
Real-Time Flight Simulators Under NT

Joseph Dube
Intergraph Corporation

Eric Anschuetz
Mark Biddle

Sam Giambarberee
Bruce Riner
NAWCTSD

Abstract

Large-scale training simulation systems have historically required a real-time operating
system to function deterministically. First generation operating systems were no more than
a program loader. Second generation systems, which are the bulk of the existing
production simulators in existence today, have proprietary operating systems written by
computer companies focused on real-time. Third generation systems, which have been in
existence for about ten years, took the standard Unix kernel and modified it to have all of
the real-time characteristics of the proprietary operating systems with a look and feel that
was recognizable by anyone with a Unix background.

Running flight simulators under Microsoft’s Windows NT would be the next evolutionary
step. The main driving factors for this are the low-cost COTS hardware platforms and COTS
software solutions. For Windows NT to be effective as a flight simulator operating system, it
must have the ability to handle IEEE Posix.4 components such as Synchronous and
Asynchronous I/O, Semaphores, Processor memory locking, shared memory, priority
scheduling, fast interrupt response times and interprocess communications. Not only must
NT support these functions, but also it must be modified to make these features the most
time-critical functions of NT.

This paper examines the problems associated with porting flight simulation applications to
NT. This will include the real-time support issues as well as GUI conversion problems
associated with X-Windows to Microsoft Windows.

Author Biographies

Mr. Joseph A. Dube is a Senior Software Engineer for Intergraph Corporation in Orlando Florida.
He is currently supporting Intergraph Federal Systems as the lead consultant on all Visual
Simulation opportunities for Intergraph Corporation. His background includes software engineering
for MultiGen, Inc., Concurrent Computer Corporation, and Harris Corporation. He has spent the last
20 years in both the simulation side and the visual side of Visual Simulation, supporting both
commercial and military simulators. He holds a BSCS from Florida Atlantic University.

Mr. Eric Anschuetz is a senior Computer Engineer at the Naval Air Warfare Center Training Systems
Division (NAWCTSD) in Orlando, FL, where he has worked for the past 10 years. He has worked on
distributed simulations for the past 6 years, and is currently working on HLA modeling and
simulation efforts in support of various related programs in the Modeling and Simulation
Development Branch. He received a B.S. in both Computer Science and Mathematics from
Eastern Michigan University.

Mr. Mark Biddle is a senior Computer/Electronics Engineer in the Modeling and Simulation
Development Branch at the Naval Air Warfare Center Training Systems Division (NAWCTSD) in
Orlando Florida. He is currently working on HLA modeling and simulation efforts in support of
various related programs. He received a B.S. in electrical engineering from the Pennsylvania
State University, and an M.S. in engineering management from Old Dominion University, Norfolk
Virginia.

Mr. Sam T. Giambarberee is a Computer Scientist for the Naval Air Warfare Center Training
Systems Division. He has several years experience in DIS networking and real-time simulations and
has designed and developed the Battle Force Tactical Trainer (BFTT) voice communication and
network interface software. He holds a M.S. degree in Computer Science from the University of
Central Florida.

Mr. Bruce M. Riner is a Computer Scientist for the Naval Air Warfare Center Training Systems
Division. He has over 15 years experience with real-time flight simulators, both in research and
operational simulators, experience in replacing old host computers with newer computers systems,
DIS networking and interfacing the host computer to the visual system. He holds a M.S. degree in
Computer Science from the University of Central Florida.

REAL-TIME FLIGHT SIMULATORS UNDER NT

Joseph Dube, Integraph Corporation, Orlando, Florida
Eric Anschuetz, Naval Air Warfare Center TSD, Orlando, Florida

Mark Biddle, Naval Air Warfare Center TSD, Orlando, Florida
Sam Giambarberee, Naval Air Warfare Center TSD, Orlando, Florida

Bruce Riner, Naval Air Warfare Center TSD, Orlando, Florida

INTRODUCTION

The main purpose for a flight
simulator is to teach a student to fly, or train a
pilot in new techniques, or brush up on
perishable skills. The armed forces use
simulators for teaching various skills, ranging
from basic flying skills to advanced high cost
weapons procedures. Simulating flight
usually involves three different elements: (1)
the simulation of the inside of the cockpit, (2)
the motion and or g-seat, and (3) the visual
systems. The typical flight simulator uses a
host computer system to link all the systems
that build the flight simulator.

The simulation of the inside of the
cockpit involves what the pilot sees, hears
and does inside the cockpit. The pilot sees
the various instruments, and sensors, like
radar, Forward Looking InfraRed (FLIR), and
weapons systems. In order to simulate the
weapons systems or other complicated
systems, the actual flight computers or
hardware from the real airplane may be used
in the simulator. The pilot also hears different
sounds in the cockpit such as engines,
landing gear, radios and other typical sounds.
The actions of the pilot include the
movement of the controls such as the joystick,
instrument controls, weapons system controls,
and various switches or controls.

The motion system simulates the
accelerations of the aircraft; this may include
a motion platform, g-seat and g-suit. However
depending on the training being performed,
some or all of the motion queues may not be
necessary to teach the task.

The visual system is what the pilot
sees outside of the airplane. Most modern
flight simulators use computer graphics
systems to generate the image, which can be
displayed on a dome, large CRTs with special
optics or other types of display devices. The
computer graphics system that generates the

Out The Window (OTW) image also generates
the FLIR image since both are derived from
the same database.

The host computer system that links
the various systems, visual, motion, real
aircraft flight hardware, input output system
for the cockpit and aural system, is the brain
of the simulator. The computer reads in the
pilot’s movement of the flight controls and
any other switches or inputs. Then it
determines the airplane's position, and any
other input actions, like weapons release or
lowering the landing gear. Once the
computer system has computed the airplane’s
new position and any other status change, the
computer informs the rest of the systems so
the new OTW images, sounds, and motion
queues can be generated.

The typical high fidelity simulator
requires the position of the airplane to be
computed at 60 times a second, and that
data is passed to a visual system that
computes a new image 60 times a second. If
real aircraft flight hardware is used, which
may include aircraft computers, it must be
stimulated in a timely fashion in order to work
properly. If the host computer system does
not run in a deterministic manner, the OTW
image or instruments may jump or jitter. The
real flight hardware may also fail to work, if
not given the proper data in a timely fashion.
The pilot could even suffer from simulator
sickness if the various queues are presented
asynchronously to the pilot. In order to have
a well-behaved simulator system, the host
computer must have a deterministic or “real-
time” capability.

The typical real-time computer
system allows for fast interrupt response time,
non-preemptive task priorities, real-time Input
/ Output, and memory locking to prevent
swapping in a virtual memory system.

GENERIC FLIGHT SIMULATOR
PORTING EXAMPLE

Over 20 years ago, NAWCTSD
developed a generic flight simulator for use
in such applications as carrier landings,
vertical take off and landings, and general
avionics training. The original code was
written in FORTRAN and was developed on a
Gould system running MPX in order to run in
real-time. Over the years, the code was
ported to other computers running various
Unix flavors.

When NAWCTSD began investigating
Distributed Interactive Simulation (DIS) for
fast moving aircraft, the generic flight
simulator became an obvious choice for an
initial test-bed. Modern compilers allowed for
a C language DIS front end to be interfaced
with the FORTRAN code of the actual flight
simulator. Initially, this code was ported to a
Motorola computer system consisting of three
single board computers (MVME-187), all
running VMEexec, Motorola’s real-time
operating system. Later, this code was
ported to Silicon Graphics, Hewlett Packard,
and DEC Alpha computer platforms all
running their various flavors of Unix.

When the High Level Architecture
(HLA) was introduced to the simulation
community two years ago, NAWCTSD
launched an Office of Naval Research (ONR)
sponsored effort to investigate the various
uses of HLA. Again, the generic flight
simulator was chosen as the initial HLA test-
bed. Because the Runtime Infrastructure
(RTI), central to HLA processing, was being
distributed in Windows NT, as well as the fact
that PC platforms had grown exponentially
more powerful in the past 10 years and have
become a viable simulation platform, it was
decided to port the Unix-based flight
simulator software to Windows NT.

The first task involved porting the
FORTRAN code to a more modern language.
A search of the web resulted in finding a
“freeware” conversion program developed by
AT&T called f2c that would convert a
FORTRAN program to C. Normally,
conversion programs result in code that has
meaningless variable names, is without
structure, and is not very readable. While this
was somewhat true with using f2c, it was
decided to go ahead with the conversion for
the following reasons:

1) The original FORTRAN code
looked “messy” anyway, and the
conversion with f2c didn’t make it any
more so.

2) Having all of the code in one
language makes it far more portable
(e.g. not everybody has a FORTRAN
compiler anymore and it is sometimes
difficult to link FORTRAN code with C
code).

3) We were using Microsoft Visual
C++, and having all of the code in
C++ made it possible to use the
debugger to debug all of the code.

4) The f2c program did a very
good job of converting code. Even
with multiple EQUIVALENCE
statements and some tricky array
indexing, the code compiled and ran
the first time, after the conversion.

After using f2c to convert the code to C, it
was a simple matter to add formal function
prototypes to make it C++ compliant. In the
end, the flight model code converted to C++
was not pretty, and certainly didn’t have any
object-oriented design to it, but it converted
well and was now able to become the core of
a new HLA object oriented test-bed. The
code now only needed to be ported to
Windows NT from Unix.

There were several specific instances
of code where modification would need to be
done to get from Unix to Windows NT. These
were

1) Timing code - both frame timers
and general time of day functions had
to be rewritten.

2) Socket interface - luckily
WINSOCK’s interface is almost
identical to the ethernet socket
interface of Unix.

3) Shared memory - the Unix flight
simulator relied heavily on shared
memory to communicate with the DIS
core. In HLA, this section was to be
rewritten with object oriented classes
that are linked directly into the code
and would eliminate the need for
shared memory.

4) Printf and cout statements - a
generic write-to-display-window
routine was developed for use in
Windows NT.

5) Joystick routines - a Flybox serial
port joystick interface that was used
on Unix platforms was rewritten for
Windows NT since the serial interface
was quite different. It was also
supplemented with the ability to use a
$20 joystick that can be plugged
directly into the joystick port (read
using DirectInput).

6) Sound Effects - a custom VME
sound card costing $6000 to provide
sound effects on the Motorola system
was replaced with a $30 sound card
that was driven using DirectSound
extensions by Microsoft.

7) Semaphores - replaced with
Windows NT equivalent critical
sections.

8) Byte Swapping - although not
related directly to Windows NT, Intel
processors used by PCs use little-
endian byte ordering as opposed to
the big-endian byte ordering specified
in DIS. For this reason, all data must
be byte swapped upon receipt and
prior to sending out on the network.

In striving to maintain compatibility with Unix
systems, all of the OS dependent code was
placed in separate routines that could be
conditionally compiled resulting in one
baseline that supported both Unix and
Windows NT.

After all of the translation was
complete, the generic flight simulator core
was linked with NAWCTSD’s Simulation
Middleware Object Classes (SMOC) that
serves as both an HLA and DIS interface
layer. The only question was whether or not
the system could sustain frame rates of at
least 30 Hz. In practice, it could, but
obviously frame rates were somewhat variable
because Windows NT is not a real-time
operating system. This was fine for a test-bed
of a generic flight simulator, but may not be
reasonable for an actual flight simulator.

Complementing the F14 flight model
is a separate program that displays all of the
cockpit instruments for either an F14 or F18
aircraft. The generic flight simulator sends
packets of information to the “glass cockpit”
display 30 times a second over the ethernet.
The packet contains all of the information
that is needed for the program to display all
of the instruments with the correct data,
including altitude, fuel levels, heading, and
both target and aircraft time, speed, and
position (TSP) information among other data.
The cockpit program then uses this
information to display all of the aircraft’s
instruments.

This cockpit program also had a
rather long history and was written long before
the flight simulator was converted to either
DIS or HLA. Unlike the flight simulator, this
program was originally written in C, on a DEC
MicroVax II computer running VMS and using
a DEC graphics library. Later, the program
was converted to use X-Windows, which made
it far more portable. The program was
originally written to only display an F18
cockpit. The ability to display an F14 cockpit
was added at the same time that the flight
model was converted to use DIS. The
program was then ported to Hewlett Packard,
Silicon Graphics, DEC Alpha, and Motorola
computer systems all running some flavor of
Unix. A year later, the cockpit display was
ported to a standard PC computer running
LINUX.

By the time that the generic flight
simulator was converted to Windows NT, PCs
had grown powerful enough that it was
possible for one PC to run both the flight
simulator and the cockpit display, so it was
decided to also port the display software to
Windows NT. Luckily, the design of the
original software was such that the low level
graphics routines were confined to basically
one file. Several higher level routines were
written to perform such tasks as drawing
rectangles, drawing circles, changing pen
colors, drawing text, and so forth. These
routines all called low level X Window
routines to actually perform the drawing
functions. It was a relatively simple matter to
change merely the body of the higher level
graphics functions to use the Windows 32 API
(Win32) graphics calls instead of calling X
Windows routines. None of the routines that
actually drew the instruments needed

changing because they all used the high
level routines.

In addition to changing the graphics
calls from X Windows to Win32, several other
changes to the code were made including:

1) Timer code was changed for
generating software interrupts at 30 Hz
from Unix timer routines to Win32
time function calls.

2) Routines to read mouse
positions were changed from X
Windows calls to Win32 message
handlers.

3) The program was rewritten from
one that statically sized the display at
1280x1024 to a resizable window.
Scaling of line drawing routines was
easy, whereas fonts had to be
dynamically generated in order to
resize them correctly.

4) Again, byte swapping was
added in order to read data coming
from big-endian computers.

5) The ethernet interface had to
be changed from Unix sockets to
Winsock.

6) No shared memory or
semaphores where used in the
original Unix program, so no
equivalents had to be added for the
Windows NT version.

In comparing this list of changes that needed
to be made for the cockpit program with the
list for converting the actual simulator, it is
obvious that there is a lot of overlap. In fact,
graphics, timers, sockets, shared memory, and
semaphores are probably some of the first
areas to look at when porting any program
from another operating system to Windows
NT.

In the end, we were able to port a
Unix-based flight simulator that ran on
multiple CPUs to one that ran on a single PC
under Windows NT. Sustained average frame
rates of 30 Hz were achieved which was fine
for our generic flight simulator. Due to the
nature of Windows NT, there were a lot of
small variations on the amount of time spent
for any given frame. This did not have any

real detrimental effect on our test-bed, but
would certainly be something to beware of
when real-time performance is critical to a
simulation.

REQUIRED REAL-TIME FEATURES

There are many ways to define a real-
time system. According to the internet news
group comp.realtime.news, the definition is
given as: “A real-time system is one in which
the correctness of the computations not only
depends upon the logical correctness of the
computation, but also upon the time at which
the result is produced.” Simply stated, a real-
time operating system must, without fail,
provide a response to an event within a
specified time window. This response must
be predictable and independent of other
activities performed by the operating system
on behalf of other tasks. Providing this
response implies that system calls will have a
specific, measured latency period. Using this
definition, Windows NT is not a real-time
operating system. Windows NT is a general-
purpose operating system that has the
capability to provide very fast response times,
but not deterministic response times.

In designing a real-time application,
there are several required features that the
operating system must provide. These
features include real-time control of I/O,
interprocess communication techniques such
as shared memory and semaphores, the
ability to lock critical sections of code in
memory, and the ability to implement priority
scheduling for controlling different real-time
critical tasks. The operating system must
also provide for deterministic responses to
interrupts.

Real time flight simulators may utilize
multiple threads or processes for a variety of
reasons. One purpose might be to distribute
portions of the simulator on different physical
processors within the same machine, such as
high fidelity real-time graphics on one
processor and computationally intensive
search and sort algorithms on another.
Another use might be to interoperate with
other simulators or distributed portions of the
same simulator over a network using data
send/receive threads.

Shared memory is handled in NT by
creating a file-mapping object. Two or more
processes may open the same block of
memory as though it were a file, read from it,
and write to it. A process utilizes a mapped
file object by invoking the CreateFile(),
CreateFileMapping() and MapViewOfFile()
routines. The concept of a file-mapping
object is illustrated in figure 1.

FIGURE 1
Creating a Shared Memory Section

Virtual Address Space
for Process One

Virtual Address Space
for Process Two

4 GB
4 GB

PhysicalMemory

 Memory MappedFile

0 0

0

16 MB

Windows NT is a multitasking
operating system that must handle multiple
processes and threads. The term process
refers to an executable program loaded into
memory complete with all the resources
assigned to that process. This includes its
virtual address space, privilege mask,
resource quotas, and dynamically assigned
objects such as open files or shared memory
blocks. Every process has at least one thread
of execution, that is, one path that the
processor follows through its code. All
threads belonging to a process share the
resources and assets of that process. They all
follow instructions from the same code
image, refer to the same global variables,
write to the same private address space, and
have access to the same objects. A single
process can choose to divide its work into
several simultaneous tasks by creating a
thread for each of these tasks. When a single
process runs several threads at once, it is
called multithreading. When a single
processor runs several processes at once, it is
called multitasking. Threads should usually
be considered anytime a program is involved
with asynchronous activities. Threads are

created quickly and they interact with each
other easily, whereas creating a new process
is more time consuming and involves the
system loading and activating a new
executable image from disk.

In terms of efficiency and speed, a
single process multi-threaded design is
generally preferable to a multi-process
design. Process creation, switching, and
destruction, for example, are slow compared
to the same operations for threads. Threads
also have the advantage of sharing memory
and other resources, such as file descriptors or
handles to graphic devices, within a process,
while preserving the capability for
maintaining thread-specific resources. There
is less overhead required in inter-thread
communication verses inter-process
communication. For these reasons, the focus
of this discussion is on threads as opposed to
processes.

In Windows NT, threads can have one
of six states, which include ready, standby,
running, waiting, transition, or terminated. In
ready state, a thread is available to be
scheduled for execution, but has not yet been
scheduled. In standby state, the thread has
been scheduled and is waiting its turn to run
on a processor, which happens at the next
context switch. When in the running state,
the thread is executing instructions on the
processor until its allotted time slice runs out.
In the waiting state, the thread is suspended
pending some particular event. In the
transitioning state, the thread is suspended
pending retrieval of a required resource by
the operating system. And in the terminated
state, the thread ceases execution.

Windows NT uses a preemptive
multitasking thread scheduling policy.
Preemption of a thread can be affected by its
priority, which can be set either manually
through software or automatically by the
operating system.

Every process has a priority rating,
and threads derive their base scheduling
priority from the parent process. When the
system scheduler preempts one thread and
looks for the next thread to run, it gives
preference to threads of high priority. Once
the scheduler selects the next highest priority
thread to execute, it saves the context of the
currently executing thread and loads the

context of the new thread into the processor
registers. The newly loaded thread runs for
one time slice, which is likely to be 10 to 20
milliseconds[1].

NT provides several types of
synchronization objects, which include
critical sections, mutexes, semaphores, and
events. Processes, threads, and file objects
can themselves also be used as
synchronization objects.

The critical section is probably the
most efficient of the synchronization objects.
It is similar to a mutex, but whereas a mutex
can be used between threads of different
processes, a critical section can only be used
between threads of the same process. The
state of a critical section object is either
signaled or not-signaled. Programs use the
critical section by requesting ownership of it.
The state of the critical sections is set to not-
signaled when it is in use by a thread, and
any additional threads requesting ownership
are put in the wait state pending release of
the critical section. Once the thread with
ownership of the critical section is done with
it, the critical section is released, and its state
is reset to signaled, making it available to
other threads.

The term critical section, in addition to
being the name of a particular
synchronization object, is also used to refer in
general to any section of code that is
protected by a synchronization object,
whatever type of object it may be.

The mutex object gets its name from
the words “mutual exclusion”, because access
to the critical section (protected code) within
a mutex is available only to the thread with
ownership of the mutex. The mutex operates
like a critical section. A thread which owns a
mutex or critical section object may
repeatedly wait for the same object without
deadlocking itself, but must release the
object after each wait [3].

A semaphore object allows a
specified number of threads to simultaneously
access a critical section. This number of
threads is specified in a count, which is
specified during the semaphore creation. If a
thread requests use of a semaphore, and the
count is greater than 1, then the thread is
granted use and the count is decreased by
one. Once the thread is done using the

semaphore, it releases the semaphore and
the count is again increased by one. If the
count reaches 0, then any additional threads
requesting use of the semaphore are placed
in the wait state until the count is increased
again, at which time the threads are granted
use according to the order in which their
requests were made.

Event synchronization objects are
used to notify threads when a desired
condition or set of conditions occurs. A
thread can wait for one or more events to
simultaneously reach the signaled state
before continuing. After being put in the
signaled state, an event needs to be reset to
the not-signaled state. Events can be defined
to either reset automatically, or to wait to be
reset manually through software.

Threads or processes can themselves
be used as synchronization objects. The
handle of the thread or process goes into the
signaled state when the thread or process
terminates. Finally, a file may be used as a
synchronization object. Its handle goes into
the signaled state upon completion of file I/O
operations.

In the Scalable Architecture for
Distributed Interactive Systems[2] project,
single processor pentiums were used as a low
cost approach to handling thousands of
entities being generated in a distributed
interactive training environment. The
primary concern was to give highest priority to
the thread processing incoming network
packets such that no incoming packets would
be dropped or lost. Setting the priority for this
thread using the system routine
SetThreadPriority() did not change the fact
that NT assigned a minimum amount of time
to handle other computable threads when
they obtained the processor. These time
slices ranged from 10ms to 20ms in a rather
unpredictable manner. During the time that
other threads had the processor it was
observed that the thread handling the network
I/O was dropping several packets. The results
suggested that more packets were arriving
during these time slices than the buffers
could accommodate. At an incoming rate of
1000 packets/second, at least 10 packets
were dropped for each time slice devoted to
non-T1 threads (one packet per millisecond).
At an incoming rate of 2000 packets/second,
the dropped packet rate increased to 20
packets per timeslice.

This was unacceptable and indicated
that NT threads were not suitable for this type
of real-time process. In the end it was
necessary to utilize a single process design
that did nonblocking network reads by
periodically polling the receive sockets
during idle frame time. It was also necessary
to perform occasional I/O polling during
compute-intensive sections of code.

The use of Windows NT in this project
precluded the precise timing implementation
demanded by real-time simulations. Frame
timing was implemented using NT’s
TimeGetTime() routine which returns the time
since NT was started. Resolution was set at 1
millisecond via the TimeBeginPeriod()
routine. These functions were used in a
polling fashion by the PC acting as the
simulator host to provide frame syncs to a
network of PCs as shown in figure 2.

ATM
Switch

(Ports 1,......)

 SIM
 HOST

NIU Computational PC

FIGURE 2
Scalable Architecture

NIU Computational PC

NIU Computational PC

Windows NT does not provide a
technique for handling interrupt driven I/O
events, and this affected synchronization
among the networked PCs (each PC received
the frame syncs at different times). To use
Windows NT effectively in this application, a
better frame synchronization method would
have to be implemented.

SURVEY OF REAL-TIME MICROSOFT
NT COTS SOLUTIONS

Since Microsoft NT is at least a
portion of the synchronization problem, let’s
explore ways to decrease its variability when
responding to interrupts.

Deterministic Response Times

Trying to decide which Real Time OS
(RTOS) to use in the Flight Simulation
domain can be a daunting task. As it turns
out, there are over 40 RTOS’s now on the
market trying to solve one or another flavor of
the real time problem. This group of 40
RTOS’s can be divided into groups if you
consider each group as a function of the time
an interrupt occurs requesting a process to
run, until that process runs (Figure 3.)

 FIGURE 3

Dividing up the RTOS’s into three
groups: (1)Embedded OS’s, (2)RTOS’s
running with Microsoft NT and (3)Microsoft
NT modified for Real Time. Examples of
these groups are Wind River’s VXWorks for
Embedded OS’s, VentureCom’s RTX for an
RTOS and Windows CE for a modified
Windows. All three of these Operating
Systems have development environments that
run under standard Microsoft NT, so from a
user’s perspective, they are similar. Each of
these three groups can be delineated by how
fast they perform the steps described in figure
1 - the time from receipt of an interrupt
through the executing of the first instruction
of the interrupting process.

So, given these three categories,
where do flight simulators fit? Working
simulators of today are driven with computers
designed for worst-case process dispatch
latencies of 200 microseconds (Harris
NightHawks and SGI with REACT/pro). If we
use this number as the determining factor in
choosing a Microsoft NT environment, we
can see from Table 1 that RTOS’s running on
the same processor as Microsoft NT will solve
the flight simulation deterministic response
time problem.

Deterministic Response Times

nsec 1-
100

usec

> 5
msec

Embedded OS
(VxWorks)

X

RTOS w/NT
(VentureCom)

X

NT modified for Real
Time (Windows CE)

X

Standard NT X

Table 1

In the cases where VentureCom was
used, it should be pointed out that RTX 4.1
provides a Real Time Application
Programming Interface, known as RTAPI 2.0.
If a process uses RTAPI-only, then it can
achieve worst-case response times on a
properly configured system of less then 50
microseconds. However if a process uses
other Windows NT API's in combination with
RTAPI, then the process can only achieve
"soft" worst-case response times of around 1 to
5 milliseconds. Both methods and their
respective response times may be
simultaneously employed on the same system
- that is, some processes use RTAPI-only,
other processes use RTAPI with other API's,
and the remaining processes use just the
Windows NT API's without RTAPI.

Windows CE will have similar
constraints, but for the most part solves this
problem by eliminating a bunch of Win32
API functions (500 out of 1000) that seem to
have been the system bottlenecks. On the
plus side, Windows CE runs in a lot less
memory space which is great for embedded
applications like hand-held computers where
memory is a scarce resource. On the minus
side, if you currently have a Windows NT/95
application, it may not compile and work will
be required to use only the Windows CE API
calls.

Multiprocessor Systems

Operating Systems such as Wind
River’s VxWorks supports Multiprocessing
today in a fashion similar to distributed
systems connected together via a high-speed
reflective memory structure. This type of
architecture has worked in the past when one
physical CPU was not powerful enough to
drive all the components of the simulator,
and is still being used today.

Multiprocessor functionality is just
becoming available under RTOS’s such as
RTX. VentureCom has a beta version of RTX
where one CPU is running Microsoft NT with
the other CPU running their real time Kernel,
RTX. When the Deschutes chip arrives this
fall, which supports up to eight processors,
RTX should be able to do the deterministic
real time processing across multiple
processors that is required for the high-end
6DOF and Weapons Systems Trainers that are
today fielded on proprietary hardware and
Operating Systems.

Windows CE is a preemptively
scheduled, multithreaded operating system,
just like Windows 95, Windows 98, and every
version of Windows NT. One difference is in
the maximum number of processes that the
operating system can support. On the desktop,
the limit is system memory. On Windows CE,
the maximum number of processes at any
one moment is 32. On a Handheld PC, the
shell and bundled applications create 10
processes, leaving room for 22 user processes.
The l imit on the number of threads in the
system is much higher and is only limited by
available system memory. On Windows CE,
as on desktop versions of Windows, threads
are the unit of scheduling and every thread
has a stack and a priority. Every process that
starts running gets one thread, and from there
processes can create more threads. If you
want to port an application to Windows CE
that uses a large number of processes on
another OS, one way around the maximum
process limit involves using threads. Combine
two or more processes into one process, with
each sub-process having its own thread.
Obviously, this requires having a reasonable
way to combine processes. Work will start to
pile up if, for example, two processes to be
combined had a lot of global variables with
the same names, or if the same function
names were used.

Conclusions

Comparing the three Operating Systems
(out of the 40 or so available), some
comparisons can be drawn.

1. Of the three, Wind River’s VxWorks has
been around the longest and therefore is
more mature. It supports a more Unix-like
interface but is rapidly moving over to
support those customers who prefer the
Microsoft development environment.

2. Windows CE is the least mature. There
are planned enhancements such as
nested interrupts, better thread response,
additional task priorities, and semaphores
which will allow immediate response to
external events and interrupts, which will
not be released until second quarter,
1999. Windows CE seems to have been
initially designed for hand held
computers (i.e. palm computers). By the
first half of next year, Microsoft has
promised to enhance Windows CE to
support demanding real time and mission
critical applications.

3. VentureCom’s RTX develops and runs
under standard Microsoft NT and if one is
familiar with that development
environment, they would feel right at
home. RTX is more like the existing flight
simulator operating systems where the
development and run-time environments
are the same. VentureCom’s SMP support
is a must for flight simulators and should
be available at this year’s I/ITSEC. They
additionally plan on supporting Windows
CE, which will allow a single
development environment for RTX on
both embedded and non-embedded
computers.

All three approaches have one common
weakness – device drivers. This is not a new
problem to the real-time community. When a
device interrupts and takes control of the
system, the worst-case interrupt response time
becomes bounded by the behavior of the
driver. While the BIOS and Microsoft
Windows NT kernel operations that mask
interrupts keep real-time operations to a worst-
case interrupt response time of 20-50
microseconds, device drivers may be
unbounded. Currently the only solution is to
test devices for well-behaved drivers.

Real Time under NT, even with some
of the extensions described in this paper, may
not quite be the guaranteed response time
solution yet. But the key word is yet. Fifteen
years ago the same arguments were used
when Unix solutions started appearing in the
flight simulation arena. Today Unix kernels
that have been modified for real time are
operating some of the most demanding flight
simulators built in the last fifteen years.
Microsoft NT with real time extensions is
poised as the next real time OS.

REFERENCES

[1] Mastering Windows NT Programming,
 1993, Brian Myers, Eric Hamer

[2] A Scalable Architecture For Distributed
 Interactive Systems.
 1997 Interservice/Industry Training,
 Simulation and Education Conference.
 William Rowan, Sam Giambarberee

[3] Multithreaded Programming with
 Windows NT,

1996 Prentice Hall, Inc.
Thuan Q.Pham and Pankaj K. Garg

BIBLIOGRAPHY

Microsoft Corporation, April 6, 1998.
Microsoft Announces Plans to Expand Arena
for Embedded Applications With Windows CE
by Addition of Hard Real-Time Capabilities.

Microsoft Corporation, April 8, 1998. Microsoft to
Incorporate VetureCom’s Component Technology
Into Future Versions of Windows CE.

Microsoft Corporation. FAQ for Windows CE
Version 2.1

Microsoft Corporation. Real-Time with Windows
NT.

Timmerman Jr., Martin “Windows NT as Real-
Time OS?” Realtime Magazine, Q2, 1997.

Quinnell, Richard A. “Tackle real-time applications
with Windows NT” EDN Magazine, Sept. 12,
1997.

