FREE SOFTWARE:
OPEN SOURCE OR OPEN WOUND?

Bruce Johnson, SGI
Orlando, Florida

ABSTRACT

From out of nowhere, the open-source movement is sweeping through the simulation and training industry
with all the temperance of a locomotive. Take the Linux® kernel for example. It seemed only a year ago
that Linux was considered no more than a hacker's toy or a graduate student's project. But today, Linux is
endorsed by nearly every major computer hardware vendor and is found in a wide variety of applications
from Web servers to full flight simulators (FFSs).

While known most for the Linux kernel, the open-source movement also includes many other software
products, such as real-time operating systems, compilers, libraries, development tools and Web HTTP
servers. In fact, the majority of HTTP servers on the Web today are powered by free software.

Yet there are still a lot more questions than answers when dealing with open-source software. As a
vendor, how do | differentiate my product? As a software developer, how do | license my product and
protect my intellectual property? As an end user, how do | service and maintain my systems? This paper
looks beyond the hype and addresses these and other difficult questions that are associated with open
source software.

In addition, also addresses both positive and negative common misconceptions about open source
software. Finally, it gives examples of how open-source software is being used in simulation and training
systems today and provides some lessons learned for those not yet following the open source herd.

BIOGRAPHY

Mr. Bruce Johnson is a member of the technical staff at SGI in its Orlando, Florida facility. For the past five
years he has been responsible for applying real-time technology to the simulation and training industry.
Before joining SGI, Mr. Johnson spent more than 10 years working for both simulation integrators and
computer system manufacturers. He has authored several papers for other I/ITSEC programs dealing with
computer system architecture and operating system technologies. He holds a Bachelor of Science degree
in Computer Engineering from the University of Florida.

FREE SOFTWARE:
OPEN SOURCE OR OPEN WOUND?

Bruce Johnson, SGI
Orlando, Florida

INTRODUCTION

This paper explores the benefits and pitfalls of
using open-source software in the simulation and
training industry. It is clear that Internet-based
industries, such as Internet service providers
(ISPs), can quickly benefit from open-source
(since much of the software originates from that
community). It is much less certain whether the
simulation and training industry can equally
benefit.

To that end, this paper evaluates business and
technical issues associated with using and/or
developing with open-source software. It examines
some existing open-source projects and activities
occurring in the simulation and training industry
and gleans lessons from these projects that can be
applied to other development work and activity.

Although this is not a Linux paper (the open-source
movement is larger than Linux), it will briefly
compare features of Linux with those found in
other operating systems. It also addresses some
of the issues associated with using Linux in a real-
time training device.

A concerted effort has been made not to present
material in this paper that is readily available on
the Internet. Therefore, many references will be
made to Web sites that contain information that
supplements the material presented herein.

As a final note to the introduction, it is important to
remember that the open source community moves
quickly. Although it could be argued that it does not
always move in the correct or even a constant
direction, there is no argument that there is
constant change. Change occurs so quickly, in
fact, that certain points in this paper will likely be
outdated by the time it is published. Necessary
additions will be provided in the paper
presentation.

BRIEF HISTORY OF OPEN SOURCE

The beginning of the open-source movement is
credited to Richard Stallman. His Free Software
Foundation (FSF, www.fsf.org) and GNU project
(GNU is a recursive acronym for GNU's not
UNIX®) first championed the idea of free source
code. In 1984, Stallman quit his job at MIT and
began developing GNU Emacs - originally
designed as the first step in developing a
completely free operating system and development
environment.

Stallman is important to the open source
movement for two reasons. First, his GNU
software is used extensively in the development of
virtually all of today's open source software. The
GNU compilers and development tools are the
basic building blocks for Linux. Second, Stallman
is the heart and passion of the free software
movement. It was Stallman who first delivered the
idea that software (and source code) should be
free — not free as in gratis but free as in unfettered.

This is a commonly misunderstood principle of the
open source movement — that it believes that all
software should be given away freely. According to
Stallman, free software has nothing to do with
price, but rather it means for a user to have the
freedom to:

¢ Run the program

¢ Modify the program

¢ Redistribute copies of the program

e Distribute modified versions of the
program

Stallman continues to be the movement's hard-
liner, often criticizing other open-source software
licenses for their deviation from the GNU General
Purpose License (GPL). Stallman is even critical of
term “"open-source,” feeling that it also
compromises the principles of free software.

http://www.fsf.org

LINUX

While the roots of open source are from Stallman's
GNU project, the movement today is better known
for the work and vision of Linus Torvalds. Torvalds
is the father of the UNIX-like operating system
Linux. Torvalds began working on Linux while a
graduate student at the University of Helsinki in
Finland. He made available the very first Linux
source code on the Internet in late 1991.

Torvalds began with the basic building blocks
already provided by Stallman's FSF — most notably
the GNU compiler and development environment.
Linux is not a port of UNIX, but rather a completely
new operating system that was written almost from
scratch (Torvalds reused some code and ideas
from Minix, a tiny UNIX-like operating system).
Almost from the beginning, Torvalds solicited the
participation of other software developers via the
Internet, and the Linux code began to quickly take
shape.

It is often said that Torvalds' greatest contribution
to open source is not as the constructor of the
Linux kernel itself, but rather the facilitator of the
Linux development process. By opening up the
software development process to the Internet,
Torvalds was able to reap support from some of
the greatest kernel developers in the world — and
not only a few of them. One example of how
widespread the Linux development has come is
the sheer size of some Linux mailing lists. The
Linux-kernel mailing list, for example, is estimated
at more than 20,000 subscribers [1].

From the beginning, and to this day, Torvalds has
controlled every enhancement, patch, and release
of Linux. Although the Linux software development
process is open, no one claims that design
decisions are made by committee.

THE CATHEDRAL AND THE BAZAAR

In 1997 another heavyweight of the open-source
movement, Eric Raymond, shook up the Internet
world with the writing of his treatise on open
source entitled, "The Cathedral and the Bazaar"
(www.tuxedo.org/~esr/writings/cathedral-bazaar).

In this "Internet-published" paper, Raymond
outlines his perception of how and why the Linux
development model works. This publication also
presents a business-case argument for open-
source software — comparing traditional software

development models to that of the Linux open-
source development model. It is this paper that
helped influence Netscape to release its browser
code to the open-source community in January
1998.

The open source label is credited to a strategy
session held in February 1998, and attended by
some of the movement's most prominent
figureheads, including John “"Maddog' Hall of Linux
International and Eric Raymond of the Open
Source Initiative. The main idea behind adopting
the open-source label instead of the free-software
label was because the former term was perceived
as being much less threatening to business.

OPEN SOURCE SQUABBLING

It seems that the one constant in the open-source
movement is the squabbling. There is no shortage
of controversial issues or powerful egos in the
open-source community; verbal jousting and
flaming in both public newsgroups and in the press
are commonplace. The squabbling concerns
external issues (sometimes seen as a "suits
versus the hackers" mentality) as well as internal
ones. Some even argue that this squabbling in
public forums is one of the things that makes the
open-source movement great — even the infighting
is open. Even usage of the term open source is
controversial — who owns the trademark and how
the term legally can be used.

Many sources provide a more detailed history of
the open-source software movement. The book
"Open Sources: Voices from the Open Source
Revolution," a collection of essays from many of
the open-source pioneers, provides insightful detail
about the beginnings of the open-source
movement. Also, the following Web sites contain
more details about open-source history:
www.opensource.org and www.fsf.org.

OPEN-SOURCE LICENSES

One would think that the issue of licensing
software that is free would be a simple one, but to
the contrary it has become a very complicated and
controversial subject. An entire paper in itself could
be devoted to this subject alone. The GNU
General Public License (GPL), defined by the Free
Software Foundation, is considered either the most
open or the most restrictive of open-source
licenses, depending on one's perspective. It is the

http://www.fsf.org
http://www.opensource.org
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

most open because it requires that all software
added to GPL-licensed software be released in
source form under the original GPL license. This
forbids a company or individual from modifying (or
incorporating) GPL-licensed code and releasing it
only in binary form.

Conversely, this openness is viewed by many as
too restrictive — because it requires that new code
that touches the GPL code be released as open
source. Understandably, this severely restricts
intellectual property rights of software developers.
Partially for this reason, the FSF also has a "less
open" license — the GNU Lesser General Public
License (LGPL). Unlike GPL licensed code, an
LGPL licensed library can be linked into nonfree
programs.

In addition to open-source licenses from FSF,
other licenses are generally viewed as approved
for use in releasing open-source software
(although not necessarily approved by all). They
include the following:

e BSD license
e« X Consortium license
e Any number of derived licenses

Derived licenses are those that have slight
modifications to one of the aforementioned open-
source licenses. As an example, SGI released its
GLX library code under a license derived from the
X Consortium License — it included a few added
terms and clarifications (see www.sgi.com/
software/opensource/gix/license.html). These
additions were included to allow other parties to
distribute binary-only drivers built on the open-
source framework. SGI viewed this as critical
because most 3D-hardware vendors (including
SGI) are not willing to expose the source code of
their drivers. The GLX license does meet the
criteria for inclusion into the Xfree86 code base
(more on this in ensuing paragraphs).

Here are a few Internet Web sites that can be used
to better understand the issues of open-source
licensing:

* WWW.Opensource.org
Initiative Web site

e www.mozilla.org/NPL/FAQ.html -
Netscape's Licensing FAQ Web site

 www.fsf.org — Free Software
Foundation's Web site

— Open Source

OPEN SOURCE OPERATING SYSTEMS

As mentioned previously, although Linux is
certainly the most prolific open-source operating
system, it is not the only one. In fact, it is not even
the only UNIX-like, open-source operating system
available. FreeBSD (www.freebsd.org) has been
available as open source software since early
1993. Although some claim there are technical
advantages of FreeBSD over Linux, most
FreeBSD users have chosen it over Linux for its
less restrictive (and perhaps less open) licensing.

The open-software movement has also spread into
the real-time and embedded operating system
space with products such as eCOS (embedded
Cygnus Operating System — (www.cygnus.com/
ecos/) and RTEMS (Real-Time Executive for
Multiprocessor Systems — (www.oarcorp.com). To
date neither one of these embedded operating
systems has seen near the success of Linux, and
their use in the simulation and training industry is
very limited.

AN OPEN-SOURCE OPERATING SYSTEM
DISTRIBUTION

There is more to an operating system than simply
a kernel. More often than not, a reference to Linux
actually means the Linux kernel as distributed with
a myriad of other pieces of open-source software.
A Linux operating system distribution typically
contains hundreds of software components from
many different sources integrated into a single
operating system (OS) distribution. Figure 1 shows
the various types of software components that are
added to a kernel release in order to create a
complete distribution. Clearly, when one claims to
have installed Linux on a computer,

http://www.opensource.org
http://www.mozilla.org/NPL/FAQ.html
http://www.fsf.org
http://www.freebsd.org
http://(www.cygnus.com/ecos/
http://www.oarcorp.com
http://www.sgi.com/software/opensource/glx/license.html

Kernel (Linux,

Device Drivers

Web Tools

Compilers, FreeBSD, etc.) Windowing
Development Environment and
Tools Graphics

Open Source Operating
System Distribution

Networking and
Utilities

System
Administration

Installation and
Packaging Tools

Tools

Figure 1 — Components of an Open-source Operating System Distribution

they are more correctly referring to Linux plus
hundreds of other pieces of software. The top five
Linux OS distributions today are generally thought
to be:

* Red Hat Linux (over 50% of the market)
* Debian GNU/Linux

» Caldera OpenLinux

* Slackware

* S.US.E.

A complete list of distributions can be found at
www.linuxhg.com/dist-index.htmil.

A COMPLETE OPERATING SYSTEM SOLUTION

In the same way that a Linux distribution is made
up of much more than a kernel, an operating
system solution is made up of much more than the
software itself. As can be seen in Figure 2, an
operating system typically requires many levels of
support, training, and documentation. Many of
these OS requirements are now provided by some
of the Linux distribution vendors as well as
mainstream computer vendors such as IBM, HP,
and SGI. The fact that Linux has not historically
been provided as a complete solution from a single

vendor has bothered businesses and independent
software vendors (ISVs) alike. The next few
sections examine what the open-source
community and traditional computer vendors are
doing to address this issue.

STANDARDIZATION

The computer industry (and much of the simulation
and training industry) seems to have a love-hate
relationship with industry standards. Standards are
generally viewed as good, unless of course, they
get in the way of what is determined to be a more
important agenda (such as a lower price or shorter
time to market).

The past 15 years, have seen no shortage of
computer industry standards, although there may
have been a shortage of successful industry
standards. Ideally, industry standards have the
following characteristics:

* Quickly adopted

* Universally accepted

* Free from proprietary influence
* Beneficial to the community

http://www.linuxhq.com/dist-index.html

Long-Term

Operating
System
Distribution

Installation

Support

Development
Support

Standardization

Open Source Operating
System Solution

Support

Training

Documentation

Customizations and
Enhancements

Figure 2 — Components of an Open-source Operating System Solution

In reality, however, it is difficult to achieve and
maintain all of these goals. For example, the
computer industry was quick to adopt many of
Microsofts APIs (e.g., Win32, Direct3D,
COM/DCOM, etc.) as industry standards even
though they are proprietary.

STANDARDIZATION OF LINUX

There are some common misconceptions about
Linux and standards. For example, contrary to
popular belief, there is no current Linux distribution
that conforms to the POSIX standard (POSIX in
this context meaning conformance to the NIST
FIPS 151-2 test suite). At least one version of
Linux was certified under the 1995 POSIX NIST
certification tests, but the Linux kernel has evolved
considerably since that time (the certification was
under Linux version 1.2.13 while the current Linux
version is 2.2). See lan Nandhra's article at
http://lwn.net/lwn/980611/ standardseditorial.html
for a firsthand view of the work required to make
Linux pass the POSIX standardization test suite
(Nandhra was involved in the aforementioned
Linux POSIX certification effort).

Linux does contain most of the POSIX application
programming interfaces (APIs), but strict
conformance to any standard has never been a
goal of Linux. In fact, many would argue that
conformance to industry standards is even

undesirable as it inhibits change and may require
licensing fees (e.g., for The Open Group's (TOG)
UNIX98 branding).

Without strict conformance to standards, what will
keep open-source software from suffering the
same splintering fate that befell previous UNIX-
based operating systems? Additionally, software
vendors need some form of standards to ensure
that products they port to Linux will continue to
work through various revisions of the operating
system. As Nandhra has said:

"Change. Linux thrives on it, users, buyers, and
ISVs usually hate it."

One potential solution may come from the work of
the Linux Standards Base (LSB), whose mission
statement can be found at www.linuxbase.org:

"The goal of the Linux Standard Base (LSB) is to
develop and promote a set of standards that will
increase compatibility among Linux distributions
and enable software applications to run on any
compliant Linux system. In addition, the LSB will
help coordinate efforts to recruit software vendors
to port and write products for Linux."

As can be seen from its mission statement, the
LSB is not so much interested in applying existing

http://lwn.net/lwn/980611/standardseditorial.html
http://www.linuxbase.org

industry standards (such as IEEE POSIX and TOG
UNIX98 standards) to the Linux code base as they
are interested in standardizing Linux versions and
distributions to one another. Whether the LSB (or
any other standardization effort born of the open-
source community) can truly deliver on its goals is
yet to be seen. Many users, buyers, and ISVs are
waiting eagerly.

DOCUMENTATION

Open-source software does not suffer from a lack
of documentation. It suffers from a lack of
organized, high-quality, consistent, up-to-date
documentation. The historic sources of open-
source documentation have been:

* The source code itself

* The Internet (i.e., newsgroups, mail
aliases, and Web pages)

» Commercially available books

Because open-source software was born of the
Internet (and continues to thrive there), an
amazing amount of documentation can be found
therein. The quality problem remains, however. As
even Richard Stallman admits:

"The biggest deficiency in our free operating
systems is not the software — it is in the lack of
good free manuals that we can include in our
systems."

The open source community is attempting to deal
with some of this deficiency through projects such
as the Linux Documentation Project
(http://metalab.unc.edu/LDP). Yet it suffers from
one of the eternal laws of software engineering — it
is less gratifying and often less respected to
document than it is to develop. Nevertheless,
some significant progress is being made. The
Linux Documentation Project actually covers more
than just the base Linux kernel — it includes other
open source software (e.g., Xfree86, GNU tools,
Web software, etc.). From the LDP Manifesto:

"The Linux Documentation Project is working on
developing good, reliable docs for the Linux
operating system. The overall goal of the LDP is to
collaborate in taking care of all of the issues of
Linux documentation, ranging from online docs
(man pages, texinfo docs, and so on) to printed
manuals covering topics such as installing, using,
and running Linux."

Documentation is also available, for a fee, from
Linux distribution vendors and will no doubt be
provided from traditional hardware vendors as they
begin to support Linux-based products.

TRAINING AND CERTIFICATION

There is certainly no shortage of professional
training available for the most widely used open-
source software. More recently an option is high-
quality, Web-based training offered by companies
such as O'Reilly and Associates.

Of greater concern of late is the development of a
Linux training and certification program similar to
the Microsoft certification programs. To this end,
some Linux distributors have endorsed a nonprofit
organization called the Linux Professional Institute
(LPI), which is developing a Linux certification
program. Initially, LPI's certification program is
aimed at providing a certification program that
covers skills needed by low-level Linux system
administrators. The plan is for this level to cover
two aspects: general Linux system administration
and distribution-specific material. After these
certification programs are developed, it is likely
that LPI will provide a service to approve the
courseware that vendors will provide for Linux
training.

One current controversy on the subject of Linux
training, however, is the fact that independent of
LPI, Red Hat Linux has already begun its own
training and certification program. In the future,
computer vendors that offer and support Linux on
their platforms (such as HP and SGI) will probably
also offer Linux training and certification.

SUPPORT

Once again, the open-source community points to
the Internet (i.e., newsgroups, mail lists, etc.) as its
primary source of support. In fact, open-source
proponents often point to this support structure as
one of the strengths of open source software.
While there is some merit to this, most would
acknowledge that there is plenty of need for more
formal support alternatives.

Although the support aspect of open source is
often criticized, the support picture is changing.
Not only can full support be purchased from many
major Linux distribution suppliers, but also, full
Linux support is now being offered by many
traditional hardware vendors such as IBM, HP, and

http://metalab.unc.edu/LDP

SGI. Some have even begun to provide full 24x7
support, the "Holy Grail" of support.

Additionally, there are companies whose prime
business is providing technical support for Linux
and Linux-based products (e.g., Linuxcare
www.linuxcare.com).

EVALUATING OPEN SOURCE FOR USE IN
SIMULATION AND TRAINING APPLICATIONS

An incredible amount of information (plus
ubiquitous opinions) exists on the benefits of open-
source software. Interestingly enough, however,
what one group might view as an inherent benefit
of open source (such as the do-it-yourself
flexibility), another group views as a weakness.
The ensuing paragraphs outline some potential
benefits of utilizing open-source software
specifically in the simulation and training industry.
First, the issue of using open-source software in
the general sense will be discussed, then more
specifically the issue of using Linux.

Unlike other industries, the simulation and training
industry is uniquely positioned to take advantage
of the open source movement. Here is a brief list of
some reasons why this is true:

1. Integrators largely develop their own
software instead of having to rely upon
third-party applications. A lack of third-
party applications has hindered the growth
of Linux in some cases.

2. A large percentage of existing simulation
and training applications are UNIX-based.
Migration from a UNIX operating system to
Linux is generally a relatively simple task
(i.e., when compared to porting from UNIX
to Windows NT®).

3. According to Eric Raymond, an important
requirement of the open-source
development model is that developers
need to have an "itch" to work on their
software. Because simulation and training
applications are among the most
interesting in the world, the "itch" is
relatively easy to acquire and maintain.

4. The simulation and training industry is not
as tied to constant upgrades as are other
industries (e.g., Internet-based industries).

This freedom permits integrators to
shapshot existing good distributions of
open source without needing to rely on
bleeding-edge releases of software.

5. There is considerable redundancy and
overlap in the software developed for
simulators and training devices.

6. Simulation and training applications often
require specific small changes to software
products provided by vendors — changes

such as adding operating system
functionality or graphics capabilities.
Having the access to change and

customization that open source provides is
very valuable.

For some good reference documents that address
the pros and cons of using Linux in more general
cases see [2] and [3].

EVALUATING LINUX FOR USE IN SIMULATION
AND TRAINING APPLICATIONS

Linux is not new in the simulation and training
industry. It is clear that there are applications, such
as ModSAF/JointSAF, that have been taking
advantage of the benefits of Linux for a number of
years. What is new about Linux is its usage in
higher-end applications such as host computing
and real-time 3D graphics. The next few
paragraphs evaluate some requirements needed
by Linux in order to extend its usage into these
applications areas.

Symmetric Multi-Processing

With the most current release of Linux (version 2.2
native, version 6.0 from Red Hat), the kernel
scales very well up to four processors. Although
scalability is limited in the current release,
definitive plans are in the works to provide a bit
more. Quoting directly from Linus Torvalds on this
subject:

"Symmetric Multi-Processing (SMP) is one
area that will be developed. The 2.2 Linux
kernel will handle four processors pretty well,
and we'll develop it up to eight or sixteen
processors. The support for more than four
processors is already there, but not really. If
you have more than four processors now, it is
like throwing money at a dead horse [1]."

http://www.linuxcare.com

Conversely, other UNIX-based operating systems,
such as SGI IRIX® or Sun Solaris®, scale to 64
CPUs or more. Although 8 to 16 CPUs covers the
vast majority of simulation applications, there are
still a number of high-end applications that require
more.

Real-time Capabilities

Linux has never purported to be a real-time
operating system, but it does have some real-time
features that can increase the determinism of most
applications. However, native Linux (as opposed to
RT-Linux) contains fewer real-time features than
real-time UNIX-based operating systems such as
SGI IRIX or Concurrent PowerMax OS® (see Table
1). Within this table, the term Linux refers to
version 2.2 of the operating system. For a
complete definition of the terms used in this table,
refer to [4].

3D-Graphics Capabilities

Hardware-accelerated OpenGL® is now well
supported on all significant commercial operating
systems — except Linux. At the time of this writing,
hardware-accelerated 3D-graphics capabilities on
Linux are rather weak. However, as is typical of the
open-source community, the situation is changing
fast. A 3D-graphics implementation under Linux is
typically made up of the components shown in
Figure 3. A very simplified description of the
layered libraries in Figure 3 follows.

XFree86 is an open-source implementation of The
X/Window System® that runs primarily on Linux-
based Intel® x86 platforms. XFree86 is developed
and maintained by the XFree86 Project, Inc., a
nonprofit organization. XFree86 is a very high-
quality X implementation, and it ships with nearly
every Linux distribution. For more information
about Xfree86 see its Web site: www.xfree86.0org.

GLX is the "glue" that permits an OpenGL
application to coordinate with the resources of the
X/Window System. It arbitrates between 2D and
3D rendering operations, coordinates OpenGL and
X resources, and provides X protocol extensions
for displaying OpenGL across a network
connection [5].

OpenGL is the leading 3D-graphics API for
developing high-end graphics applications. It is a
vendor-neutral industry standard controlled by an
independent consortium. OpenGL provides the
interface that a programmer will use to render 3D-
graphics for an application (see www.opengl.org
for more information). Mesa is an OpenGL-like API
available as open source and distributed under the
GNU LGPL (see www.mesa3d.org for more
information). Much more of the technical details
about implementing OpenGL and GLX under Linux
can be found in a paper presented by SGI and
Precision Insight, Inc. at LinuxExpo in May 1999

[5].

Real-time Feature Linux Native UNIX Real-time UNIX
Preemptive, priority-based multitasking Yes Yes Yes
Nondegrading, real-time priorities Yes No Yes
Processor isolation/process hinding No No Yes
Locking virtual memory Yes Yes Yes
Posix 1003.1b support Some No Yes
Asynchronous I/O Yes No Yes
Guaranteed real-time response No No Yes

Table 1 — Real-Time Features of Linux

http://www.xfree86.org
http://www.opengl.org
http://www.mesa3d.org

User Application

Optional 3D Toolkit

XFree86 (X/Window System)

GLX OpenGL or Mesa

Device Drivers

3D-Graphics Hardware

Figure 3 - Software Components of Accelerated 3D-Graphics on Linux

Currently, only a few implementations of hardware-
accelerated 3D-graphics exist under Linux: 3Dfx's
Mesa-on-Glide and early releases of
Mesa/GLX/OpenGL libraries for some NVIDIA
RIVA and Matrox G200 graphics chipsets. Glide is
3Dfx's proprietary 3D library. Although 3D
performance of these implementations currently
lags behind their Windows® counterparts, it is
anticipated that this will change soon.

EXAMPLE CASE: RELEASING OPEN-SOURCE
SOFTWARE

SGI has not been a longtime proponent of open
source. However, over the past nine months SGI
has become more committed to the open-source
community by releasing some very powerful
software to open source. Among the software that
SGI has released is the GLX source code.

Figure 3 shows the relationship of GLX to the other
components of an open-source, 3D-graphics
solution under Linux. GLX is critical to high-quality
OpenGL-accelerated 3D graphics support under
Linux.

Releasing GLX code has been a catalyst for the
development of 3D-graphics software in the Linux
space. From the time that SGI first placed the GLX
source code on its FTP server to the time that
libraries first appeared (as beta) in a Linux
GLX/Mesa/XFree86 implementation was less than
four months.

EXAMPLE CASE: DEVELOPING OPEN
SOURCE

While not designed to the level of fidelity required
for a training device, the development of the
FlightGear Flight Simulator (www.flightgear.org) is
still an interesting case study of open source.

FlightGear software is developed using the Linux
development model (i.e., over the Internet) and is
released under the GNU GPL. The -current
simulation models (e.g., flight dynamics, engine
models, etc.) and graphics are somewhat primitive
by training simulator standards; nevertheless the
results are impressive. Perhaps most impressive,
is how quickly new software is being added and
how quickly it gets ported to new hardware. This
achievement is of course a testament to the Linux
development model.

EXAMPLE CASE: USING LINUX ON A FLIGHT
SIMULATOR

A case of using open-source software in flight
simulators that has received some attention in the
Linux press is the work being done by Opinicus for
Northwest Airlines. Opinicus is contracted by
Northwest to upgrade 23 of its aging flight
simulators with newer hardware and software. In
some cases, this means replacing older computer
systems such as Compaq (formerly DEC) VAX
systems with Pentium®ll-based systems running
Linux[6]. To replace host-computer software that
runs at 30 hertz, Opinicus uses an unmodified
standard distribution of Linux. In these cases it is
not unusual for them to receive frame jitter of up to
seven milliseconds, but their simulation models are
designed to tolerate jitter of that magnitude. For
simulation models that require hard real-time
capabilities, such as 2000-5000 hertz control
loading models, they use RT-Linux — a hard real-
time patch overlay to standard Linux available as
open source from www.rtlinux.org/~rtlinux/.

CONCLUSION

This paper does not either endorse or condemn
the use of open source and Linux. Clearly using

http://www.rtlinux.org/~rtlinux
http://www.flightgear.org

open-source software in the right circumstances
can greatly benefit users, developers, and ISVs.
One thing is for certain, there will be seen a great
deal more of Linux and other open-source
software in the simulation and training industry
over the next several years. Michael Tiemann of
Cygnus provides some insightful thoughts to close
with:

"Open Source is all well and good for the hacker
... but there's a gap between what hackers can do
with open-source software and what regular users
can do [1]."

The extent to which the industry is successful in

closing this hacker-user gap will determine the
success of open source over the long term.

REFERENCES

[1] DiBona, Chris, et al., 1999. "Open Sources:
Voices from the Open Source Revolution,"
O'Reilly and Associates, Inc.

[2] Prasad, Ganash, 1999. "The Practical
Manager's Guide to Linux," Internet Article:
WwWWw.0sopinion.com/Opinions

[3] "Is It Time for Linux", Network Computing
Online, May 31, 1999.

[4] Johnson, Bruce, 1998. "Operating Systems for
Training Devices: Does It Make a Difference?,”
I/ITSEC 1998 Proceedings.

[5] Leech, Jon, et al., 1999. "Accelerated OpenGL
for Linux and Xfree86,” May Linux Expo
Proceedings.

[6] Orenstein, David, 1999. "Linux Takes Flight on
Northwest Simulators," May 24, 1999.
Computerworld

http://www.osopinion.com/Opinions

	1c: Figure 3 - Software Components of Accelerated 3D-Graphics on Linux

