
MULTI-DEVELOPER REQUIREMENTS ENGINEERING

Richard Shelton

TRW Inc.

Orlando, Florida

ABSTRACT

Requirements engineering standards and processes are inadequate in the simulation and training industry to support
programs with multiple developers and training objectives. This paper explains how the Joint Simulation System
(JSIMS) program corrected that inadequacy by defining and implementing a robust requirements engineering
process that maintains a standard, program-wide traceability and test approach, flexible enough to allow multiple
development agents, of which there are eight, to use different development processes and requirements management
tools. A key to this organized and successful practice was to get common plans, definitions and agreements
amongst the development partners.

This paper describes how the requirements engineering process evolved and provided many lessons learned as it
grew and improved to support the challenges of a program with diverse requirements and development processes.
The requirements engineering process began with a collaborative effort to analyze and consolidate 12 source
documents of approximately 6,800 requirements, provided by the various individual development partners, and
create a single, common, binding set of top-level, or “system”, requirements. These system requirements became
the bounding program scope that satisfied training objectives all partners agreed to develop and test against. The
next step was to sequence the delivery of these requirements, or rather the capabilities that satisfied these
requirements. The sequencing was divided into 5 separate, but common product delivery milestones. A sequencing
challenge was that all the partners had dependencies on each other’s products and/or deliveries that had to be
supported and coordinated. Each development domain became responsible for their “portion” of the system
requirements, and was challenged to derive the next level or two of requirements that specifically defined functions
unique to their development efforts, yet still allowed for cross domain interactions. The requirements engineering
team created a common trace and reporting format, using web technology, to allow users, developers and testers to
see the mapping and satisfaction of all system requirements within and throughout all the development domains. It
is applicable to any multi-developer, multi-user program.

AUTHOR’S BIOGRAPHY

Mr. Shelton is the Systems Engineering lead for the Joint Simulation System (JSIMS) program. He defined,
coordinated and integrated the requirements engineering processes used to scope and manage the requirements of
JSIMS. He authored and published these processes in two JSIMS Technical Notices, as well as the JSIMS Systems
Engineering Master Plan document. He successfully facilitated and implemented the processes amongst nine
separate JSIMS development partners.

Mr. Shelton has nine years of systems engineering experience, with five years of direct requirements engineering
management. He has defined, developed and implemented three large-scale (10,000 or more) requirements database
projects, each supporting multiple development partners. He was the project lead for a TRW research and
development effort that successfully developed and implemented a unique web-based, graphic-user interface driven
software system to categorize and manage data and documents within and across programs.

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

Richard Shelton

TRW Inc.

Orlando, Florida

INTRODUCTION

JSIMS is a complex software development program
that ties together various development partners, to
include branches of military1 and government
intelligence services2, for a common purpose of
providing readily available, operationally valid,
computer-simulated environments for use by the
Commander in Chiefs (CINCs), their components, other
joint organizations, and the Services to train, educate,
develop doctrine and tactics, formulate and assess
operational plans, assess warfighting situations, define
operational requirements, and provide operational input
to the acquisition process. That’s a very broad brush of
functions and capabilities to accomplish, and makes
proper and focused requirements engineering effort
essential. Requirement engineering needs to provide
structured and common processes and formats that all
development partners can support and collaborate on.
There is some commonality to draw from, as software
development programs approach requirements
engineering with multiple tiers, or levels, of
requirements that evolve from large, global system
requirements, to capture the overall scope, down to
minute derived requirements that identify unique
functions to be coded in software. The requirements
engineering program JSIMS put together shows that all
of these requirements and code segments weave
together and form an integrated web of capability that
answers the program scope as a working system.

GOAL

The goal of any requirements engineering effort should
be to properly scope and maintain the requirements
baseline of a program. The requirements products and
support needs to be process independent, accepted by
all as the defining scope for the entire program,
regardless of the fact that one may have multiple
development partners, with multiple and different
development processes. As the requirements flow
down to the developers, there needs to be seamless
traceability from system requirements to development
artifacts, throughout the entire program. A customer,
user, developer, tester or any other program partner
should be able to look at any requirement in the system
and see a forwards or backwards trace from the source
data that created the requirement to the development

1 Joint staff, Army, Navy, Air Force, Marine Corps
2 Strategic, Operational and Tactical Intelligence groups

artifact that satisfies the requirement. And lastly, all
partners buy into and support the requirements
engineering process and maintain a common set of
formats and data.

COMPONENTS

A good requirements product needs proper support
from several program disciplines. To properly support
the scope analysis, requirements derivation, and
traceability through development artifacts to test and
integration, a blend of users and/or customers, systems
engineers, software developers, database architects and
administrators, and test and integration personnel are
required. As JSIMS had eight separate development
partners, this blend needed to be supported within each
partner, as well as for an external collective group.

CHALLENGES

The JSIMS program faced several challenges that
strained the goals and components necessary for a
successful requirements engineering efforts.
Challenges are introduced now so it is understood why
some implementation paths were chosen. Some of the
work-arounds, issues and more ideal approaches will be
further discussed in the Lessons Learned section at the
end of this paper. The fundamental, and biggest,
challenge JSIMS started with was that a few of the
development partners already awarded and working
service unique and separate simulation development
contracts. In these unique efforts, they had already
identified their own requirements management tools
and requirements engineering methods, to include
unique object oriented development processes. This
drove out a difficulty in assimilating diverging and
narrowly focused efforts into a common and
coordinated requirements engineering effort. We
needed to get service unique requirements,
specifications, management tools and momentum to
converge on a common product. In doing this we
discovered a second major challenge with the
difference in types, fidelity and resolution of
requirements from each of the development partners.
Some had very broad, top level training requirements,
while others had very detailed, low level requirements.
A last major challenge to point out is that a successful,
coordinated effort requires complete participation and
buy-in by all development partners. Due to cross-
domain and/or programmatic issues amongst the
multiple developers, JSIMS did not get early or
complete participation by all development partners,

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

which caused unnecessary delays and multiple
iterations of requirements analysis.

DISCUSSION

REQUIREMENTS ENGINEERING

Requirements engineering is the starting point of the
program to define the development scope and/or
baseline. There are several analysis, documentation
and management methods that support the conduct of
requirements engineering, and with the complexity and
multiple developer aspect of JSIMS, we struggled, and
lost momentum on a few occasions, but successfully
implemented the following sequence of events that
define and support our program baseline.

1. Collect all the individual source requirements sets
that define both common needs, as well as each
development partners unique needs and/or
interests.

2. Identify a Common Requirements Allocation
Structure into which the complete requirements set
can be organized.

3. Employ a common method for defining time-
phased delivery of customer expectations.

4. Analyze, consolidate, bin (organize) requirements

5. Establish and maintain the
requirements/development baseline (JSIMS RTM)

6. Developers sequence the requirements for time-
phased delivery of products

7. Begin detailed traceability from System
requirements (baseline) down to development
artifacts.

The results of the requirements analysis are captured,
baselined, and maintained in the Program Manager
(PM) controlled Requirements Traceability Matrix
(RTM).

Collect Source Data and/or Requirements

In order to gain collaboration and cooperation from all
development partners, a program must be scoped to
surround and support all partners requirements. The
primary intent is to take this collection of common and
specific requirements that each development partner
needs, and generate a common, single set of
requirements that all development partners agree to as a
baseline. Twelve source documents, ranging from
Functional Requirements Documents to
System/Subsystem Specifications, came together from
all development partners to support the JSIMS
requirements engineering efforts. All source

documents were laid down as a foundation for the
program-wide requirements database, or JSIMS
Requirements Traceability Matrix (RTM). The JSIMS
RTM content and schema will be discussed in detail
later. As requirements engineering efforts evolved,
they would all trace back to, or find their origin from,
these source documents to allow development partners
to see how their components fit in.

Identify Common Requirements Allocation
Structure

As mentioned in the Challenges section, JSIMS started
off being behind other service efforts, and the
requirements engineering team had to figure out how to
bring together multiple requirements and/or source
documents into a common specification. There are
generically two ways to structure, or view, the
requirements: 1) Users or 2) Developers. The two
views are rarely similar, and a simplification on one
side usually means a complex conversion and mapping
effort on the other. For JSIMS, the user perspective
revolved around the functional areas, or attributes, that
defined their training environment; such as Air
Operations, Land Operations, Sea Operation,
Mobilization, Physical Environment, Pre-exercise,
Exercise Execution, Evaluation, Time, and System
Configurations. In contrast, a developer’s perspective
would dictate a structure that revolves around software
objects, or top-level categories; such as movement,
sensing, combat, communication, decision and
direction, intelligence, and logistics. JSIMS chose to
organize their requirements around the user’s
perspective, as it was considered the most concise way
of separating and “binning” the requirements without
overlap or redundancy. It was understood that the “fan-
out” of requirements trace to development artifacts
would become large, complex and likely redundant at
times. This will be further discussed in the traceability
section.

Employ a Common Method for Defining Customer
Expectations

JSIMS has two formal product deliveries, Initial
Operational Capability (IOC) and Final Operational
Capability (FOC), with a couple interim product
deliveries between the two. Given this fact, the
delivery of products to satisfy requirements could be
time-phased, or sequenced, over these intervals. The
question becomes, what priority of deliveries is
appropriate to best support the user’s needs? To better
understand the time-phasing expected for satisfaction of
requirement, we need to recognize our customer’s, or
end-user’s, training expectations.

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

Training needs for JSIMS are best viewed in terms of
classes of JSIMS applications. These applications
require differing sets of capabilities. For example, the
types of simulations and simulation support functions
needed to train Joint Task Force (JTF) commanders and
component commanders differ from what is needed to
train an Air Force Wing Operations Center (WOC)
commander or to develop new doctrine. These
potential classes of JSIMS applications are called
Functional Capabilities. For JSIMS, the users defined
31 unique Functional Capabilities, in the form of
Functional Capabilities Codes (FCCs).

To support the prioritizing of user needs, the FCCs
were spread across the delivery intervals. The users
further supported the requirements engineering team
with the association of these FCCs to system
requirements. Knowing this association of
requirements to time-phased FCCs, the requirements
engineering team could then correctly scope and derive
requirements that allowed a sequence of product
deliveries to support the FCC, or training, expectations.

Analyze, Consolidate and Bin (Organize)
Requirements

With a common requirements allocation structure,
revolving around the user’s perspective, as well as a
time-phased allocation of training expectations, JSIMS
had a proper foundation to begin a comprehensive
analysis of the source requirements. The next step was
to begin the very large effort of reviewing, analyzing,
consolidating, organizing, and/or creating the JSIMS
program scope from this huge set of source
requirements data. All development partners were
requested to provide engineering support for this effort.

The requirements engineering team that was formed
began by dividing up the source documents and, one
requirement at a time, binning, or allocating, each
requirement into an appropriate attribute of the
requirements allocation structure. As this effort
progressed, a few specific concerns became apparent:

1. The one-size-fits-all requirements allocation
structure was insufficient to capture the complete
set of source data.

2. The breadth, depth, and/or resolution of the source
requirements varied greatly. Some broad
requirements gave general statements like
“movement and engagement of forces shall be
represented down to battalion level”, while others
specifically defined details like “smoke shall be
created by smoke pots, large area smoke
generators…”

3. There was a tremendous amount of redundancy in
the requirements across the different domains.

The answer to the first concern was obvious, the
requirements allocation structure had to be expanded
with additional categories to accommodate the unique
source requirements. We went back to basics, and
pulled additional sections that are standard for
requirements specifications, such as: Safety, Security,
Reliability, Maintainability, Availability, Design
Constraints, Personnel, Training, Logistics, and
Packaging.

For the second concern, the team decided to create two
level of requirements, System and Detailed, to
essentially bin the requirements within the
requirements. System requirements are defined3 as:

Top-level requirements that define broad
functions or training needs of the JSIMS
program. These requirements are verified
and/or tested collectively at a system level.
They are derived from a collection of the
common source documentation normalized or
aggregated to a system level.

And as a subset, scoped within these System
requirements, are Detailed requirements, defined3 as:

Lower level requirements that support and are
scoped by the System requirements. Detailed
requirements are sub-components, or
functions, of System requirements and provide
unique or specific development items to focus
the understanding of program needs.

The third concern required some domain knowledge of
training and simulation needs and expectations to
distinguish between subtleties in wording that may or
may not have been redundant. The team requested and
received additional help from training and simulation
subject matter experts (SME). Having identified
additional necessary attributes, defined two levels of
requirements, and gained support of SMEs, the team
continued and completed the task of organizing,
allocating, analyzing, and otherwise creating the
program’s baseline scope.

Through all the analysis and crafting of the program
baseline, the team had to remember to include with
each System requirement the FCC that provides a user’s
delivery expectation. The training needs and/or
expectations for each System requirement was
identified by the collections of applicable FCCs. The
lower level Detailed requirements, which were laid
underneath and bounded by the System requirements,
were not assigned unique FCCs, but rather inherited the
FCC of the System requirements they supported.

3 Per JSIMS Systems Engineering Master Plan, Version

2.0.

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

Establish and Maintain the
Requirements/Development Baseline

The results of the requirements engineering team’s
efforts was a large and complex collection of System
requirements, with associated FCCs and Detailed
requirements. It was not perfect, and in fact, while the
requirements analysis team crafted this collection,
many of the source requirements had been updated or
modified in a parallel effort by the development
partners. The issue was how to properly track and
incorporate any changes to the current set of data. It
was determined that the existing set of System and
Detailed requirements needed to be based-lined as the
development scope of the program, and begin a
controlled process of change management to all aspects
of the data, to include: source data/requirements,
System requirements, FCCs, and Detailed requirements.
The JSIMS program manager, with the support and
agreement of all development partners, baselined the
System and Detailed requirements in a product called
the JSIMS Requirements Traceability Matrix (RTM),
and put it under strict change control (see Configuration
Management section).

Developers Sequence the Requirements for Time-
Phased Delivery of Products

The development scope for the program was defined
and baselined in the System and Detailed requirements
set. The user’s time-phased training expectations were
defined in the associated FCCs. This defined “what”
the program “needed”. This set was handed to the
collective development partners with the question, “can
you support these needs?” Schedule, resources,
technology constraints, and programmatic collaboration
constraints were a few of the factors that affected the
answer to that question. Another analysis effort
between requirements engineers and developers was
required to characterize the developers ability to
support the program scope and delivery expectations.
The documentation mechanism created to support this
time-phased characterization of delivery support was
called Sequencing.

The JSIMS RTM schema was expanded to include
sequencing columns for each development partner.
Each development partner read every System and
associated Detailed requirement, and allocated a
product sequencing, or delivery, date to the System
requirement. Each development partners did not have
to provide an entry to every requirement, as many
would not apply to products they would deliver or
support, but every System requirement did have to have
at least one sequencing entry. The sequencing versions
(V) choices matched the FCC defined training intervals;
specifically, JSIMS had seven delivery sequencing
choices: blank, V1.0 (IOC), V1.1, V1.2, V1.3, V2.0
(FOC), and NP. Blank means that no entry was

provided because the requirement did not apply to that
development partner. NP means “not planned”, which
applied when a development partner agreed and
understood they were responsible for supporting some
portion of a particular requirement, but for whatever
programmatic reasons they could not support it.
Combinations of these indicators are allowed, as
complete satisfaction of many requirements spans
multiple builds and/or versions.

After several long and challenging meetings, the JSIMS
RTM program baseline was updated with a complete
set of sequencing data to support the System
requirements. Detailed requirements were not uniquely
sequenced because, like FCC allocations, the Detailed
requirements inherited the sequencing allocations of the
System requirements to which they were linked, or
associated. As with everything this big and complex,
there were exceptions and notes added to some Detailed
requirements that, although within scope of their linked
System requirements, could not be satisfied at the same
time. These were handled and updated on a case by
case basis.

Begin Detailed Traceability from System
Requirements (Baseline) Down to Development
Artifacts

Requirements traceability applies to a wide spectrum of
requirements engineering needs. It could apply to a
single thread of a tracing source data to a System or
Detailed requirement, or is could apply to the process
that shows the connectivity of all requirements to the
development artifacts produced to satisfy the
requirements. This paper will discuss the latter
definition, as the connectivity, or traceability, of all
System requirements, across multiple development
partners, to development artifacts that satisfy the
requirements, became a complex and critical process
that all facets of the program became involved or
interested in. Traceability became a necessary thread,
or glue, that connected the users expectations, as
defined in the System requirements, through the design
elements, through the integrated products, to developed
code, and allowed the system test group to verify all the
answers (see Figure 1).

Figure 1. Functional View of System Requirements
Traceability

System
Requirements
(JSIMS RTM)

Design Elements
(Use Case, Test Case,

Model Exposition)

Integrated
Products

(Categories)

Developed
Code

(Classes)

System
Test

(JSIMS)
A0692.01999

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

The products discussed thus far in this paper,
incorporated and maintained in the RTM, provided the
scope and expectations management for this multi-
developer program. Each development partner then
took their allocated and/or accepted set of System and
Detailed requirements, as defined by the sequencing
inputs they committed to, and began a process to further
refine and derive requirements that focused on software
objects and development. The aforementioned
challenge (see Identify Common Requirements
Allocation Structure) of a complex conversion and
mapping of user-oriented requirements into software
development oriented products emerged quickly.

Conventionally, in a program with a single developer,
the traceability is easily maintained in the program’s
baseline RTM. In a multiple developer program, this
traceability, though potentially more complex, could
still be accomplished in a single database, if the
development partners all used the same development
processes and requirements/database management
tools. JSIMS, as mentioned previously in the
Challenges section, has neither of these luxuries.
Several of our development partners, having
individually started their programs prior to JSIMS, had
unique and different object-oriented development
methodologies (Texel/Williams4, Shlaer-Mellor, and a
derivative of Booch-Rambaugh5), as well as different
requirements databases.

Theoretically, we still could have created a common
and centralized RTM that maintained all requirements
and traces to development and test artifacts, but that
was programmatically unsupported by all development
partners. The management and maintenance of this
RTM would be very difficult and time-consuming, and
would require all development partners total support
and acceptance. Also, due to the programmatic issues,
it would also be very redundant with data maintained
by the individual development partners. Instead, we
chose to implement a common method of reporting
traceability to allow the same visibility into products,
while still providing each development partner the
programmatic flexibility they required.

JSIMS implements an RTM concept that consists of
multiple linked elements. This RTM, which JSIMS
calls Enterprise RTM, consists of two parts, a single
JSIMS RTM and multiple Domain RTMs. The JSIMS
RTM contains the JSIMS System requirements,
defining and scoping the program development

4 Use Cases Combined with BOOCH/OMT/UML; P.

Texel and Charles B. Williams, Prentice Hall, Inc.,
1997.

5 Object-Oriented Modeling and Design, Rumbaugh,
Blaha, Premerlani, Eddy and Lorensen, 1991, Prentice
Hall

baseline, and linkages between the System Test and
Domain RTMs (see Figure 2 for a logical view of the
Enterprise RTM schema).

Figure 2. Enterprise RTM

System Requirements Centric

Each development partner is responsible for creating
and maintaining a database that supports its
requirements tracing from the JSIMS RTM System
requirements to its development products. The format
of this database is at development partner’s discretion,
with the exception that all software products developed

for JSIMS be traced from JSIMS System requirements.
The System requirements trace must include the
Enterprise-wide unique key identifier of System
requirement ID as defined in the JSIMS RTM.
Development partners must maintain traceability from
JSIMS System requirements down to Category and/or
Class levels, or equivalent levels of implementation.
This traceability may be accomplished according to the
individual development partner’s process.

Domain RTM Reports

Domain RTM reports are common reports provided to
and posted at an JSIMS program level. These reports
provide the traceability from JSIMS RTM System
requirements to each development partners
development artifacts. These reports are unclassified
and must be provided electronically, to the JSIMS
Webmaster, in the form of Excel spreadsheets. These
reports contain the following columns of data:

a. System Requirement ID.

b. Detailed Requirement ID.

c. Derived or Design Requirement ID.

d. Derived or Design Requirement text.

e. Build/Version of Derived/Design
Requirements.

JSIMS System
Requirements

JSIMS
System Test

Land RTM

A&S RTM

Domain RTMs

JSIMS RTM

Enterp rise RTM

A0693r1.031299

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

f. Use Case ID, Test Case ID, or Exposition
Model ID.

g. Category (or equivalent) Name.

h. Class (or equivalent) Name.

The Class Name data comprises a unique column, in
that it is only filled in when a Derived or Design
requirement is not directly supported in development by
a Category. An example would be if a requirement
were a very simple function that will be implemented
by a single class or method, rather than through a
Category to Class hierarchy.

Scope and Development Partner Responsibility

JSIMS RTM System requirements are sequenced for
time phased deliveries. For each requirement where a
development partner has added sequencing data for its
domain, the development partner is responsible to show
that trace in the Domain RTM down to a development
artifact. A many-to-many mapping in the traceability is
expected, as a single development artifact will likely be
used to satisfy several broad System requirements, but
all System requirement entries for a development
partner must be accounted for. In some cases, there
will be some System requirements that are global, such
as for safety or MIL-STD compliance, which must be
noted in the Domain RTM as not requiring unique
development artifacts.

Constraints Traceability and Satisfaction

Many of the requirements that all development partners
must support are software constraints that do not
specifically trace to unique development products. The
Domain RTM reports, however, still need to recognize
and show a trace for satisfaction of all System
requirements against which a development partner
provided a sequencing input. For example,
development partners could place a “C”, for constraint,
in place of a Use Case, where a software constraint
requirement has been derived for the development
effort. This shows recognition of the requirement in the
development effort, as well as a completion of the trace
from a System requirement into the development effort.

CONFIGURATION MANAGEMENT

One of the harder questions to answer is, “how much
configuration management (CM) can I have without
slowing down or constraining the momentum and
progress of the engineers and developers?” The answer
varies depending on whether all development partners
are following the same development processes, with
common requirements tiers and traceability paths. A
well-defined CM process, and adherence to that

process, became a key to gaining acceptance and
support from all development partners of the program-
wide development baseline documented in the JSIMS
RTM and traced further into the Domain RTMs.
JSIMS configuration management was directed by the
JSIMS Configuration Control Board (JCCB). The
JCCB was chaired by the JSIMS program manager, and
was responsible for configuration managing the JSIMS
RTM, or program development baseline, consisting of
the System requirements, and their associated Detailed
requirements, Functional Capability Codes and
sequencing data. Once the JSIMS RTM development
baseline was established (December 1997), the JCCB
tracked and evaluated all change requests via formal
System Problem Reports (SPR). The SPR process
provided a multi-stage method of analyzing and
controlling changes, while at the same time providing
the necessary visibility to all development partners.

This centralized control, with common visibility, gave
the development partners confidence in the stability and
management of the program baseline. Below the
JSIMS RTM level, however, the multiple development
process and efforts made common control complex and
cumbersome. As stated in the Domain RTM
discussions, all development partners were scoped by
and had to support and trace to the System
requirements, but they were also given the flexibility to
configuration manage the derived requirements and
products they developed in support of those System
requirements. Regular updates and reporting of the
Domain RTMs became the means of programmatic
visibility into each partners development efforts in
support of the program baseline and common needs.

LESSONS LEARNED

Creating mulit-developer requirements engineering
processes and answering the challenges faced in JSIMS
provided many lessons learned. Many of the lessons
learned, such as mandating that all development
partners follow the same development process, may not
be correctable or controllable by the requirements
engineering teams, but rather are programmatic.
Nonetheless, this section presents the lessons we
learned from various impacts, delays, and/or problems
we were with our requirements engineering efforts.

• Full participation – All development partners must
completely participate in all aspects of the
programmatic requirements engineering efforts. In
the very beginning of collecting and analyzing the
source data to create a common baseline, some of
the development partners chose not to participate.
One could speculate many reasons for this, as some
had already started and were obligated to their own
program contracts, but it was a visible problem.
The analysis team that did conduct the baseline

MULTI-DEVELOPER REQUIREMENTS ENGINEERING

development effort were unable to adequately
support the position and needs of the missing
partners. This led to issues later when the baseline
was established and these missing partners would
argue that their requirements were not properly
scoped and supported. Many SPRs and man-hours
were used to correct these deficiencies.

• Full buy-in – All development partners must accept
the program baseline as scoping and binding to
their development efforts, and use that as their
controlling data. When the JSIMS program
baseline was established, many of the development
partners agreed to it for JSIMS, but did not accept
it as a scoping and controlling baseline for their
development efforts. Several of the partners still
maintained their own RTMs and system
requirements specifications. This became a
conflict of interest and configuration management
on several occasions. The development partners
need to throw away their individual documents and
embrace the commonly developed and controlled
data as a universal scope that all adhere to and
support.

• Common RTM tools – All development partners
need to work out of and/or support a common
RTM. Again, this stems from some partners
having started their programs prior to JSIMS being
established, and having chosen their unique RTM
tools and development processes. It became
difficult to import, export, or share RTM data
amongst partners because of tool incompatibility.
Complete traceability is a very cumbersome job
because we cannot incorporate and create a
common, single database with all Domain RTM
report data. The Domain RTM report standard
established was via Excel spreadsheet reports
generated be the different RTM tools each DA
used. Had JSIMS controlled a single decision for
RTM tools and control, then commonality across
all development partners would have allowed us to
maintain an integrated traceability.

• Common Development Process (or at least
common terminology) – All DAs need to have a
common, or compatible, approach to their
development efforts. Multiple concurrent
development efforts are fine, but when they use
different processes, with different terms for each
phase, product, and development effort, then it is
very difficult to create, standardize and maintain a
common baseline and requirements traceability
effort. For example, throughout the various
development efforts, the partners were associating
and defining system, detailed, derived and design
requirements differently. Further, when
associating and tracing down to development
products, confusion and concerns were surfaced by

trying to correlate and normalize use cases, model
exposition, test cases, categories, classes, methods
and so on.

CONCLUSION

The requirements engineering challenges of a multiple
developer program like JSIMS are certainly not unique,
but this author was not aware of any published answers
that would have made the path easier. This paper is
intended to explain the path JSIMS took and identify
the components that helped and hindered the progress
and success we achieved. JSIMS ran into many
challenges that were new to all requirements engineers
involved. Common, yet unique, solutions, standards
and processes were created to manage the challenges.
We learned several lessons that cost the effort valuable
time and support, and hope this paper provides others
necessary understanding and insight to gain efficiency
and strength in their efforts.

