INFRA-RED SENSOR SIMULATION

Sanjiv K. Bhatia George M. Lacy
Dept. of Math & Computer Science Visual Simulation Systems
Univ. of Missouri — St. Louis FlightSafety International
St. Louis, MO 63121 St. Louis, MO 63042
Abstract

This paper describes technical/mathematical solutions for simulating infra-red sensor effects. We
have implemented our simulation using a PC running Windows NT and off-the-shelf image processing
hardware and software. In particular, we describe the computation of the dynamic characteristics of the
actual sensor package within the constraints of hardware and software environment. These characteristics
can include video polarity, gain, contrast enhancement, noise, blurring, AC coupling, sensor defects, as
well as video overlays (reticules/test patterns), and are applied in the post-processor phase. This paper
describes the research and development into the Infra-Red Post Processor (IRPP) algorithms needed to
support the sensor simulation. The system performs all the operations in real-time with a 30 Hz refresh
cycle. The IRPP is modular and can be easily changed by configuration data.

Sanjiv K. Bhatia received his Ph.D. from the University of Nebraska — Lincoln in 1991. He is presently
working as an Associate Professor in the Department of Mathematics & Computer Science in the University
of Missouri — St. Louis. His primary area of research is Image Databases, Digital Image Processing, and
Computer Vision. He has published several papers on image databases and the application of knowledge-
based techniques to information retrieval. He is a member of ACM and AAAIL

George M. Lacy is employed by the Visual Simulations Systems (vss) Division of FlightSafety, Interna-
tional as a Systems Engineer. He is the senior engineer responsible for development of sensor simulations at
vss. Prior to joining vss, Mr. Lacy spent 20 years as a United States Air Force Officer responsible for various
engineering projects within the commands and laboratories. Mr. Lacy received his Masters of Science in
Systems Engineering from the Air Force Institute of Technology and a Bachelor of Science in Engineering
from Southern Illinois University at Carbondale. He has published papers on digital flight control systems.
He is a member of ACM and IEEE.



INFRA-RED SENSOR SIMULATION

Sanjiv K. Bhatia
Dept. of Math & Computer Science
Univ. of Missouri — St. Louis
St. Louis, MO 63121

INTRODUCTION

The Infra-Red Post Processor (IRPP) is part of
a real-time infra-red simulation system. The simu-
lated image is rendered by an image generator and
the IRPP adds thermal characteristics to the image
to mimic the look of the IR sensor being simulated
[4]. These characteristics can include AC coupling,
sensor defects, noise, blur, and smearing effects. The
IRPP also emulates the gain, level, contrast enhance-
ment, and polarity functions of the IR hardware being
simulated. For a detailed discussion of sensor char-
acteristics, please see references [5, 6].

Our IRPP implementation is based on perform-
ing the sensor functions [1] independent of the im-
age generator. The image generator computes the
radiance of objects in a database as a function of
wavelength, environment, atmospherics, and ther-
mal characteristics of the objects. However, the dy-
namic characteristics of the actual sensor are left
for the post-processor. These characteristics can
include video polarity (white hot/black hot), gain
(manual/automatic), contrast enhancement, noise
(static/dynamic), blurring, AC coupling, sensor de-
fects (dead pixels/dead lines), as well as video over-
lays (reticules/test patterns).

In this paper, we describe the research and de-
velopment into the algorithms needed to support the
simulation in the PC environment. The algorithms
had to be developed under the constraints imposed by
the hardware and software environment, such as the
absence of facilities to operate on individual pixels,
which had to be simulated by computing convolution
kernels.

In the next section, we provide an overview of the
post-processor in context of the overall system. This
is followed by a description of algorithms. In the last
section, we provide the implementation status and
the conclusion.

OVERVIEW OF THE POST PROCESSOR

The block diagram of the post processor is pre-
sented in Figure 1. The image generator (IG) gener-
ates the IR scene at the rate required by the cockpit

George M. Lacy
Visual Simulation Systems
FlightSafety International

St. Louis, MO 63042

display in the simulator. The scene is generated as
a 640 x 480 pixel interlaced image at 30 Hz. frame
rates. The video input and output are RS-170 for-
mat although other formats can be accommodated.

The frame grabber digitizes the analog video from
the Ir channel of the 1G. The image is given to the im-
age processor which applies the desired sensor char-
acteristics. Finally, the image is converted back to
analog by the image display controller.

The pilot controls are passed as a block of binary
data over the ethernet. The controls are received by
the 1G¢ who constructs the data block and sends it
over the ethernet. These controls are used to modify
the simulated behavior of the image processor, such
as AGC window size adjustment, change in reticule
overlay, polarity adjustment, and test pattern over-
lay.

IMAGE PROCESSING

Image processing is the most important phase in
the post processor. It is here that the sensor char-
acteristics are added to the image. The pilot-desired
effects, such as polarity and gain and level control [3]
are also added in this phase.

Figure 2 presents an overview diagram of the im-
age processing functions used in the post processor.

Analog video from the 1G may be gamma cor-
rected. We undo the gamma correction through a
256 x 16 table lookup. The inverse gamma correction
also converts the input data into 16-bit pixels to com-
pensate for the absence of floating point operations in
subsequent functions. We have assumed that the 1G
is applying a gamma of 2. The inverse gamma correc-
tion is applied by taking the square of the pixel value.
Different gamma values can be accommodated.

In the following subsections, we describe the al-
gorithms for various effects. The software has been
designed such that each effect can be turned on or off
by configuration controls.

AC Coupling



Vid F Image Image Vid
ideo rame . ideo
from IG Grabber Processor Display to Sim
Controller
Control
signal Ethernet PC
from IG
Figure 1: Block diagram of infra-red post processor
. Random
'Input — 47t —»-AC coupling Noise ] noise —+—
image \ rmage generator
Fixed
. Calculate
—» Min/Max attern
/ I AGC Pixel P .
; noise
mismatch
Gain Level IJAccumulate
—> Saturate [—* for G)
persistence
Dead
Element
%\/ - Polarity Reticule correction Output to
ur adjustment overlay " display

Figure 2: Image processing operations in the post-processor

The video data is processed through an infinite
impulse response (IIR) digital filter to simulate AC
coupling. AC coupling is a result of capacitive cou-
pling of the IR sensor elements. It is modeled as a
high pass RC filter consisting of a series capacitor and
a resistor to ground. The IIR digital filter models the
analog filter at discrete sample times corresponding
to the pixel time. The pixels of the image are passed
serially through the filter. The analog filter is de-
scribed in Figure 3. It has an exponential response
with a time constant given as the product of R and
C.

The filter is implemented by
T
T+1

where T is the pixel time constant and z,, and y,, sig-
nify the corresponding pixels in the input and output
images, respectively.

Yn = (xn — Tp-1+ yn—l)

At first, the prototype was tested with a recursive
function call reflecting the above recurrence. How-
ever, the function could not be used as such in the off-
the-shelf environment. Therefore, we approximated
the above equation through convolution using a one-
dimensional kernel of 15 x 1. The size of 15 pixels was
chosen as that is the largest kernel dimension avail-
able in the off-the-shelf graphics library. It can be
modified to account for larger or smaller kernels.

The convolution is based on the expression for y,,.
The major step in the convolution is the calculation
of the kernel which is dependent on the time con-
stant T'. The computation can be simplified by using
the constant ¢ for the fraction such that the above
equation is reduced to

Yn=cC* (Tn — Tp—1 + Yn—1)

_ T
where ¢ = T



Q

§R

Figure 3: Analog filter for AC coupling effect

Solving the above recurrence yields the kernel for
convolution. The equation for y,,, using a kernel of
dimension k£ X 1, is written as

k—1

yn:c-wn—ch_i(l—c)-xi

=0

Gain and Level Processing

Gain and level processing is used to enhance the
contrast in the input data. Gain is implemented by
multiplying each pixel of the frame by a value, level
adds a value to each pixel. The post-processor pro-
vides for the options of no gain, manual gain, and
automatic gain control. In the manual gain control
mode, gain and level values can be specified via pi-
lot controls. Automatic gain control (AGC) is used to
optimize gain and level to stretch a specified window
within the image for maximum contrast.

For AGc, the gain and level values are calculated
from the minimum and maximum intensities of a
specified rectangular window in the center of the im-
age frame. The difference between the maximum and
minimum pixel value (intensity) is denoted by § and
is used to calculate the gain. ¢ can be used in the
computation as is or it can be reduced by a frac-
tional amount at each end to allow the pixel values
to stay between 0 (avoid negative values or under-
flow) and the maximum intensity value for the pixel
(avoid overflow). The fraction of ¢ to discard at low
end and high end of the spectrum are configurable
lower limit and upper limit, respectively. After the
gain and level are calculated from §, they are clamped
by configurable maximum ¢s from their past values.
The windowed AGC capability is used for local area
contrast enhancement in the simulation. We provide
for three [configurable] window sizes that can be se-
lected by pilot control.

Next, we present the calculations for gain and
level for AGC using Figure 4. This figure shows the
output intensity as a function of the input intensity.

This is a linear transfer function where gain is given
by the slope and level is given by the vertical-axis-
intercept [2].

Let I}y.x be the maximum possible intensity value
for any pixel. The minimum and maximum intensity
values in the input image (the local window) are de-
noted by imin and imax, respectively. i, and i .
are used to denote the minimum and maximum in-
tensity values after discarding part of the intensity
range between iy, and ¢max- The gain G and level

L are computed by

§ = imax - imin
Z.;nin = imin + 0 x lower_limit
i;nax = imax —Jdx Upper_limit
o = iinax - Z.inin
G = Imax+6
L = _i;nin X Imax + ¢

We are using our gain and level computations for
local area contrast enhancement in the image. The
contrast enhancement effect is presented in Figure
5 as a rectangular window in the center of the dis-
play. This small rectangular window shows contrast
enhancement around part of the runway, making the
tire marks and the area around the runway darker.
This window shows the post gain computations. The
rest of the image shows the pre gain computations.

Dynamic Noise

Dynamic noise is a per-pixel offset that simulates
the dynamic noise from the imaging array of the
IR sensor. The source for noise is a [pre-generated]
Gaussian-distributed noise image. Each pixel of the
image can be stretched by a random amount (up to 1,
2, 4, or 8 pixels) to simulate the characteristic streak-
ing of the typical IR sensors. The image is then scaled
to the appropriate amplitude. Both noise length and
noise are configurable parameters. The dynamic na-
ture of noise is simulated by scrolling the pixels by a



Output
intensity

Imax

Input

i’ axim“ I'max intensity

Figure 4: Calculation of gain and level for AGcc

random amount for each frame, with the amount of
scroll determined by the pseudorandom number gen-
erator. The scroll wraps around the bottom of the
frame to keep the frame height for the noise constant.

Blur

The blurring effect is defocus through a 7x 7 mask
convolution. The amount of blur is a configurable and
used to calculate the coefficients of the filter kernel.

The blurring effect uses a hard-coded 7 x 7 kernel
though it can be easily changed into a configurable

square kernel. The blur radius is specified as a frac-
tion (between 0 and 1) to be used to select the area
inside the kernel used for blurring. It is used to spec-
ify the weight for different kernel elements.

To compute the weight in the kernel, each pixel
is considered to be a square with width 1 so that the
7 x 7 kernel has the width of each side as 7 pixels.
Every element in the kernel is assigned a weight ac-
cording to the extent to which it is present inside the
circle described by the blur radius B,, shown as the
shaded portion in Figure 6. A pixel completely out-

Figure 5: Local area contrast enhancement effect



Figure 6: Computing the kernel for blurring

side the circle is assigned weight 0 while a pixel com-
pletely inside the circle is assigned weight 1. For the
pixels that are partially inside the circle. the weight
is computed as the fraction of the pixel inside the
circle. The fraction is determined by the distance of
the arc of the circle from the corner of the pixel such
that the selected corner is nearest to the center of the
circle. If D is the distance of the center of the pixel
from the center of the kernel, the distance of the arc
from the center of the pixel d is given by

d=B,—D

d > 0.5 indicates that the pixel is completely in-
side the circle while d < —0.5 indicates that the pixel
is completely outside the circle. For partially covered
pixels, the weight is simply calculated to be (d+0.5).
If the weight for the pixel is denoted by w;;, the ker-
nel element is given by the expression

wij

> Wi

Persistence

Persistence causes a smearing in the image when
the sensor moves. This is simulated by computing a
weighted average of the current frame and the pre-
vious frames. The weights applied to each frame is
computed from an exponential decay function. The
persistence amount is specified as a configurable time.
We accumulate the weighted average of frames in a
history frame. The computation of persistence coef-
ficient with the exponential decay function gives the
history frame F), in terms of the current frame f, and
the last history frame Fj,_; as

t
F, = fn+eil-T -Fny

The above recurrence allows us to compute the
persistence for the previous frames from the last
frame displayed. It may be noted that

lime™ =0
1— 00

which implies that the accumulated frames can be
normalized by dividing each pixel by a constant given
by Z;’io e—iT. This value can be easily computed for
agivent and T.

The persistence effect is presented in Figure 7. It
shows the lightpoint traces as the field of view shifts
towards left.

Other effects

This subsection describes the effects shown in Fig-
ure 2 that have not been covered in the above sub-
sections.

Saturation is used to convert the image from 16-
bit pixel frame to unsigned 8-bit pixels. It is per-
formed by right-shifting each pixel value by 7 bits.
The pixels are shifted by 7 bits instead of 8 bits to
account for one sign bit.

Pixel mismatch is a per-pixel gain that is used
to simulate the non-uniform response of the imaging
array of the IR sensor. This operation is performed
by pixel-wise multiplication of the frame with a pre-
generated frame.

The fixed pattern noise is a per-pixel offset that is
used to simulate the fixed noise pattern of the imag-
ing array of the IR sensor. It is performed by adding
the [pre-generated] fixed noise buffer to the frame.

The dead element is an artifact in the sensing ar-
ray that leads to a pixel not being scanned. The dead
element appears as a horizontal one pixel-wide black
scan line on the display frame. We have implemented
the dead element as a configurable with random dis-
tribution. The number of dead elements is also a
configurable. We generate a dead pixel frame where
the dead pixel elements are denoted by 0. The frame
being processed is pixel-wise multiplied by the dead
pixel frame to simulate dead elements. We also have
provisions for the dead elements being distributed
across the frame instead of over scan lines (salt and
pepper distribution).



Figure 7: Persistence effect

Polarity inversion simulates the capability of the
IR hardware to invert the video from “white hot” to
“black hot”. The inversion is invoked by the crew
through ethernet interface. It is easily accomplished
by taking a one’s complement of each pixel in the
frame.

Reticule overlay is performed by simply overlay-
ing a pre-generated reticule frame on the image. Cur-
rently, we have two reticule frames that are generated
during system initialization. The pilot can choose ei-
ther one of the frames during simulation, or remove
the reticule altogether. Addition of noise, reticule,
and dead element is illustrated in Figure 8.

The gamma correction is a nonlinear mapping of
the video to account for the nonlinear transfer char-
acteristics of display devices in terms of light output
versus the commanded intensity. A standard power
law mapping is assumed. This is applied to the pro-
cessed buffer using a lookup table as the last step
before sending the frame to display.

IMPLEMENTATION

The post-processor is implemented using a Ma-
trox Genesis graphics board using two circuit cards
hosted on a standard Windows NT workstation. The
graphics board provides the operations of frame-
grabbing, image processing, and display control.

The current configuration is made up of three
Texas Instruments C-80 DSP processing elements, and
a neighborhood operations accelerator (NOA).

The post-processor divides the 640 x 480 pixel
input video signal into three horizontal strips (each
640 x 120) as the frame is grabbed. Further process-
ing is localized to the separate processing elements

for each strip for most part. Some of the processing,
such as frame grabbing and image processing, is mul-
tithreaded even within the same processing element.

The system has been designed such that the num-
ber of processing elements is determined during sys-
tem initialization time. This allows the system to be
ported on to a different graphics board configuration,
with fewer or more processing elements.

The implementation has involved creation of
higher-level interface to low-level library function
calls using object-oriented concepts in C++. Thus, to
move to a different hardware/software combination,
we only need to modify the lower-level interface.

CONCLUSION

In this paper, we have described the algorithm de-
velopment and implementation of an infra-red sensor
simulation using a PC and off-the-shelf image pro-
cessing environment. The algorithm development in-
cluded software emulation.

The use of off-the-shelf hardware and software led
us to make a number of decisions that affect the per-
formance of the system. The most notable among
those is the AC coupling effect which had to be im-
plemented with an approximation kernel instead of a
recursive routine.

To achieve acceptable processing throughput, we
divided each frame into multiple strips that are pro-
cessed separately on different processing nodes. This
decision was complicated because of the use of ker-
nels to refer to pixels on a strip assigned to different
processing nodes which are not accessible to the cur-
rent node, and also due to the multithreading aspects.



Figure 8: Addition of noise, reticule, and dead element

We had to minimize the number of synchronization
calls between threads on different nodes as the speed
advantage would be lost.

The system is implemented and is undergoing
testing at the present time.

References

[1] G. E. Ball. New infrared opportunities in com-
mercial aviation. Advanced Imaging, pages 22—24,
April 1992.

[2] R. C. Gonzalez and R. E. Woods. Digital Image
Processing. Addison Wesley, Reading, MA, 1992.

[3] D. L. Peters. FLIR — A different world. In Pro-
ceedings of the IMAGE V Conference, pages 165—
171, Phoenix, AZ, June 1990.

[4] B. J. Russo. Real time thermal imaging sensor
simulation. In Proceedings of the 1996 Image Con-
ference, Scottsdale, AZ, June 1996.

[5] D. L. Shumaker, J. T. Wood, and C. R. Thacker.
Infrared Imaging Systems Analysis. DCS Corpo-
ration, 1988.

[6] W. L. Wolfe and G. J. Zissis. The Infrared Hand-
book (revised ed.). Office of Naval Research, 1985.





