
Distributed Simulation Technology II (ADST II)
Dismounted Warr ior Network (DWN) user
experiments at Ft. Benning’s Land Warrior Test
Bed (LWTB) in July, 1998. The DWN user
experiments explore the maturity level of the
Individual Combatant (IC) class of simulators by
networking four virtual IC simulators with the
dismounted infantry version of ModSAF called DI-
SAF.

Figure 1 shows how the various components were
pieced together to form the DWN experiment
VRML stealth viewer.

Simulators

The DWN simulators communicate using the
Distributed Interactive Simulation (DIS) 2.04
protocol to send and receive Entity State, Fire,
Detonation, and Collision PDUs. Soldiers operate
the four virtual IC simulators forming a fire team,
while a Semi Automated Forces (SAF) operator
controls three additional fire teams composed of
12 SAF individual combatant entities. During the
user experiments, the four fire teams work
together to assault and clear a building occupied
by a sniper, which is controlled by human-
operated desktop simulator. The DWN simulation

12 SAF individual combatant entities. During the
user experiments, the four fire teams work
together to assault and clear a building occupied
by a sniper, which is controlled by human-
operated desktop simulator. The DWN simulation
takes place on the McKenna Military Operations
on Urban Terrain (MOUT) database.

The DIS PDUs from the LWTB DWN experiments
were sent to the ECRC lab using the Defense
Simulation Internet (DSI) link. The DIS PDUs
were then run through an HLA Gateway to convert
the PDUs to HLA packets sent to the Run-Time
Infrastructure (RTI). An HLA interface module
subscribed to data from the RTI, and passed the
data to a server. Finally, users were able to
connect to the server through an HTML browser
with VRML and Java applet support to render the
stealth visuals on the client machine.

Database Conversion

The first task involved in writing the VRML stealth
was developing a VRML database which could be
used in the stealth application. One standard
visual database used in military simulation
applications is the Multigen .FLT format. A .FLT
database of the McKenna MOUT facility already
existed, so it was only necessary to find a
translator which would take the .FLT format and
convert it to .WRL.

The Multigen Creator tool for Windows NT
provided such a .FLT to .WRL translation
mechanism. The Creator tool allowed the
database to be read in as .FLT format, and
exported as .WRL. Unfortunately, external
references abound in simulation databases
(typically, a separate file is used to describe each
building and cultural feature in the database), and
the VRML export feature in Creator didn’t handle
this properly. The secret was to convert all
external references to embedded references, and
save the file out as a giant superset of all the
external references. In addition to the main VRML
file, texture files were also necessary to form the
complete database. In order to speed up initial
download time, the textures were cut down in size
without loss of detail through a graphical editor.

Once the database file was created, it was tested
on a 233 MHz PC using Netscape Navigator and
CosmoPlayer plug-in. At this point it was
apparent that the VRML database had far too
many polygons and used too much texture
memory to run anywhere close to the target 5-10
Hz update rate that would be tolerable. So, the
.FLT database was loaded back into Multigen

Creator and trimmed by more than half down to
roughly 1000 polygons. The database was then
reconverted to VRML with acceptable results.

The database coordinates of the .FLT and .WRL
files are not the true Geocentric coordinates of the
McKenna MOUT site. Instead, the database
coordinates have the origin at the lower left corner
of the database. Therefore, a coordinate
conversion was necessary when receiving entities
from the DIS entities, which broadcast their
coordinates in Geocentric units.

In addition to the database, the moving models
that represent the entities in the simulation were
also developed in VRML. Several VRML models
were constructed to depict ICs in various postures,
such as standing, kneeling, crouching, prone, and
dead positions. An animated walking model was
also developed. Models of generic tanks, planes,
and helicopters were also developed to populate
the database.

HLA Gateway and RTI

The LWTB, located in Ft. Benning, GA, was
networked to STRICOM’s ECRC facility using the
DSI link. This high-speed connection allows DIS
PDUs to rapidly be exchanged between both
locations. The DIS data was received at
STRICOM and then converted to the HLA protocol
using the HLA Gateway application (Version 2.1)
developed for STRICOM by the Institute for
Simulation and Training (IST). As a side note,
HLA was chosen over DIS as the implementation
target for the VRML stealth application since the
Department of Defense (DoD) is migrating from
DIS to HLA for all future simulation systems. The
selection of the overarching simulation protocol is
a secondary matter, however, since the VRML
stealth application actually converts the simulation
protocol data to a more streamlined form of data
for efficient client/server VRML connectivity (to be
discussed shortly).

The HLA gateway uses a standard Federation
Object Model (FOM) to convert DIS data to a form
recognizable by the HLA RTI. The Gateway
provides the transformed DIS data to the RTI as
the other federates subscribe to the data. The RTI
executive application used for this effort was the
RTI 1.0 Release 3 distribution implementing the
HLA Interface Specification 1.1 for SGI Irix 6.2
operating system and SGI C++ 7.1 compiler.

VRML Server HLA Interface Module

The HLA interface module for the VRML stealth
server application was written using C++ on a
Windows NT platform. This HLA interface module
makes use of the HLA RTI library calls to
subscribe to the data published to the RTI by the
HLA Gateway software. The VRML stealth server
is a passive federate in that it subscribes to but
does not publish any data. As the HLA interface
module receives the data from the LWTB DWN
systems, it updates its list of active entities and
makes the necessary manipulations to the data for
communication to the VRML stealth client(s).

Several data-limiting assumptions were made to
increase the efficiency of the stealth viewer. For
instance, since the focus of the entities in the
DWN experiment were with individual
combatants, the HLA interface subscribes to the
country, category, subcategory, etc. of the various
entities, but uses this information only to
determine a general entity type – tank, plane,
helicopter, or individual combatant. Also, since no
simulation management (SIMAN) PDUs were
used in the DWN experiments, the SIMAN data
was ignored. The primary data that was required
from the RTI was the entity identification, entity
type, entity position, entity orientation, entity
velocity, entity life form state, entity damage state,
and firing interactions.

VRML Stealth Viewer Server

The next piece of the puzzle was to write a Java
client/server application that allowed users to log
into a computer, seamlessly download the
McKenna MOUT database and entity models, and
bring up the VRML browser to allow the user to
navigate the database and see the simulation
activity. The general foundation for the
client/server application came from Bernie Roehl
and Justin Couch’s example in Late Nite VRML
2.0 with Java.

The Java central server has two main functions:
(1) to allow VRML client users to login to the
server and maintain communication, and (2) to
transmit data to the VRML clients that are
connected to the server.

The first objective was accomplished by accepting
standard login data from the clients over a TCP
registry port. The client sends a “HELLO”
command over the port along with a username
and password, which the server authenticates.
After login access is granted, the client sends the
local UDP ports on which it will receive data
updates from the server.

The server receives two different types of data
from two different sources, then forwards that data
to all of the clients that have connected to the
server. The two types of data are entity
information and text chat information, received
through UDP ports.

The source of the entity information data is from
the HLA interface module. This data consists of
an array of identification numbers, positions,
orientations, velocities, and status flags that
provide information on all of the active simulation
entities.

The HLA interface module transmits data to the
server using the Java Native Interface (JNI). The
JNI allows compiled C++ source code to interface
with Java compiled byte code. Since native
compiled C++ code is much more efficient than
Java byte code, the JNI is a mechanism for
allowing C++ to be used to generate portions of
the source code that are machine specific. The
HLA interface module was written specifically for
the Windows NT platform, making use of RTI
library calls and other NT operating system calls
necessary for efficient operation. On the other
hand, the VRML stealth server was a web based
application, where it made much more sense to
use Java. The JNI provided the mechanism to
piece the two applications together.

The other source of data to the server is text chat
data, which originates from the client applications.
It is useful to allow the users that are connected to
the server to be able to chat with one another to
discuss the distributed simulation session as it is
happening. For example, a battlemaster can login
to the server and broadcast messages about
where the most important activity is taking place,
as well as the status of the exercise. The server
receives the text chat information and relays it to
each of the clients that are connected to the
server.

The transmission of both entity information and
text chat data to clients is performed using the
Real-Time Protocol (RTP). The RTP is a protocol
that sits on top of either UDP or TCP and is a very
streamlined data packet. The header of the RTP
packet consists of a sequence number, a time
stamp, a source identification number, and a
packet type. The RTP packet data body is simply
an array of bytes that follow the header. The
bytes can be interpreted in several ways, as long
as it agreed upon by both the sender and receiver.
In the case of the entity information and text chat
data, each is given a different packet type, and
each is sent from the server to the client over a

different UDP port, so confusion about the
contents is negated. The text chat data is simply
a stream of characters. The entity information
consists of position (x,y,z), orientation (y,p,r),
velocity (x,y,z), and appearance (active status,
entity posture, firing status, wounded status, and
entity type).

VRML Stealth Viewer Client

The end-user interface to the VRML stealth is the
client application that runs under an Internet
browser on the user’s computer, which can be any
machine capable of hosting Internet browser
software. The Internet browser must also have a
VRML browser plugin installed and be capable of
supporting the Java Virtual Machine, version 1.0+,
with AWT 1.1.5 and above. In addition, the
computer should have a relatively fast Internet
connection, plus a fast CPU and graphics card.
Most of the testing of the client software was
performed on a Pentium II 233 MHz processor
with a standard PCI graphics card, installed with
Netscape Navigator 4.05 and CosmoPlayer 2.0,
with a direct 10 Mbps connection to the Server
computer.

The client application is embedded in an HTML
file that resides on the same computer that the
server is hosted on. The user starts the client
application by bringing up an Internet browser and
trying to connect to client application on the server
host computer. The HTML file contains a
reference to the McKenna MOUT database, which
also resides on the server host computer. After
connecting to the server, the client machine
receives the entire VRML file, along with the
texture files. The client application HTML file also
contains references to a Java applet that is also
obtained from the server host computer. The
applet controls the text chat and the entity update
functions. Once the user is connected to the
server, the client begins receiving entity
information and text chat data from the server.

Text chat information is received by the client
application from the server and posted to the chat
window. As the user types a text chat message
on the bottom line of the chat application, the chat
information will subsequently be sent to the
server. The user will receive a reflected update of
the message that was typed, and it will appear on
the text chatboard.

Entity information that is received by the client is
updated on the VRML browser window through the
VRML stealth client applet. The client applet
communicates to the VRML browser through the

External Authoring Interface (EAI). The EAI
allows Java applets to send and receive browser
information from the VRML scene.

As entities are received from the server, they are
added to a local client registry. The local client
registry then tries to add the entity to the VRML
scene through an EAI call. After the entity is
added to the scene, all additional updates
received by the applet are then simply passed as
updates to the entity in the VRML scene. The
VRML application receives all of the moving
models from the server machine.

The client applet dead reckons the entities
received from the server to conserve the amount
of traffic sent across the network. Currently the
Java client/server application implements a one-
to-many point-to-point broadcast of messages, so
bandwidth can become a problem based on the
number of clients connected to the server.

Movement through the VRML scene is handled
through the standard VRML browser navigation
bar. Each VRML browser has a slightly different
implementation of the navigation bar, but most
support the basic controls of flying, walking, and
examining. In addition, several browsers allow the
user to toggle on/off collision detection, which is
necessary to travel inside buildings.

The VRML browser also allows the user to select
various viewpoints from which to view the scene.
The database has predetermined viewpoints that
correspond to key areas within the database
where action is likely to occur, such as the outside
of a building, the inside of a building, or at an
intersection of two roads. Viewpoints are also
attached to each of the entities as they are
created.

The user can receive status updates on any of the
entities in the simulation. To do this, the user
clicks on the entity, and information will be
presented in a status window containing the entity
identification, position, orientation, and other
status information.

Figure 2 shows the information presented to the
user through the VRML stealth client application.

Figure 2. VRML Stealth Viewer Client

FUTURE WORK

Future work will concentrate on expanding the
realm of VRML applications within the M&S
environment. Additional work might involve
converting the VRML stealth into an
unsophisticated reconfigurable simulator. All that
would need to be added is be a user interface to
control the scene movement, i.e., a simple vehicle
dynamics model, plus the capability to send
position and orientation update information back
to the HLA RTI. Simple dynamics could be coded
for fixed wing, rotary wing, ground, and individual
combatant simulators. The web site Error!
Bookmark not defined. has been established
that provides the latest VRML demonstration
software.

BIBLIOGRAPHY

Veda Incorporated. Technical Proposal - VRML -
Enabled M&S Information Dissemination R&D,
September 26, 1997

ISO/IEC DIS14772-1:1997, The Virtual Reality
Modeling Language, December 1997

Roehl, Bernie, et al, Late Night VRML 2.0 with
Java, Ziff-Davis Press, 1997

