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ABSTRACT

The High Level Architecture (HLA) supports the interoperation of sets of simulations within the context of
a Federation Object Model (FOM), using the HLA Interface Specification services as provided by the
Run-Time Infrastructure (RTI). Such simulations are federates and the set of federates is a federation.
A run of a federation is a federation execution. Although the “normal” mode of operation is for a federate
to operate in a single federation execution at any given point in time, the definition of HLA leaves open
the possibility that a federate may be a member of multiple concurrently executing federation executions.
In other words, two (or more) concurrent federation executions, of the same or different federations,
could have one or more federates in common. Presumably the common federate(s) would exchange
information between executions or otherwise use the events of one execution to influence another.

There are several distinct types of multi-federation executions. At the most basic level of classification,
they can be broadly typed as either bridged or hierarchical. Bridged federation executions have one or
more federates, called bridge federates, which are members of two (or more) federation executions.
Recent literature has been primarily directed toward the common, or bridge federates which exchange
(or transform) information between federation executions. In a hierarchical federation execution, one or
more federates in the higher-level federation are composed of and implemented as lower-level
federations, but appear as federates at the higher level. In this paper we develop a taxonomy of multiple
federation executions, including examples.
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A TAXONOMY OF MULTIPLE FEDERATION EXECUTIONS

BACKGROUND
The High Level Architecture

The High Level Architecture (HLA) supports the
interoperation of sets of simulations within the
context of a Federation Object Model (FOM),
using the HLA Interface Specification services as
provided by the Run-Time Infrastructure (RTI).
Such simulations are federates and the set of
federates is a federation. A run of a federation is
a federation execution. The FOM specifies a
contract between members of a federation on the
types of objects and interactions that will be
supported across its multiple interoperating
simulations. The HLA Runtime Infrastructure
(RTI) provides the services defined by the HLA
Interface  Specification, through which the
simulations communicate. The HLA Rules further
establish the manner in which the federations and
federates must comply with the OMT and RTI
Interface Specification. It is within this framework
that federates, within federations, interoperate
(Figure 1).

Historical Comments

In recent years we have witnessed the evolution
of federated simulation systems. Federated
simulations claim to enhance the development,
deployment and interoperability of federates (e.g.,
independently developed simulation applications,
components or related tools) that build upon a rich
heritage of simulator interoperability. We can

trace the roots of modern federated simulations to
the development of SIMNET in the early 1980’s,
but tracing the development of interoperability
among distributed systems is a little less direct.

As SIMNET experience evolved, standardization
with interoperability as a goal followed in the guise
of Distributed Interactive Simulations (DIS) in the
late 1980’s and the Aggregate Level Simulation
Protocol (ALSP) in the early 1990's. Many DIS
and ALSP-based systems are still in use today.
Integrating these two concepts together (DIS and
ALSP) has been dubbed Advanced Distributed
Simulation (ADS) and is seen as another
development in the development of hybrid
simulation systems. ADS concepts, upon which
the High Level Architecture is based, are the
legacy that grew out of SIMNET and distributed
networked computing age, and is the basis for this
paper.

Consider the evolutionary changes in software
and networking during the evolution of SIMNET
and ADS that permitted dissimilar simulation
applications to interoperate and evolve. Recall
that this was a time before the Commaodity Internet
(as we now know it today) existed. In 1984, the
Defense Advanced Research Projects Agency
(DARPA) released the management of the
ARPANet over to the National Science
Foundation declaring that Inter-Networking was no
longer an advanced research application but was
at this point in time an engineering project.
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Figure 1. Typical HLA federation.



Nevertheless, when that transition to NSF
occurred there were barely 100K nodes attached
to the ARPANet, Intel 8086 computers were hot,
and the Apple Macintosh had just been released.
Bridges and Gateways on networks were the
norm, and there were literally dozens of different,
generally non-interoperable protocols available.
The concept of general interoperability eluded us.
So it is quite understandable that SIMNET was not
based upon the Internet Protocol (IP) experience
as the practice and use of IP was limited. People
did not know the level of interoperability that
would one day be achieved with IP. It would one
day change the world.

In the 1970’s and 1980’s, many applications and
products (e.g., simulation systems) were not
interoperable. Quite the contrary, these were one-
off solutions dedicated to specific platforms,

operating systems, or vendor-specific
implementations. Computing in this age was
expensive.  Software was rarely portable as

porting costs were prohibitive expensive. Still,
many users and developers alike were concerned
about  software reuse. Heterogeneous
environments were slowly to evolving, but
interoperability in the general sense was not

achievable. For these reasons and more, the
International  Standards  Organization (1ISO)
developed the Open Systems Interconnection

(OS)) initiative.

The acceptance and popularity of IP continued to
grow, as did interoperable systems based on the
OSI model. With the introduction of the NSFNet,
routing became the norm and the dominance of IP
became clear. The number of “other” protocols
began to diminish rapidly. However, the
simulation community was slow to adapt to this
new infrastructure model as neither ALSP nor DIS
version 1.0 were based on the OSI protocol stack.
In 1991, the NSF lifted its restriction on
commercial use of the NSFNet and the modern
Commodity Internet was born. Along with birth of
the Internet came the first “point-n-click” Browser,
called Gopher. Two years later we saw the
evolution of Mosaic and the birth of the World
Wide Web in 1993. Thus began one of the
greatest success stories for interoperability as the
Internet was then growing at an astounding rate of
341,634%. By 1996 the Internet supported over
150 countries and connected over 10 million
hosts. Consequently, the next version of DIS
aligned itself with the Internet Protocol Suite.

This is the success story of interoperability in
heterogeneous environments. Today the value of
a standards driven, system-independent
communications mechanism is well understood.
Software development costs are controlled
because of vendor competition and platform
independence. Therefore the long term success
of the HLA and interoperable federations will
hinge on the ability to standardize HLA in terms of
Osl.

Relatively speaking, distributed simulation is a
small community (when compared to the World
Wide Web). But there are some significant
changes on the horizon. Applications such as
distributed simulation and shared immersive
environments had been presented as the driving
force behind the development of the Next
Generation Internet. As an application group, this
type of distributed application is quite capable of
stressing the low-latency, high-bandwidth
capabilites of even the fastest network
infrastructure. Furthermore, the application and
middleware layer technology being developed
today in the simulation community may one day
find its way into a wide variety of non-military
applications, such as immersive telemedicine,
teleinstrumentation, and entertainment. So the
technology, properly applied, holds great promise.

A middleware layer like the High Level
Architecture (HLA) is considered to be a relative
newcomer to distributed computing field. While
well recognized as both feasible and useful, HLA
is a middleware product that does not fit neatly
into any one layer in the current OSI 7-layer
model, thus interoperability concerns exist. Today
HLA is forging new ground and is the basis behind
the development of federated simulation systems.
Sponsored and developed by the Defense
Modeling and Simulation Office (DMSO), the HLA
provides both an architectural framework and
interaction specifications that address the
interoperation of dissimilar simulations at the
Application Program Interface (API). HLA is
currently being investigated for use in acquisition
confirmation, software integration and testing, as
well as the reuse of legacy simulation systems.

Federates and Federations

As stated in the HLA Interface Specifications
(DoD, 1998b), "A federation is the combination of
a particular FOM, a particular set of federates,
and the RTI services.” This model of
interoperation is generally considered to be self-
contained. That is to say that the basis for



communication, as described by the FOM, occurs
among federates during a federation execution.
However, it is conceivable (and perhaps
inevitable) that simulations may interoperate
across FOMs, and in a multiple federation
configurations. This notion of multiple federation
interoperation and how such federation
configurations might be structured requires careful
interpretation of the HLA rules (DoD, 1998a), as
will be discussed later. The rules are given here
for reference (Figure 2).

The original developers of the HLA had intended
that a simple, single federation model (e.g.,
federates, FOM, and RTI) would suffice for the
vast majority of federated simulations. Indeed,
some considered this architecture to be complete.
However, some other federation models were left
open in the definition of HLA, as we shall see.

INTRODUCTION TO MULTIPLE FEDERATIONS
Definition

We define a multiple federation (or multi-
federation) as a set of more than one currently
executing federations to which one or more
federates are simultaneously joined. Presumably
the common federate(s) would exchange
information between executions or otherwise use
the events of one execution to influence another.

The Precedent For Multiple Federations

The HLA proto-federation experiments were
quickly followed by a proposed HLA security
architecture design (Filsinger, 1997). That
architecture indicated that a single (i.e., common)
FOM would not suffice for federation executions
requiring multiple security levels. Such
federations would require some special action to
be taken in handling classified data (e.g., secret-
high to unclassified). To resolve these issues, the
HLA security architecture proposed the use of a
security guard process. The guard process would
“scrub” the classified information from data
flowing to unclassified federates and/or augment
the unclassified data with relevant classified
information when flowing in the reverse direction.
The security details, while interesting, are not of
concern in this paper.

However, what is of interest here is that the
security architecture design clearly is based on a

single federate (the “HLA Security Guard
Federate”) connected to two concurrently
executing federations (Filsinger, 1997). This

architecture provides the precedent and initial
example of multi-federations.

Federation Rules

Rule 1 Federations shall have an HLA federation object model (FOM), documented in
accordance with the HLA object model template (OMT).

Rule 2 In a federation, all simulation-associated object instance representation shall be in the
federates, not in the run-time infrastructure (RTI).

Rule 3 During a federation execution, all exchange of FOM data among federates shall occur via
the RTI.

Rule 4 During a federation execution, federates shall interact with the RTI in accordance with the
HLA interface specification.

Rule 5 During a federation execution, an attribute of an instance of an object shall be owned by at

most one federate at any time.

Federate Rules

Rule 6 Federates shall have an HLA simulation object model (SOM), documented in accordance
with the HLA OMT.

Rule 7 Federates shall be able to update and/or reflect any attributes of objects in their SOMs
and send and/or receive SOM interactions externally, as specified in their SOMs.

Rule 8 Federates shall be able to transfer and/or accept ownership of attributes dynamically
during a federation execution, as specified in their SOMs.

Rule 9 Federates shall be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOMs.

Rule 10 Federates shall be able to manage local time in a way that will allow them to coordinate

data exchange with other members of a federation.

Figure 2. HLA Rules.



Therefore, the question is no longer one of
whether or not such multi-federations can interact,
but rather how will two (or more) federations
interoperate.  Since HLA provides no defined
support services for multiple interoperation, a
secondary question must be raised as to what kind
of additional services might be required to
facilitate such interoperability.

Similar issues have recently been raised relative
to other scenarios (e.g., multiple levels of detalil,
differing fidelity requirements, etc.) all of which
appear to require or at least involve multi-
federation configurations.

Multiple Federations And The HLA Rules

On the surface, it would appear by definition that
multiple  concurrently  executing federation
executions can not interact with one another.
After all, a federation is defined by its federates, a
singular FOM, and an RTI. However, non-
interoperable federations can diminish the overall
potential (not to mention the scalability) of
federated simulation technology. Multi-
federations are only interesting when inter-
federation communications can exist. But how is
this to be accomplished? That involves a
thorough understanding of the HLA rules.

The HLA Rules describe precisely how federates
and federations are permitted to interact (Figure
2). Note that these rules state specifically how
and under what conditions the RTI Application
Program Interface and Federation Object Model
are to be used within a federation. We note that
according to the draft rules, multi-federation
interaction is tenuous at best. One interpretation
of the rules indicates that all federations must take
into account all of the data being represented by
all relevant FOMs; this as some have suggested,
is called the “SuperFOM” model. An alternative to
the SuperFOM approach would be to utilize
mechanisms and methods of communication
outside of the federation, to communicate with
other entities (e.g., federates, sub-components)
“outside” of the RTI. This “out of band”
communication mechanism can be used to
communicate FOM data outside of a given
federation if it is not directed at another federate
within the source federation.

TyYPES OF MULTIPLE FEDERATIONS
Bridged Federations

The HLA rules do not specifically prohibit or
permit a federate from being attached to multiple,
concurrent federations. Indeed, this leaves the
whole subject of multi-federation interoperation in
a rather gray area. HLA federate rules indicate
that the federate must have a SOM that specifies
[completely] the elements and interoperability
requirements (e.q., classes, attributes,
interactions, ownership, etc.) of that federate. The
current draft of the HLA federation rules appears
to indicate that only one FOM is permitted in a
federation, and that “... all exchange of FOM data
among federates shall occur via the RTL.” (Note
the singular reference to both RTI and FOM.)

This would imply that bridge federates which
support an additional interface for FOM Data
(Figure 3) are not directly permitted.

Definition. So if multiple federate interoperation
is not directly permitted, and direct federate
attachment to multiple RTIs for the purpose of
passing FOM data (outside the RTI) is directly
prohibited, how are multi-federations to
interoperate? The answer lies with the design of
the guard federate mentioned above. If we except
this solution as the prototypical example, requiring
the mix of dissimilar FOMs into a single
“federation execution,” then the mechanisms
employed by the guard federate should be
investigated.

In principle, the bridge federate as guard (shown
in Figure 3), permits FOM data to flow from
federation F; into federation F, (and visa versa),
like a bridge (hence, bridge federate). Bridge
federates perform various scenario-dependent
functions such as performing data replacement,
data composition, data decomposition, or other

data transformation operations. Recent
experiments of this type, described in (Beebe,
1997) and (Bouwens, 1998), have been

characterized by the configuration of one federate
as a member of at least two federations, even
though this type of connectivity is not explicitly
permitted by Draft HLA Rules. Instead, (Bouwens,
1998) indicated that in this configuration, the
bridge federate is actually more complex, in that a
separate federate ambassador and FOM is used
for each adjoined federation.
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Figure 3. Typical acclaimed bridge federate configuration.
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Figure 4. A typical proxy federate architecture.

In addition, a transformation function is required to
map the FOM data from source federation into
representative FOM data for the destination
federation. Since these transformation functions
are not unidirectional, bi-lateral transformation
functionality must be contained within the
federate. Therefore, since the FOM data is
actually being modified, HLA Rules #1 and #3
have not been broken; the exchange of FOM data
does occur through the RTI.

Examples. Therefore, in order for bridge
federates to be able to exchange FOM data, they
must be more complex, supporting a distinct
federate and RTI interface for each federation for
which they are joined, plus they must act as
proxies handling the additional transformation

function(s) (see Figure 4). In short, the proxy
must manage the flow of information from
federation (F,;) to federation (F;) by performing
data replacement, data composition, data
decomposition or some other form of data
transformation (and visa versa, from federation
(F,) to federation (F))

We can now characterize a bridge federate as a
proxy service, managing asymmetric data flows,
and applying bi-directional transformation
functions as necessary, dependent upon the FOM
data for the two federations being adjoined.
Given this definition of a bridge federate, it should
be clear that a universal bridge federate will not
be possible. Each bridge federate must build a
unigue set of transformation operations between



any two representative FOMs. And since the
transposition of such data is not reciprocal, each
data flow will require its own transformation
matrix.

Hierarchical Federations

While security guard federates have received the
most attention of late, they are by no means the
only example or possible interpretation for
handling  multi-federation interaction. As
proposed, bridge federate performs a rather
complex set of functionality (i.e., asymmetrical, bi-

directional data transformation between two
federations). In this regard, they are essentially
providing a proxy service to their adjoined
federates. Their differential  information

transformation between the destination federation
on behalf of the federates in the source federation
makes them appear (in the destination federation)
as locally attached federates.

Definition. It is the generic concept of a federate
acting as a proxy for another federate (Figure 5)
that can be extended to support hierarchical
federation executions. For a proxy federate need
not just represent the interactions of one (or more)
federates from one federation into another. A
proxy could, for example, represent an entire
federation as being a single federate (Figure 6).
Federations built using such proxy services are
hierarchical federations. In theory, a multiple-
level hierarchy of federations would be possible.
Furthermore, because of the bi-directional
transformation functions supported by a proxy
federate, they are able to bridge or gateway non-
HLA simulation applications to represent complete
federates or federations. A proxy federate may
therefore represent an entire DIS simulation, or an
ALSP confederation within an HLA federation.
For example, the DIS Gateway federate based on
the RPR FOM and developed by the Institute for
Simulation for Training (IST) is one such
representation (Wood, 1997). Thus the role of a
proxy acting on behalf of another federate, or
federation, or generic simulation application within
another federation, represents an untapped, future
potential in the overall HLA design.

Examples. Federate simulations are assembled
into  federations using federates (often
independently developed simulation applications)
as the essential building blocks. Under HLA, a
typical federation (F) is composed of a collection
of federates (f;)), interoperating with one another
through a common Run Time Infrastructure (R).
The Federation Object Model (FOM) defines or

identifies the information communicated between
the various federates. A typical HLA federation
might, for example, be composed of 3 or more
federates sharing a single FOM and common RTI.

Under HLA, a common method of invocation is to
associate a simple federate process with a unique
host or host process (i.e., thread), and coupling
that federate to the HLA federation by way of a
singly attached interface (e.g., the federation’s
RTI). A component federate however, can be
described as being a more complex federate,
often composed of several parts (see Figure 7).
In this taxonomy, each sub-federate (Fs())
component is typically associated with one host or
one host process.

Component federates are said to be complete
when the federate they compose is represented in
its entirety, by all sub-federate processes. When
taken together, the components provide a unique
and complete representation (i.e., a mutually
exclusive interface) into the RTI (Figure 8). In
other words, the sum interface product of all sub-
federate components yields a complete federate
APl to the federation's RTI. A component
federate is only considered “complete” when all
essential state data (i.e., object classes, attributes,
and interactions) are all uniquely represented by
the necessary and operational components, and
when these components are connected to the RTI.
Component federates may however, be out of
scope given the draft HLA rules. There is some
guestion as whether rules 3, 4, and 5 apply to
components of a federate or entire federates.

A typical federation comprised of component
federates may actually appear to the RTI as
several incomplete federates, rather than
connected components of a single federate
application process (Figure 5). Also since FOM
data may be passed between components outside
of the RTI (such as in Figure 9), it is unclear to the
author whether this also violates HLA rules.

ISSUES

It should make little architectural difference
whether or not a federate application is managed
by a single processor, is supported by multiple
process threads, or is distributed across several
platforms. Within a single host, Intra-federate
communications occur outside of the HLA RTI.
So whether a federate is composed of
components that reside on separate hosts, or run
as multiple threaded processes within a single
host, should
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Figure 5. Component federation with basic proxy.
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Figure 6. Federation proxy as a component federate, representing a non-HLA federation.
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Figure 7. HLA federation containing a component federate.

pose little or no difference to a conformant HLA
federation. The end result is that the supporting
architecture should be modular and robust enough
to support these variants.

Assuming a modular distributed architecture, a
component federate implementation  may
represent a significant performance improvement
for certain applications (e.g., real-time
simulations). This improvement may be obtained
by bringing more processors to bear on the
computationally  intensive aspects of the
simulation, without unduly increasing
communications load through the RTI.

Many types of complex high fidelity simulations
are naturally distributed and require moderate
bandwidth exchange of interface data. An
example is the multidisciplinary coupling of elastic
structural and fluid dynamics solvers in the
modeling of aircraft flight dynamics. Whereas the
other federates in the federation at large may be
interested only in location, displacement, and
other external characteristics of the complete
federate simulation object(s), high fidelity often
requires significant exchange of internal data
among the distributed federate components.
Thus, by additionally partitioning the network load
by federate component functionality (rather than
solely by simulation object locality), the scalability

of the overall HLA simulation is enhanced. This
functional partitioning is explicitly defined in a
hierarchical multi-federation architecture.

In the single platform configuration, each
component process (i.e., federate) operates
independently (as in Figure 7). When component
federates are partitioned over multiple hosts, the
sub-federate applications must be partitioned
intelligently, such that they each provide a unique
(for the federate) object, attribute and/or
interaction resolution with the RTI. (Current RTI
services do not distinguish between multiple
processes when identifying a federate instance.
RTI services will need to be enhanced in order to
fully exploit this architectural advantage.)
Currently, there is no support through HLA to
permit intra-federate communications of FOM or
SOM data to occur, even if the federate designer
has developed multiple, yet mutually exclusive
interfaces to the RTI for each of the component
federate process (Figure 7 and Figure 8).
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Figure 8. Logical manifestation of a component federate, implemented over separate hosts.
SUMMARY

Multi-federations exist where one or more
federates are members of at least two
concurrently executing federations. Such
federates exchange information between the
federations. A federation where a federate is used
to bridge between classified and unclassified
federation executions is the prototypical multi-
federation.
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Figure 9. Component federates as part of the federation.
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