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ABSTRACT

This paper reports the development of a mathematical model that can be used to simulate information over-
load. A decision maker is posited, whose task it is to evaluate units of information arriving at random times.
The decision maker forms an opinion, based on the (possibly inconsistent) indications of the considered
information. This information may or may not be relevant to his or her task, and any unit might or might
not accurately indicate the true situation. Determination that a unit of information is irrelevant takes a small
amount of time; evaluation of relevant information takes longer. The elapsed time to a prescribed level of
confidence provides a metric of decision maker efficiency. The subject’s effectiveness depends on how
frequently relevant information is presented and to what extent he or she is distracted by the accompanying
irrelevant data. The model permits prediction of the optimal rate of presentation of relevant reports as well
as analysis of the effects of distracting data on decision maker effectiveness.

John Boyd is a systems scientist with Cubic Defense Systems in San Diego, California. He holds bachelor’s
and master’s degrees in mathematics from California State University at Humboldt and the University of
California in Santa Barbara, as well as master's and doctoral degrees in electrical engineering from the
University of California in San Diego. His research interests are in nonlinear estimation with application to
target tracking, control systems, and hominal modeling.

Dave Sworder is Professor of Electrical and Computer Engineering at the University of California, San
Diego. He holds engineering degrees from UC Berkeley and UCLA. Professor Sworder has also served
as Dean of Graduate Studies and Research and as Vice Chancellor for Research at UCSD. He is actively
involved in studies of novel sensor architectures for control and estimation.



INTRODUCTION

Continuing improvements in sensors, computing
power, processing speed, and data dissemination
throughput have resulted in vastly increased avail-
ability of information to military commanders and
decision makers of all types. The trend shows no
sign of abating: improved intelligence, surveillance,
and reconnaissance (ISR) systems on such plat-
forms as Global Hawk, U-2, Joint STARS, and oth-
ers are currently proposed, under development, or
being deployed. Meanwhile, force reductions and
funding constraints combine to limit the number of
people available to analyze, interpret, understand,
and apply the information presented by ISR sys-
tems.

Information Processing

Ideally, data generated by ISR systems should
result in knowledge and understanding that will as-
sist the decision maker in carrying out his mission
(see Figure 1). Electrical modulation of some sort
is typically transformed to data, which can be fur-
ther reduced to information. Contextualized, inter-
preted, and absorbed, information becomes knowl-
edge, which, aided by wisdom, leads to understand-
ing. Depending on the sophistication of automatic
processing, a human may first enter the process-
ing chain at the data or information block. Unfortu-
nately, no parallel to Moore’s law! appears to hold
for human ability to process, absorb, and store infor-
mation or knowledge. This fact puts the information
processing chain under considerable stress.

The difficulty of absorbing a large amount of
data or information is commonly recognized, even
proverbial: “like taking a drink out of a fire hose” and
“can’t see the forest for the trees.” After human pro-
cessing capacity is reached, we tend to ignore the
surplus information or, worse, become distracted by
it.

Stochastic processes, and in particular, martin-
gale theory, provide a means to model and simu-
late this phenomenon. This paper describes one
approach, based on some earlier work modeling
human decision-making. In [SCK93], the authors
studied the so-called order effect on decision mak-
ers: Contrary to intuition, the order in which a set
of facts is presented significantly effects the con-

IMoore’s Law /morz law/ prov. The observation that the
logic density of silicon integrated circuits has closely followed the
curve (bits per square inch)= 2(*=1962)) where ¢ is time in years;
that is, the amount of information storable on a given amount of
silicon has roughly doubled every year since the technology was
invented.
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Figure 1: Information processing flow. Sensor read-
ings aid decision maker understanding through a
sequence of transformations performed first by ma-
chines but ultimately by humans.

clusion an evaluator will reach (see also [CS95,
CS92, SC94]. This artifact of human behavior, ob-
served in situation evaluators [AB91], was success-
fully modeled using a recursive estimator not un-
like the Kalman filter. The present study, inspired
by [SCK93], models the effect of information over-
load on a situation evaluator, simulating human re-
sponse to varying amounts of relevant and irrele-
vant data.

MODELING INFORMATION OVERLOAD

A specific example of an information processing
problem will make the model development easier to
follow. Imagine an image interpreter with a specific
area of responsibility (AOR) whose task it is to de-
termine whether a target of interest (TOI) is present
in the assigned area. A sequence of images is pre-
sented to the interpreter at irregular intervals. Some
do not contain the AOR, and after a brief exami-
nation, the interpreter discards them. Others con-
tain the AOR, and after careful examination, the in-
terpreter decides whether the relevant image indi-
cates the presence of a TOIl. Some will, others may
not, perhaps due to screening or countermeasures.
The interpreter knows that target indication is im-
perfect and he or she forms an opinion as to the
presence of a TOl as successive images are con-
sidered. When a specified level of confidence is
reached and confirmed by further images, the in-
terpreter designates the TOI.

The interpreter is trained to ignore any images
that arrive during the “dead time” required for pre-
liminary evaluation of image relevance and for anal-
ysis and interpretation of those images contain-
ing the AOR. While this loss of potentially impor-
tant information is in some ways regrettable, it is
judged preferable to the confusion and inefficiency
that might result if analysis were continually inter-
rupted as new images arrive.

One way to model this situation is illustrated in
Figure 2. A random number generator produces a
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Figure 2: The information overload simulator. It pro-
duces relevant and irrelevant data which is merged
and decimated to account for interpreter dead time,
then passed to a filter model of the interpreter’s
opinion.

sequence of times at which an image generator is
directed at the interpreter's AOR and an image is
produced. These images are generated at an av-
erage frequency of A, frames per second (usually,
A < 1). The image correctly indicates the presence
of a target with probability P.. A similar system pro-
duces irrelevant images (i.e., images not containing
the AOR) at a different rate. Since these images will
not be evaluated by the interpreter, indication of tar-
get presence is not important. In the hypothetical,
real situation, the two streams of images would be
merged and presented to the interpreter. But to per-
mit us to study the effect of irrelevant information on
target detection, we will store both image streams
in a file and feed them to the simulated interpreter
in the next step.

The image interpreter is modeled by the combi-
nation of the last two blocks in Figure 2. The first
block, the busy calculator, accounts for the dead
time resulting from determination of image rele-
vance and analysis of relevant images (7). During
dead times, any arriving images are discarded. The
busy calculator thus forwards to the interpreter only
those images he or she is permitted to analyze in
accordance with discipline and training. All of them
are relevant at this point; those determined not to in-
clude the AOR are discarded by the busy calculator.
The second block of the interpreter model evaluates
each presented image and increases or lowers the
interpreter’s conviction of target presence as appro-
priate.

Interpreter Model

Key to this problem is a model for the image inter-
preter. A bit of mathematics is required to describe
it. Let ¢; be an indicator vector for the condition tar-
get present. That is, let ¢, € {e1, 2}, the canonical
unit two-vectors, [1 0]’ and [0 1], where ¢, = ¢; sig-
nifies that a TOl is present, and ¢; = e» the contrary.
Assume that ¢; satisfies the stochastic differential
equation

dpr = Q'¢y dt + dmy, (1)

where @ is a Markov generator matrix and m; is
a purely discontinuous? martingale. By modeling
¢+ as a Markov process, we are assuming it can
change state. To model the (in fact, unchanging)
state, we will choose a mean state sojourn time
that is very long compared to the interpreter’s en-
counter.

The real interpreter examines a sequence of data
and forms an opinion about the state of ¢;. We
can model this as follows. Let the arriving image
stream be represented by the process {Az;}, where
at each time ¢, Az, € {[0 0], ey, e, } according to
whether no image arrives, an image arrives indicat-
ing a TOI is present, or an image arrives indicating
no TOl is present. The sum z; of { Az} thenyields a
two-vector whose components represent the num-
ber of times a TOI has been indicated (respectively,
denied) up to time ¢. Let the mean rate of arrival of
relevant images be given by the parameter A.

The process {z; } represents a flow of information
and gives rise to a mathematical filtration,® {G.},
that contains all the image-based information. The
interpreter’s opinion at time ¢ can now be modeled
as the expected value of ¢, given the information
available up to that time, £[¢,|G,] = ¢:.

A recursive scheme to calculate ¢, can be found
(see, for example, [Boy96]), but it will require a
model of the relationship between the state of ¢,
and the values of the arriving data. Specifically, we
require the discernibility matrix D whose ijth com-
ponent is given by D;; = P(Az = ei|¢: = ¢;)
whenever a nonzero observation Az, arrives. This
is a model of image fidelity for our problem, and the
elements of D represent the probabilities of correct
(P.) or incorrect reports. Specifically,

P. 1-P.
D_[l—Pc Pc]'

2Detailed explanations of these terms can be found, for ex-
ample, in [Boy96], [SB99], or [EII82].

3Briefly, a filtration {G:} is an increasing sequence of o-
algebras F;, each of which may be taken as synonymous for
the information available to time ¢.



Let R, = diag(AD¢; ), and let Pyy = diag(¢; ) —
¢7 ¢,~. Here and in what follows, the superscript ~
or * indicates the value of ¢, before (respectively
after) the observation update. Under these con-
ditions, and with these defined variables, the esti-
mation filter for ¢, is given by the following relation-
ships:

Between observations,

d - ;

0= Qo @)
and at an observation,
Ay = ¢ — 67 = PysADR; Az, (3)

Between observations, ¢, drifts in the direction
Q'¢:. In our problem, such a drift represents a
changing opinion as to the presence of a TOI in the
absence of data. How quickly this drift would drive
¢ toward its steady-state condition depends on Q.
By choosing @ carefully, we will limit the drift.

At an observation, ¢; experiences a step change.
This is exactly what we would expect: The arrival
of new information confirms or challenges the inter-
preter's opinion. The actual change is the product
of Pyg, AD and R, " Az. From the definition of R,

/\D([S;, we see that R, represents the mean (ex-
pected) vector arrival rate of the data just before the
observation arrives. The increment in ¢; therefore
depends inversely on the expected data arrival rate:
If ¢, is nearly e, (the interpreter is almost certain a
TOl is present) and a contradictory image Az; = es
arrives, the ¢, increment will be relatively large. On
the other hand, if ¢ is closer to es, the expected
arrival rate of images Az; = e will be larger, its re-
ciprocal smaller, and the increment in ¢, will also be
smaller as a result. In short, surprising data is given
more weight than expected data.

For our case of a two-dimensional probability vec-
tor ¢;, the third factor, Py, takes a simple form. If

¢t = [py pn]v then
1 -1
Pyy = pypn [_1 1 ] :

If the interpreter is uncertain about the presence
of a TOI, then p, ~ p, ~ .5 and the coefficient
of P4, will be about .25. But if he or she is 99%
certain in either direction, the coefficient becomes
.0099. The effect of 74, on the update increment of
¢ is to make it larger if the interpreter is uncertain
and smaller if the interpreter has already formed a
strong opinion. This attribute of the filter mimics
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Figure 3: Density functions for an exponential dis-
tribution and two members of the gamma family. Al-
though each has mean 1, the gamma-distributed
variables are much less likely to be close to 0.

real-life “anchoring,” the observed difficulty in con-
vincing a person to change his mind, once a com-
mitment has been made.

Busy Calculator

We turn now to the issue of dead-time in our
model. Let 7; be the average interval in seconds
between arriving irrelevant images, and let 7, be
the interval for relevant images. Assume the time
for determination of image relevance is exponen-
tially distributed (see Figure 3) with mean 7; and
that the time for analysis and evaluation of relevant
images has a gamma (or Erlang) distribution with
mean 1y.. Observe from Figure 3 that the expo-
nential distribution has a preponderance of short
times. We judge this characteristic to be inappropri-
ate as a model of analysis time, choosing instead
the gamma model* with parameter 4. Although the
gamma density family is an extension of the ex-
ponential, the other gamma distributions lack the
strong tendency toward small values, as is clear
from the figure.

The busy calculator draws images from both rel-
evant and irrelevant images streams. When a rele-
vant image is encountered, it is copied to the inter-
preter input file and the calculator draws a gamma-
distributed random time of the prescribed mean,
T4-. The clock advances, skipping over both rel-
evant and irrelevant images, and processing re-

4See, for example, [Pap91, chapter 4] for explicit density for-
mulas and a discussion of the characteristics of these distribu-
tions.



sumes at the new time. A similar skip (of mean
length 7y;) is performed when an irrelevant image
is encountered. The resulting image file has thus
accounted for classification and analysis dead time.

In the real-world example, the results of an im-
age analysis would first be available to update inter-
preter opinion at the end of the analysis dead time.
For simplicity, we omit this detail from our simula-
tion, allowing the interpreter opinion to drift during
the dead time. Because of the very long time con-
stants we choose for the target presence state ¢,
however, this effect is negligible.

Alternative Models

The model we have chosen is perhaps the sim-
plest that will fit the problem. Others might be con-
sidered. For example, suppose we model the image
relevance as random and only indirectly known. Let
a; € {e1,e2} be inindicator vector for the condition
“radar is pointed at the AOR” so that a; = ¢; indi-
cates the radar is currently delivering relevant im-
ages and «; = e, indicates the opposite. Let p; be
defined as was ¢, in our earlier discussion, indicat-
ing the condition “TOI is present.” Now construct a
composite state vector ¢, = a; ® p¢, Where ® indi-
cates the Kronecker product. The values of ¢, are
shown in Table 1.

The observation sequence {Az:} now takes val-
ues in the same space as {¢; }, and a new discerni-
bility matrix 1 must be found. The Markov gener-
ator () must now permit occasional transitions be-
tween relevance and irrelevance. The filter for this
problem is given by equations (2) and (3) with the
new matrix parameters. But ¢, now reflects the es-
timated currentimage relevance as well as the pres-
ence of a TOL.

We could also build the busy calculator into the
interpreter model where, it could be argued, it be-
longs. In addition to the {«;} and {p;} process-
es just defined, let {r;} be a gamma process of
order, say, R which determines the dead time for

Table 1: State vector values for an alternative inter-
preter model incorporating image relevance into the
estimated state.

Meaning

target present, AOR in image
target present, AOR not in image
no target, AOR in image

no target, AOR not in image

¢>t [
€1 €1 €1
€2 €1 €2

€3 €2 €
€4 €2 €2

the interpreter. The process {r;} takes values in
{e1,eq,...,er}. State e is the “idle” state: While
r, = e1, the interpreter is waiting for an image to ar-
rive. When an apparently irrelevant image arrives,
r, makes the transition ¢; — e5. If a relevant im-
age arrives, r; makes the transition e; — egry1.
When not in state ey, no arriving images are con-
sidered. It is this rule that builds the dead time into
the interpreter model. When not in state ey, r; tran-
sitions only to the next lower state. Let 7; be the
mean sojourn time in state ¢,7 = 1,2, and let A be
the mean arrival rate of the merged stream of im-
ages. Suppose 1/3 of the images are irrelevant and
Tai = Tyrs3. Then for R = 3 the generator matrix for
{r:} is given by

- 23 0 2\/3
| Tw —1/Tu 0 0
@=1" 1Ty  —1)Ty 0
0 0 Ty —1/Ty

The derivation of equations (2) and (3) assumes
that state transitions in ¢; are not coincident with
arrival of observations Az;. In this model, that may
not be the case: Arrival of a new images may be
very likely to coincide with changes in ¢;. A new
derivation is required, and the results yield a some-
what different form for the ¢, filter. The modified
filter (and its development) are shown in the Ap-
pendix, but it will not be discussed further here.

EXAMPLE

We implemented the information overload simu-
lator in MATLAB. We considered two cases for this
report:

irrelevant data Given a fixed amount of relevant
data, how does the interpreter respond to in-
creasingly frequent interruptions by images not
containing the AOR?

relevant data |Is it possible to have too much rele-
vant data? How much information is gleaned
from a sequence of images, all containing the
AOR, arriving so rapidly they cannot all be an-
alyzed?

Study 1: Choking on Irrelevant Data

The objective of this study was to determine the
effect on TOI detection time of varying amounts
of irrelevant data. We set the simulation parame-
ters as shown in Table 2. For a metric we chose
time to detection, defined as the first time at which



Table 2: Simulation parameters for Study 1: Chok-
ing on Irrelevant Data.

Param. Value Remarks
Ar .0167 /sec mean rate, relevant data
Tar 30s mean dead time, relevant
Ta; 3s mean dead time, irrelevant
P, .75 image accuracy
Ty 100 s time for detection
Relevant images
1 * PR ' + s s ]
0.5 i
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Figure 4: A single run of the information overload
simulator. The top graph shows the sequence of
relevant observations and their values; the middle
graph depicts a similar sequence of images not con-
taining the AOR, and the bottom graph those im-
ages that survive the busy calculator. The probabil-
ity of TOI present is also plotted.

the probability of TOI had been the detection confi-
dence threshold, 0.90, for 7; seconds. The mean
frequency of arrival (frames per second) of the
nonAOR-applicable data was varied from .02 to .5;
while frequency of arrival of relevant data was held
constant at mean .0167 s. Thus, on average, there
was a relevant frame every 60 seconds, and irrele-
vant frames at a rate of every 2 seconds to every 50
seconds. We performed 200 runs for each value of
1.

Figure 4 shows the result of a single simulation
run similar to those for Study 1. The top graph
shows that in this case, 8 relevant images were
received, 1 of which erroneously indicated that no
TOI was present. The middle graph indicates ir-
relevant data was somewhat more frequent. The
interpreter opinion filter saw, in this case, most of
the relevant data, losing 3 of the observations. At
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Figure 5: Mean time to detect a TOI for varying fre-
guencies of irrelevant data. The effect of informa-
tion overload is clear: MTD doubles as the rate of
distracting data increases.

about 700 seconds, the interpreter opinion crossed
the 90% confidence level, and after remaining there
for 7; = 100 seconds, a TOI detection was scored
at about 800 seconds.

Shown in Figure 5 are the detection times for
several rates of arrival of irrelevant information, to-
gether with one-standard deviation points about the
means. At very low rates of irrelevant data, de-
tection time averaged about 800 seconds. But as
the distractions became increasingly frequent, more
and more of the relevant data was blocked and the
detection time rose to about 1500 seconds. Large
variability was evident in the individual runs. This
is evident in the relatively large standard deviations
and the lack of smoothness in the 200-run means.

Figure 6 displays another way to view the effect of
information overload for Study 1. It shows the per-
centage of relevant images generated that actually
reached the opinion filter, the data that survived the
busy calculator. As J; increases, more of the rele-
vant frames are excluded: At A, = .5 seconds, only
about a fourth of them survive: The irrelevant data
so overloads the interpreter that he sees only 25%
of the good data.

Study 2: Too Much Relevant Data

In the second study, we examine the effect of
varying amounts of AOR-relevant data. To simu-
late this, set the frequency of irrelevant data very
low, and vary the frequency of relevant data. We
expected that as the interpreter began to be over-
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Figure 6: Percentage of relevant images analyzed
as a function of 7; for Study 1. As the operator is
increasingly overloaded with irrelevant data, fewer
of the relevant images can be analyzed.

Table 3: Simulation parameters for Study 2: Too
Much Relevant Data.

Param. Value Remarks
Ai .0001 /sec mean rate, irrelevant data
Tar 30s mean dead time, relevant
Tui 3s mean dead time, irrelevant
P, .70 image accuracy
Ty 100 s time for detection

loaded with data, even good data, she would have
to ignore good data. The simulation parameters are
shown in Table 3; they are similar to those used in
the first study. The detection threshold remained at
90 percent, and we ran 200 trials at each A,.

Figure 7 shows the results of the simulation. For
high frequency of relevant data, mean detection
time continues to decrease slightly with increasing
A-. Since our interpreter is perfectly disciplined,
she ignores arriving data until she finishes analyz-
ing the image before her. Her effectiveness does
not drop. But it is clear that rates above about 0.1
frames/second buy only a limited improvement in
MTD.

Shown in Figure 8 is a picture of what is happen-
ing to the data. The solid curve represents the num-
ber of valid images being generated before detec-
tion is scored, while the dashed curve is the number
of images examined. The examined image count is
nearly constant — what varies is how long it takes
for the interpreter to see the requisite number of im-
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Figure 7: Mean time to detect for Study 2, together
with one-standard deviation bounds at each simu-
lated data frequency.
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Figure 8: Relevant images generated and relevant
images processed, as functions of 7. for Study 2.

ages. At high data rates, most of the data is ignored
by our interpreter. One envisions a workspace lit-
tered with discarded, unexamined images. This “in-
formation inefficiency” is further illustrated in Figure
9, where we have plotted the percentage of relevant
images generated that actually get analyzed. When
the data frequency is low, about two thirds of the im-
ages make it to the analysis table. But as frequency
increases, image attrition exceeds 90%.

This study illustrates the kind of tradeoffs that
must be made in designing a real system. If the
information source is an airborne sensor, and if the
analysis facility is on the ground, then a data link
must be used to transmit the sensor outputs. High
data capacity in an RF data link implies large anten-
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Figure 9: The percentage of relevant images actu-
ally reaching the image interpreter for Study 2.

nas, high transmit power, diminished mobility of the
ground station, and higher costs. These disadvan-
tages may have to be balanced against the limited
improvement in TOI detection time that a full capac-
ity data channel might offer.

CONCLUSION

The martingale calculus-based model we have
described appears to have good potential for sim-
ulation of human decision making activities and, in
particular, the phenomenon of information overload.
To enhance its usefulness in a specific, real-world
decision-making problem, a calibration against ac-
tual human performance is probably required. The
model could also provide a useful component in a
more complex system simulation.

Several additional cases for analysis suggest
themselves. For example, suppose discipline is im-
perfect and an interpreter abandons an image in
progress when a new piece of information appears.
It would seem such an interpreter might be com-
pletely stymied by too-frequent delivery of informa-
tion, no matter how valid. Or suppose information
is less frequent, and interpreter conviction softens
in the occasional long wait for confirming or dis-
confirming data. These and other problems will be
studied as time permits. The authors welcome e-
mail correspondence related to this work.

APPENDIX

In this appendix, the state estimation algorithm
will be developed.® Let (Q,F,P) be a probabil-

5For notational convenience in what follows S will designate

ity space and let {F;} be a right-continuous filtra-
tion which generates . There are several exoge-
nous processes defined on this space, all right-
continuous and F;-adapted: {«:} is the AOR in-
dicator vector and is of dimension K; {p;} is the
TOI indicator vector and is of dimension L; and {r; }
is the observation timing vector and is of dimen-
sion R. The comprehensive state is expressible in
terms of the primitive processes: ¢; = r; ® ps ® ay.
From the state the primitives can be deduced. Let:
I = IR®1/LK;Fp = 1/R®IL®1/K; Iy = 1/RL®IK;
and F,o = 1% @ Ink. Then: r, = Fr.¢¢; pr = F,oo4;
o = Fagy; and p, @ oy = Foa¢. If a particular
component of {r;} is desired, it is easily found.

An observation is generated when there is a tran-
sition in {ry}: If {r;} is such that ¢; + e,, informa-
tion blocking is short and if {r,} is such that e; —
er+1, information blocking is long. There is a dis-
cernibility matrix, 1, of dimension LK x LK which
measures the quality of the observation. When
Az # 0 the probability that Az, = e, is the ith com-
ponent of the vector A; = D(p: @ a;). The o-field
generated by ei¢. vV F; is labeled F;. The obser-
vation {z;} generates {G;} with G;-innovations pro-
cess {v;}. We seek a causal map from {v;} to {¢,}.
This is a difficult construction because of the nonlin-
ear and discontinuous system dynamics.

The modal observations are distributed across
the LK topical bins. An observation is re-
ceived whenever {r;} changes. When {r;} has
a jump, (Ar))? = 1. Hence, E[Az|F] =
E[(Ar)*DR,o¢:|F:]. The modal process is a
purely discontinuous semimartingale with dynamic
model:

dp = Q' ¢ dt + dm;
Hence (Arq)? = e} F,AmjAm;Fle;. But
Eldmdm/|F] = d{m,m; Fi)e = V(¢) dt

where V(¢;) = [diag(Q'¢:) — diag(¢:)Q —
Q'diag(¢;)]. [SB99]. The G,-predictable quadratic
variation of {m.} is the expected value of
d{m,m; Fp)e: d{m,m; Ge)e = V(¢y) dt

To develop the PME note that E[d:|F!] =
(eaR,V(ei)R,.e1)DR,n¢;. Define a matrix 2’ with ith
column A/, = (e1 R,V (e;)Rl.e1)DR,n¢;. Then

dZt = hld)t dt + dnt (4)

an integer index set {1,...,S}, “«" is the Hadamard product
((z = y); = =iy;), and the integrands in stochastic differential
equations will be understood to be predictable versions of the
associated right continuous, random processes.



where {n;} is an F;-martingale. Similarly
dzy = W ¢y dt + duy (5)

where the innovations process, {v}, is a G;-
martingale. The innovations process can be writ-
ten:

dvy = h'¢y dt + dny (6)

The processes, {n:} and {u}, are purely dis-
continuous martingales. Both have the same pre-
dictable quadratic variation; e.g.,

d<nt, ne; ft>t = E[Azt AZ”}}] = d|ag(>\t) dt
d<nt, ne; gt> = d|ag(5\t) dt = R¢ dt, (7)

where (7) is taken to be the definition of £,. The
system will be assumed to be such that each com-
ponent of A, is positive, and consequently, Ry > 0.
AlSO d<nt, Vi ft>t = d|ag(>\t) dt and d<nt, Vs gt> =

Ry dt. Let 5\;1 be understood componentwise, and
denote ) ;(ej —ei)Qihi. by Ry,. The PME is given
by:

Modal Estimation

Between observations,

doy

s :Qlﬂgt—ZRizéil (8

At a modal measurement,

A¢ = (Pysh + Z Ri.d) (A xAz) (9

Discussion

Decompose the semimartingale {q@t} (see [EIIB2,
Theorem 18.11]),

dé = E[dé:|Ge] + voe dvi (10)

where v44 is a G;-predictable matrix process. For

notational convenience, let Q'¢; = Fy. Then
E[d¢:|G.] = Fy dt. So we have
ddgt = F¢ dt + Yoo dvy (ll)

To find v, explicitly, the formalism used success-
fully by Elliott in [EII82] will be employed. Note that

Eld(¢2)|G:) = Eldé 7' + ¢ d=’ +dé d='|G]. (12)

But E[d¢ 2'|G:] = F,z'dt. The second term in (11)
can be written

El¢ d='|Gi] = E[¢d"h dt + ¢ dn'|G:]
Flna”y d¢)td2'£ = A¢)tAZ£ But d<¢tazt;fti>t =
E[Amy ¢, R}, D'(Ar1)?|F{]. This can be written:
A6, 2 F)e = > (e — €0)Qijhy. dt
J

Then d<¢t, 2t gt>t/dt = ZZ RZ z¢;i'
Combining these equations, it follows that

E[d(¢2")|G]/dt = Rysh+ Fyz' + > Riy.0i (13)
We can express E[d(¢z')|G:] in another way.
From (10), we have
dq@t dz, = (Yoo dir) dn.
It is a direct calculation to show that
dq/; 2 =
quz/ =

F¢z/ dt + dp

' hdt + dp.

where {y.} is a martingale. Collecting the terms,
d(62") = (oo dvdn' + ¢¢'h + Fyz') dt + dp,

and taking the G;-expectation of this,
Eld($2)]Gi)/dt = 55 Ro + 60'h + Fyz'. (14)

The predictable compensators, (13) and (14), must
be equal. From this it follows that

Yoo = (P¢¢h + Z R;qugl)R(Zl (15)

Substituting this into (10) yields

Ay = Q' ¢vdi + (Pogh+ Y Ri.¢i) R, dur, (16)

Consigler a time when there is no observation:
dl/t = _>\t dt. Then

R Ydv, = —diag(A, A, dt = —1 dt.
) t

So

hR7'W$ = AD'1 = AL,
Also Ps,1 = 0 for every ¢ € S. Hence,
PyyhR; ' dv, = 0. The result in (8) and (9) then

follows.



Conclusion

For problems in which the modal state is hidden
in the modal measurement, a symmetric modifica-
tion of the PME improves the speed of modal iden-
tification. The base-state estimate is less sensitive
to modal identification than is often supposed. Only
when the application requires high quality modal es-
timation, is the symmetric PME required.
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