FULLY IMMERSIVE TEAM TRAINING:
A NETWORKED TESTBED FOR GROUND-BASED TRAINING
MISSIONS

James Parsons, Don LamptonT, Kimberly Parsons, Bruce W. KnerrT, David Russell,
Glenn Martin, Jason Daly, Bryan Kline, Matthew Weaver

Institute for Simulation & Training
University of Central Florida

Tus Army Research Institute
Orlando, Florida

ABSTRACT

The Fully Immersive Team Training Testbed was developed to study the
methods for using Virtual Environment (VE) technology for training
dismounted infantry teams. The testbed allows multiple trainees networked
together on different computers to be immersed simultaneously and produces
a compelling sense of presence; a powerful feeling of being immersed in the
VE. A wide variety of parameters can be configured for inclusion in a training
scenario including tools, weapons, dynamic environmental objects, and
number and skill level of opposition forces. In addition to providing a
simulation arena for multiplayer interaction, the testbed captures all aspects
of a mission, including radio communication, visuals with unrestrained
placement of camera, and environmental audio and are made available for
use in after action critiques.

This paper describes the implementation methods used for creating the
complex simulation testbed. The environment is scalable and supports the
networking of trainees located in different cities. Specifics on custom
hardware development, software structure, body sensor deployment,
locomotion method and networking solutions are provided. In addition, the
implementation of a training scenario is described, and results are presented.

Biographical Sketch

James Parsons is a research faculty member working in virtual environment (VE) R&D in IST's
Visual Systems Lab (VSL). He is currently working on the ARI VE Testbed project as a software
engineer. In addition to his Masters degree in Computer Science, James also has a Bachelor of
Fine Arts degree from the State University of New York at Purchase, where he studied scenic
design for theater, film and television. Affiliations include Upsilon Pi Epsilon, IEEE, and the
Association for Computing Machinery.

Fully Immersive Team Training:
A Networked Testbed for Ground-Based Training Missions

James Parsons, Don LamptonT, Kimberly Parsons, Bruce W. KnerrT, David Russell,
Glenn Martin, Jason Daly, Bryan Kline, Matthew Weaver

Institute for Simulation & Training
University of Central Florida

Tus Army Research Institute
Orlando, Florida

INTRODUCTION

Military exercises conducted as distributed
battlefield simulations have been
acknowledged as a viable complement to
real world training since the days of SIMNET
in the early 1980’s. Joint simulation
exercises from SIMNET'’s time, through the
development of DIS, and up to and including
more recent HLA implementations have
featured a wide variety of combat vehicles
interacting together while the dismounted
infantryman has for the large part been
excluded from participation. Virtual
Environment (VE) technology represents a
possible means for dismounted soldiers to
participate in simulated wargames. The
Fully Immersive Team Training (FITT)
testbed has been designed to investigate
the use of VE technology to train
dismounted soldiers.

This paper will explore some of the technical
hurdles encountered in the development of a
robust and flexible testbed for exploring the
feasibility of using VEs to train soldiers in
team tasks. The current testbed
implementation is the result of several years
of research and development conducted
jointly by the Institute for Simulation &
Training at the University of Central Florida
and the Army Research Institute. The work
that led to the testbed’s current version can
be reviewed elsewhere (Parsons and

Russell, 1998). This paper will focus on the
process used to implement FITT.

In section 2 below, the initial team training
mission implemented on the testbed is
described so that testbed features
presented in later sections can be more
clearly illustrated in reference to this
baseline mission. Then in section 3, the
overall hardware and software configuration
of the testbed is considered. Next, attention
is turned to sensing human movement and
locomotion, then translating that data into a
representational avatar. Section 5
addresses the networking issues
encountered as the testbed was built,
including starting and stopping the machines
used for the simulation in a synchronized
fashion. The implementations of the data
capture client and mission playback
application are detailed in section 6.
Computer generated Opposition Forces
(OPFORSs) are described next. Finally, some
concluding remarks are offered.

2. MISSION SCENARIO —
TEAM TASKS

In designing the experimental scenario for
the first FITT implementation, the need for
tasks that required rapid decision making in
complex environments, situational
awareness, and teamwork were paramount.
Implementing these requirements with

current VE technology while representing
the critical components of military tasks in
an experimental configuration that required
a minimum of prerequisite training was an
important challenge of this project.

After considerable study of both military and
civilian special weapons and tactics training
manuals, urban search and rescue
procedures, and infantry field manuals, the
experiment design team settled on activities
that would routinely be performed during
search/rescue missions, hostage retrieval
missions, and emergencies involving
hazardous materials (HAZMAT) missions.

FITT’s first research effort was organized as
a search mission wherein a two person
immersed team under the direction (via
radio communication) of a mission
commander (the experimenter) canvases
the rooms of a building looking for canisters
containing hazardous gas. Each team
member is equipped with a chemical hazard
protective suit, a timer which shows
remaining minutes of oxygen available to the
suit's breathing apparatus, and a hand gun
which fires tranquilizer darts used to render
OPFORs harmless. The search s
complicated by the threat of interference by
OPFORs.

Team member #1 is the designated Team
Leader. The Team Leader directs team
movement to provide an efficient search
while maintaining team security. The leader
radios reports of deactivations and
encounters with the enemy to an off-site
mission commander. In addition to a
tranquilizer dart gun, the Team Leader is
equipped with a paint marker used to mark
rooms that have been searched. Team
member #2, the HAZMAT Equipment
Specialist, carries a dart gun and a device to
detect and deactivate active gas canisters.

The missions are situated in a ten-room
building. Computer-generated OPFOR and
innocent bystanders move through hallways
and rooms. Different types of OPFOR,
lightly armed looters and heavily armed
terrorists, require the trainee teams to

prioritize targets. The presence of both
OPFOR and neutral forces require rapid
shoot/don’t shoot decisions.

Mission instructions specify the amount of
air available for each mission. Team
members must remember to periodically
check their remaining air supply indicators,
and must decide when to begin to exit the
building. This is not an easy decision for the
team to make in that leaving too soon
wastes search time. However,
underestimating the time needed to exit the
building results in mission failure.

Procedures include rules for: the order in
which rooms are searched, team formation
for room entry, actions on contact with
OPFOR and innocent bystanders, and
format and content of radio reports.
Successful performance of some of the
procedures requires the team members to
coordinate their movements and actions to
within a second of each other.

A thirteen-page training manual includes a
mission overview, learning objectives, task
descriptions with graphics, and ends with a
mnemonic to help the trainee remember the
procedures. A paper and pencil knowledge
test is administered after the participant
completes the manual.

The mission tasks and procedures served
as the functional hardware and software
requirements for the development of the
Fully Immersive Team Training system.

3. TESTBED DESIGN

Hardware Configuration

The basic testbed incorporates a number of
plugable components to provide a flexible
framework for developing networked team
training applications. The primary
components of this system are the individual
combatant simulator (ICS), a computer
generated entity server (CGES), a
commander/experimenter stealth display
(Stealth), and a data collection system.
Along with these primary testbed
components, an audio system has also
been implemented to simulate radio

communication between the participants
during an exercise.

The ICS provides a link between the subject
and the networked virtual environment. This
simulator provides a view into the shared
virtual world via an image generator and a
viewpoint-tracked display device. The ICS
also provides a means for interacting
directly with the virtual world through a
variety of I/O devices that can be selected
according to their applicability to the mission
scenario. Finally, it is the role of the ICS to
translate the real world gestures and
movements of the subject into appropriate
avatar responses.

The CGES provides support for all of the
simulated entities in the virtual environment.
Environmental attributes that can be
expressed as a boolean state variable such
as doors left open or closed, lights turned on
or off, etc. can be rapidly configured and
implemented in the FITT testbed. In the
mission detailed in section 2 of this paper
gas cannisters encountered in the VE can
be found in one of two states: leaking or
secure. The cannisters are an example of a
boolean environmental attribute maintained
by the CGES. In addition to simple two-state
environmental elements, more sophisticated
entities such as computer generated
opposition forces can also be served by
CGES. While configuration of these types of
dynamic elements are not as quickly
implemented as boolean elements (they
generally require the development of custom
behavior code) allowances have been made
for a broad range of expression on the part
of the mission designer. The testbed’'s
capabilities in this area are touched on later
in section 7 of this paper.

The Stealth display allows the experimenter
to watch the movement of the subjects
through the virtual environment from a third
person overhead perspective. Along with
the graphical display of the players’
positions in the virtual environment, a
number of statistics are reported on the
stealth display which quantify the actions of
the participants and assist the experimenter
in determining the efficiency of the team as
they move through their required tasks.

The last piece of the system is the data
collection service. During any run through
the world, the data collection system records
all of the network traffic. This recording can
be used to replay events as they unfolded
during a particular mission, or it may be
analyzed to produce a numerical summary
for performance evaluation. Along with
recording the network traffic, the data
collection system also records all of the
voice communications among the
participants in the exercise. When the data
stream is played back for an after action
critique, the audio of those communications
is also played to provide greater insight into
the thought processes involved and the
actual interactions among the members of
the team.

The team training testbed consists of the
following hardware components:

ICS #1:

1. 8 Processor / 3 Pipe Silicon Graphics
Onyx RE2 (Team Leader and CGES)

2. 6 Tracker Ascension MotionStar

3. Virtual Research VR4 Head Mounted
Display

ICS #2:

4. 4 Processor / 1 Pipe Silicon Graphics
Onyx RE2 (Specialist)

5. 6 Tracker Ascension Flock of Birds

6. Virtual Research VR4 Head Mounted
Display

7. Silicon Graphics Indigo2 High Impact

(Stealth)

Silicon Graphics Indy (Data Collection)

9. Dell Pentium 90 (Audio Capture)

10. Dell 486 (Startup Browser)

11. Misc. handheld input devices

12. Misc. video equipment for observing
player views and videotaping after
action critiques.

©

Reality Enging Reality Enging

Tmage Cenerator Image Ceneratr Computer Gene rated
{4 Processor) {8 Processon) W}I:I;m:;sgm, «
O e Workstation O e Workatation

Andin Etealth
Capture View
HNT¥Workstation| Indgo Impact

Hant
Experiment Data
Ten Capture
T Workstatio Indy

oET-0rE

Figure 1. Networked Hardware
Configuration

Software Hierarchical Structure

The software for the multiplayer system has
a distinct hierarchical structure that allows
for all of the necessary interactions between
the players and the virtual environment.
Each object performs some portion of the
necessary function of the overall system.
By separating the workload in a logical
manner, the software may more easily be
extended or modified to add or remove
functionality. The diagram of objects and
their relationships in Figure 2 shows the
relational structure of the software. Despite

N

Uses A
—» IsA

Figure 2: Hierarchical Model of the Multiplayer Software

This hardware list is used for the current two
player configuration of the testbed in support
of the mission scenario described earlier in
section 2. The testbed is easily scalable,
and extra ICS’s could be added as

necessary to support more players in the
virtual environment. Note that the extra
processing power of the 8 processor Onyx
allows it to run the CGES component of the
FITT testbed, in addition to its duties as an
ICS.

the complicated appearance, the actual
complexity of the individual objects remains
relatively low.

The two principle components of the
software hierarchy are the EntityManager
and the main multiplayer object. These two
objects control the interactions among
several of the other objects which represent
either the local player or remote objects and
entities which must be depicted locally.
These mechanisms take up the majority of
processing time after the processing of the
input devices.

The object-oriented hierarchical structure
provides an excellent framework for
development and maintenance of the
software. Each piece may be developed
separately by different programmers as long
as the interface between the objects has
been agreed upon. In the same manner,
changes to the underlying methods used by
each object need not affect the way two
objects communicate.

PLAYER AVATAR

FITT provides a means for representing
participants within the shared virtual world
as avatars. The avatar model used for a
particular player is configurable through the
testbed menu interface to allow for gender
and ethnicity issues. A default gender and
racially neutral avatar can also be loaded to
represent a participant.

Sensor Configuration

The 3D-avatar model incorporates 45
degree of freedom beads allowing for
realistic deflection of limbs and torso.
Setting the proper rotation angles for these
degree of freedom Dbeads is the
responsibility of the ICS.

Each team member is suited up in 6 position
sensors used to determine body position,
view, and locomotion. (See Figure 3). The
sensor mounted on the HMD determines
gaze direction. Body direction is measured
by the position of a sensor mounted on a
lightweight wooden backpack worn by each
subject. This sensor determines which
direction the subject’s torso is facing, and
which direction he or she will walk when
moving forward.

Locomotion Method

The ankle trackers are used for locomotion
through the virtual environment. In order for
the subject to move around the virtual world,
a stepping motion is made similar to
everyday walking; walking in place. Raising
and lowering the feet provides a smooth gait
through the virtual environment. The
software object responsible for ambulating
the participant watches the step height by
comparing the height of the ankle trackers
relative to the ground. When the tracker

crosses a software defined threshold, a step
is initiated and the height of the step is
translated into pitch rotations for the hip and
knee joints, allowing the avatar to raise and
lower its leg as the player walks. Means
have also been included in the locomotion
model for backing up as well as forward
movement. This movement method is a
refinement of a previous method developed
at the Lab (Singer, Ehrlich, and Allen, 1998).

Articulation

The right arm of each player is tracked in
order to articulate the arm of the virtual
avatar. This requires two sensors working in
conjunction with the back sensor. The
position of the player's shoulder joint is
determined by offset from the back tracker.
This phantom shoulder position is used with
a sensor strapped to the elbow to derive a
vector for the upper arm. An additional
sensor mounted on the input device and
held within the hand of the player provides a
way of deriving the vector for the lower arm
position.

Head Tracker
{Mcamtad on FID)

Back Tracker
{Mounted on backpack)

Elbow Tracker — L

Hand Tracker
{Mounted on npt devicek

Ankle Trackers

[

Figure 3
Sensor Configuration

NETWORKING ISSUES

The FITT Testbed is a networked simulation
environment that uses the Distributed
Interactive Simulation (DIS) protocol to pass
messages back and forth. A subset of DIS
protocol version 2.0.4 has been
implemented for this project. Fully
articulated human figures are not explicitly
supported by the DIS protocol. For FITT,

body and limb position are transmitted via
articulated parts structures attached to the
Entity State PDU. The following DIS PDUs
are used during the application:

1) Entity State PDU This
PDU is the primary PDU used
for the player avatars and the
computer generated opposition
forces. The articulated parts
array is used to broadcast the
position and posture of the
avatar. A total of 47 articulated
part parameters are available
for modification during the
simulation.

2) Fire PDU — Detonate
PDU These two PDUs are used
for the paint marker tool and the
Gas Cylinder de-activator tool,
as well as for the hand guns
available to team members.

3) Action Request PDU
Door opening and closing
events are broadcast using
these PDUs.

4) Start PDU — Stop PDU
Used by the menu software for
starting and stopping the
simulation.

5) Callision PDU Used by
the Data capture hardware to
log collisions for after action
analysis.

One important distinction that must be
mentioned about the FITT software is that
the DIS PDU traffic is handled by an Entity
Services application that runs as its own
process on each network machine. All
message queueing and dead reckoning for
all PDUs are encapsulated within this Entity
Service running on the host machine.
Applications wishing to use the Entity
Service log on as a client.

Entity Server Implementation

In order to enable multiple players in the
experiment, a method for network
communication was needed. During the
years from 1992 to 1995, IST performed
work for U.S. Army STRICOM to build a
networked dynamic terrain testbed. As part
of that work, a package known as the Entity
Service was created to facilitate DIS

communication. The same package was
used for this experiment.

The Entity Service was built with the
concept of a possible unifying semantic
called the "shared environment’. The
Shared Environment concept represents a
flexible, highly configurable, representation
of the state of the environment built upon
well-defined semantics, strong abstractions
and explicit decoupling of components
(Lisle, Altman, Kilby, Sartor, 1994). A key
point of this concept is the segregation of
responsibility between the components that
simulate the environment and the network
protocol in use. The clients of the Entity
Service no longer are concerned with the
details of communication protocols,
implementations or hardware. They
communicate at a higher level of abstraction
by message passing with the shared
environment.

One final word about our choice of the Entity
State PDU as the primary avatar state
vehicle: At the start of this experiment, an
evaluation of the human figure problem was
made. The graphical representation of the
human figure, in contrast to a vehicle,
requires a relatively large number of
articulated parts. For example, the current
system supports fourteen different joints of
the human body each with three rotations.
In general, there are two methods that can
be used for transmitting human figures
within DIS. An Entity State PDU with all the
articulated parts can be sent, or a Data PDU
can be wused to transmit the human
articulated parts. Technically, the DIS
standard does not support human figure
articulated parts in its articulated parts
enumeration (the enumeration focuses more
on the parts of vehicles such as a turret).
However, we chose to use Entity State
PDUs because it was felt that articulated
part information really should go along with
all the other entity information even if the
DIS standard did not include human figures
in its enumerations (some arbitrary
articulated part types were used).

Simulation Startup From Browser
Multiple startup problems inherent in a
networked simulation are nothing new to the
distributed simulation community. We
believe, however, that our solution may be.
For our immersive team training simulation
we use 6 computers, all of which have their
own unique startup sequences depending
on which options the user wishes to run. To
deal with experiment startup complications,
we developed a multi-layered menu program
in Java to select the various options
available and launch the simulation from one
terminal.

The menu allows the user to control any part
of the simulation from one terminal. The
menu has options to place the machines
into or take them out of MCO (Multi Channel
Option) mode (allows for stereo view). It
can be used to set up information for data
capture, start/stop a simulation, process
data captured, playback a previously run
simulation, email the collected data, and to
bring the systems off the network as a
restricted subnet for maintaining a distinct
and stable experimental environment.

The menu program is a client/server
combination. The server is a Java
application that can be run on any one of the
computers used for the simulation. The
server receives commands and options from
the client interface. Then, depending on the
options, the server wuses the Java
System.exec() method to remotely start up
the parameters of the simulation needed on
the various machines. After executing the
commands the server updates the state
information of the client.

Originally, the client interface was designed
as an applet which would run through an
Internet browser. It was changed to an
application to get around the security
restrictions imposed by applets and
browsers. Specifically, the browser would
not allow an applet to communicate with an
application unless the application was
running on the same host that the applet
was loaded from. Thus our options were to
either set up the machine running the
application as a web server, or to write the
client as an application as well. We chose

to implement the client as an application, but
hope that the improved java security model
available in JDK 1.2 set for FCS this year,
will ease some of these restrictions in future
browser releases.

Due to the reboot process incurred while
taking the machines on and off the labs
general development network, the menu
needed to be robust. The client and server
are both able to survive if the other is killed.
If the client is killed the server simply waits
for a new client to connect and then updates
the new client with the current state of the
simulation. If the server is killed (due to
system reboot while taking the simulation off
the network), the client will display a
"Waiting for server message" and attempt to
reconnect to the server. Once the server is
running again, it will connect to the
machines involved and determine the
current state of the simulation and then wait
for the client to reconnect.

PLAYBACK/AFTER
ACTION CRITIQUE

FITT allows for the recording and playback
of audio communication as well as player
activity for all missions undertaken on the
testbed.

Data Capture Coherency

Data recording is accomplished by capturing
the PDU traffic from all participating
machines (both player machines and the
CGES server) into a terse binary file. The
data capture program runs on an SGI Indy
workstation attached to the experiment
network. The start of an experiment is
signaled by a Start/Resume PDU, and the
end is signaled by a Stop/Freeze PDU.
These are sent by the experimenter via the
Stealth machine’s keyboard, to all machines
at the beginning of the experimental trial. All
PDUs are time stamped by the sending
machine and all machines are time slaved to
one designated master time server during
each experimental run. This assures that all
data can be reconstructed in the proper
sequence during playback.

Audio For Radio Com And Environment
Audio Communication is an essential
ingredient of FITT. Figure 4 shows the
audio layout for the implementation of the
mission described in section 2.

Reality Reality
Engine iT=
Andio inte

’—1‘2 3 fi

Equipment
i

1[z]3]a]3 e
Miser éndin
Dump

0mTe

Figure 4
Audio Diagram

The audio for each player must integrate
environmental sounds such as gun shots,
door openings and closings, collision
sounds, etc. as well as communication with
the other two members of the team.
Microphones at the Leader and Specialist
positions feed their signals to the master
mixing console, where the Commanders
microphone signal is included in the mix.
Note that the Commander can talk with each
of the other team members separately in
private if the need arises. The signal from
the master mixer is then sent back to each
player where a small mixer integrates it with
environmental sounds generated from audio
files on the ICS machines. These final signal
mixes are then delivered to the headsets of
the HMDs.

Audio Capture and playback is performed by
a separate machine, a Dell Optiplex 560 PC
running Windows 95. The PC’s sound
hardware (a Sound Blaster AWEG64) is
connected to an intercom system that allows
both players and the experimenter to talk to
each other as if communicating via radio.
The PC is also attached via serial cable to
both the SGI Onyx running the playback
system, and the SGI Indy running the data
capture program. During data capture, the
PC receives its recording commands from
the Indy. The Indy first instructs the PC to
ready itself for audio capture and informs it

of the current trial's unique ID number.
Next, it instructs the PC to begin audio
capture. At this point the PC begins
“listening” on its audio input port for audio
communication. When the audio level rises
above a preset threshold, the PC saves the
current time (from its internal multimedia
timer) and begins recording audio into a
.wav file. The threshold code acts as a
software VOX circuit, and reduces the size
of the .wav files when no communication is
occurring. After the audio level falls below
the threshold for a fixed amount of time,
recording stops. The PC then calculates the
length of the audio clip and saves the ending
time of the clip. It then returns to “listening”
mode. Finally, the SGI Indy informs the PC
when to stop recording audio. All audio clips
with their associated time stamps are then
saved into a file in the same directory as the
.wav files. This allows them to be recalled
later by the playback system.

After Action Viewer Application
The Playback/After Action Review system is
designed to allow experimenters and
subjects to view a complete audio/visual
computer-generated reenactment of an
experimental trial. Features of this system
include:
The ability to view any instant
of the experiment from any
viewpoint
The ability to advance or rewind
the reenactment at any desired
rate of speed
The accurate representation of
environment changes (doors
opening, paint markers on
walls, etc.) both during normal
playback and fast/slow motion
The recreation of audio cues
(e.g door sounds) and player
audio communications (radio
com) synchronized to the visual
playback

The Playback system runs on either of the
SGI Onyx RealityEngine2 machines used as
ICS stations during the mission. The
software is built from the same libraries
used to develop the experiment. In effect, it
acts as a stealth station with a variable

viewpoint, but reads PDU’s out of a data
capture file rather than fresh off the network.
In addition, the same PC used to record the
subjects’ audio communication is used to
play back this audio, allowing the
experimenters and subjects to both hear as
well as see how the mission progressed.
The control panel for the viewer has familiar
VCR-style controls allowing play, stop,
rewind, and fast-forward at the click of a
mouse. There is also a shuttle dial that
allows for variable speed playback, both
slower and faster than normal. The panel
provides a real-time clock and a PDU
counter to indicate where in the recorded
mission the playback system is currently
pointing.

The playback system begins by first reading
in the requested PDU file, sorting the PDU’s
chronologically (by their saved time stamp),
and pre-loading the appropriate body and
environment models. It then establishes
communications with the audio playback
PC, instructing it to prepare to play the
appropriate trial’'s audio data. When the play
button is pressed on the Playback control
panel, the PC is sent a “play” command with
the current time index (in milliseconds). The
PC then computes which .wav file to play
based on this time index. If the time
happens to fall in between two .wav files in
its list, it waits until the correct time to play.
If the time is somewhere within a .wav file,
it begins playback from an appropriate offset
into the file. Audio is only played while the
system is in real-time playback mode;
therefore, if any control other than “play” is
selected on the control panel, the audio PC
is instructed by the SGI to stop playback.

The simulation time is computed by the SGI
running the visual portion of the playback
system. If the playback system is in “play”
mode, the system’s real-time clock is used
to update the simulation time each frame.
This provides an accurate representation of
the passage of time. If it is in a fast-wind or
slow-motion mode, the time is arbitrarily
incremented or decremented. Each frame,
the SGI reads all PDUs from the file that
happened prior to (or if rewinding,
subsequent to) the current simulation time.
As each PDU is read, the appropriate

entities are updated, the appropriate
weapons fired, and the appropriate doors
opened or closed. After all necessary PDUs
are processed, the next frame is drawn and
the cycle repeated. Originally, a method
was to be implemented that would
continuously synchronize the graphics data
to the audio, because the audio capture PC
is not time slaved to the primary simulation
machines. Preliminary testing demonstrated
that this was not necessary, however, as
both the PC’s and the SGI’s internal clocks
were independently accurate enough to
control the timing of their respective
playbacks. That is, no discrepancy in the
audio and visual data was perceived over
the length of any trial’s playback.

7. Opposition Forces — CGF

In addition to maintaining coherency of
dynamic objects within the shared world, the
CGES application also serves OPFOR
positions and behaviors. OPFORs are
present to keep the mission participants
alert and coordinated, for any room or
hallway could possibly contain one or more
of these characters. The OPFORs can be
programmed with various levels of hostility
and ability, ranging from an armed military
officer with pinpoint firing accuracy and a
high degree of visual acuity, to an unarmed
innocent bystander that should not be
neutralized upon sighting. The OPFORs
can also be set to stand in place and guard
an area, or can be given a sentry path to
follow and search for intruders (i.e., the
participants). Every OPFOR reacts to being
shot by the players’ tranquilizer pistols by
slumping to the ground, and not moving for
the remainder of the simulation.
Configurable parameters for OPFORs
include range of peripheral vision, response
time after sighting a mission participant,
sentry path, and accuracy with a weapon.

Conclusions

The first experiment currently being
conducted with the FITT system is
examining instructional strategies for team
training in VE. Trainee teams study the
mission procedures training manual, and
then practice the missions in VE. During this
practice, the trainees are given guidance
either 1) before each mission with a
demonstration, 2) during each mission with
coaching, 3) after each mission with after
action critique available from the playback
application, or 4) not at all. Performance
measures include: speed and accuracy of
search, communications, and security
procedures; and self-ratings of simulator
sickness. The objective of the experiment is
to determine how and when to give
guidance when training in a VE.

Preliminary testing with FITT indicates that
participants with no previous experience
with VE can rapidly adapt to the FITT
interface for walking and for selecting and
operating equipment. Initial team
performance is related to previous
experience with relevant real-world
procedures and team performance improves
with practice across subsequent missions.

We look forward to extending our network
for team training to support a planned
exercise between team members in
Houston, Orlando, and Montreal later this
year.

9. References

Parsons, Kimberly Abel, Russell, David, A
Research Testbed for Virtual Environment
Training Applications for Dismounted
Soldiers, IMAGE 1998 (In Press)

Singer, M.J., Ehrlich, E.A., & Allen, R.C.
(1998) Effect of a Body Model on
Performance in a Virtual Environment
Search Task (Technical Report), U.S. Army
Research Institute for the Behavioral and
Social Sciences, Alexandria, Va.

Lisle, Altman, Kilby, Sartor. (1994)
Architectures For Dynamic Terrain And
Dynamic Environments In Distributed
Interactive Simulation, 10" DIS Workshop,
Orlando, Fl. March 1994

