REAL-TIME SYNCHRONIZATION AND MODIFICATION OF A
BEHAVIORAL VEHICLE MODEL FOR DISTRIBUTED SIMULATION

William J. Gerber and Avelino J. Gonzalez
University of Central Florida
Orlando, FL 32816-2450

Distributed simulations have become valuable tools for individual and group training. A combination of
live, virtual and constructive distributed simulations that is highly promising for greater realism in training
at reduced costs, called embedded simulation, is being explored by the U. S. Army's Simulation, Training
and Instrumentation Command (STRICOM) Inter-Vehicle Embedded Simulation Technology (INVEST)
Science and Technology Objective (STO) program for use in combat vehicles. Among the many
technical challenges to be overcome is that of providing a simulation environment in which live vehicles,
manned vehicle simulators, and computer generated forces can interact with each other as well as with
the battlefield environment in real-time over a geographically diverse, distributed network. The main
problem is the high communications requirements imposed by the need to convey large amounts of data
among the various players. The Vehicle Model Generation and Optimization for Embedded Simulation
(VMGOES) project at the University of Central Florida is focusing on this aspect of the INVEST STO
program. The approach is to use a behavioral vehicle model that is context-based to match the actions of
the human-controlled entity on the battlefield. By observing the surrounding environment of the vehicle
model's location in the simulation at each update time step, the model will determine what context it
should be in and perform the actions that are appropriate for that context. This will allow the vehicle
model to match the human-controlled entity's behavior for a longer period of time than is possible with
only dead-reckoning updates, thus reducing the communications bandwidth required. However,
discrepancies between the vehicle model and the human controlled entity will inevitably occur and these
must be detected and resolved to allow the vehicle model to function efficiently. The portion of our model
that addresses this need, the Difference Analysis Engine (DAE), will be resident on the human-controlled
entity. It will be able to observe the actual vehicle's actions as well as the simulation environment and the
vehicle model itself. It then must evaluate whether significant discrepancies exist. If they do, it will
immediately take the action needed to synchronize the vehicle model with the actual entity. These
corrections can involve a simple State Realignment to update the vehicle model's location, direction and
speed; a forced vehicle model Context Shift to match the context of the human-controlled entity; a Model
Correction to change the way the model itself responds; and, as a last resort, a Model Suspension to
revert to standard dead-reckoning until the DAE can recognize what context the human-controlled vehicle
actually is in. This paper will focus on those DAE functions and on how techniques, such as temporal
template based reasoning, neural networks and genetic algorithms, are being used to accomplish those
DAE functions.

ABOUT THE AUTHORS

William Gerber received his B.S.E.S. in both Astronautics and Engineering Sciences from the United
States Air Force Academy. He has an M.S.E. in Nuclear Engineering from the University of California at
Los Angeles and an M.S.Cp.E. in Knowledge Based Systems from the University of Central Florida. He is
currently a Ph.D. candidate in computer engineering at the University of Central Florida, a Research
Assistant on the VMGOES project and a Research Fellow at U.S. Army STRICOM.

Avelino Gonzalez received his bachelor's and master's degrees in Electrical Engineering from the
University of Miami, in 1973 and 1974, respectively. He obtained his Ph.D. degree from the University of
Pittsburgh in 1979, also in Electrical Engineering. He is currently a professor in the Electrical and
Computer Engineering Department at UCF, specializing in human behavior representation.

REAL-TIME SYNCHRONIZATION AND MODIFICATION OF A
BEHAVIORAL VEHICLE MODEL FOR DISTRIBUTED SIMULATION

William J. Gerber and Avelino J. Gonzalez
University of Central Florida
Orlando, FL 32816-2450

INTRODUCTION

Simulations, whether constructive, virtual or live,
have become valuable tools for individual and
group training. They generally allow acceptably
realistic training at a lower cost than using the
actual equipment in a fully operational capacity.
Additionally, the use of distributed simulations has
allowed for team and large scale unit training in a
constructive or virtual environment without the
expense of massive movements of equipment to a
central training area and the scheduling
restrictions of that limited training area resource.
Furthermore, the introduction of Computer
Generated Forces (CGF's) has added greater
realism into the simulation by allowing
representations of the enemy forces as well as the
inclusion of greater numbers of simulated friendly
forces than can be reasonably assembled for any
given training exercise.

The most realistic training, however, occurs when
the individuals and crews can train on their own
operational equipment in the actual environment.
This is done now in live simulations using
instrumented large-scale exercises at locations
such as the U. S. Army’s National Training Center.
There, the live fire of weapons is replaced for
increased safety and reduced expense by the use
of instrumented vehicles where the outcome of
individual engagements is determined by
computer processing of the data in real time. The
initial data and the results are transported over a
communications network, the Range Data
Measurement System (RDMS), which allows only
2400 bits per second peak bandwidth per vehicle
for the information exchanges between vehicles.
[Bahr and DeMara, 1996] The time lags and
bandwidth of the communications network,
though, still restrict the realism.

A combination of live, virtual and constructive
distributed simulations that is highly promising for
greater realism in training at reduced costs, called
embedded simulation, is being explored for use in
combat vehicles by a program of the U. S. Army's
Simulation, Training and Instrumentation

Command (STRICOM). That program is called
the Inter-Vehicle Embedded Simulation
Technology (INVEST) Science and Technology
Objective (STO) program. Among the many
technical challenges the program must overcome
is that of providing a simulation environment in
which live vehicles, manned vehicle simulators,
and computer generated forces can interact with
each other as well as with the battlefield
environment in real-time over a geographically
diverse, distributed network.

The main problem is the high communications
requirements imposed by the need to convey large
amounts of data among the various players. The
Vehicle Model Generation and Optimization for
Embedded Simulation (VMGOES) project at the
University of Central Florida is focusing on this
aspect of the INVEST STO program. The
approach is to use a behavioral vehicle model
(VM) that is context-based to match the actions of
the human-controlled entity on the battlefield. By
observing the surrounding environment of the
vehicle model's location in the simulation at each
update time step, the model will determine what
context it should be in and perform the actions that
are appropriate for that context. This will allow the
vehicle model to match the human-controlled
entity's behavior for a longer period of time than is
possible with only dead-reckoning updates, thus
reducing the communications bandwidth required.

However, discrepancies between the vehicle
model and the human controlled entity will
inevitably occur and these must be detected and
resolved to allow the vehicle model to function
efficiently. The portion of the model that
addresses this need, the Difference Analysis
Engine (DAE), will be resident on the human-
controlled entity. It will be able to observe the
actual vehicle's actions as well as the simulation
environment and the vehicle model itself. It then
must evaluate whether significant discrepancies
exist. If they do, it will immediately take the action
needed to synchronize the vehicle model with the
actual entity. These corrections can involve a
simple State Realignment to update the vehicle

model's location, direction and speed; a forced
vehicle model Context Shift to match the context
of the human-controlled entity; a Model Correction
to change the way the model itself responds; and,
as a last resort, a Model Suspension to revert to
standard dead-reckoning until the DAE can
recognize what context the human-controlled
vehicle actually is in. This paper will focus on
those DAE functions and on how techniques, such
as temporal template based reasoning, neural
networks and genetic algorithms, are being used
to accomplish those DAE functions

EMBEDDED SIMULATION

Embedded simulation, the simulation refinement
for providing the most realistic training, combines
live, virtual and constructive simulations. [Bahr,
1997] For this type of training, the individuals and
crews use their own operational equipment, but
use them in a simulation mode. The controls still
function but the inputs are additionally provided to
a simulation environment, which in turn provides
feedback to the individuals and crew in the form of
visual, auditory and other stimuli. This has the
advantages of the live simulation in that the
equipment is as authentic as possible.
Furthermore, it can be used in either the deployed
operational environment or in a benign, non-
deployed state at the home location.

The refinement that comes from the addition of the
virtual and constructive simulations allows a
training scenario to be filled out with virtual,
manned simulators and CGF vehicles for more
realistic force-on-force training. The viewports of
the live vehicles can have displays of the virtual
forces and CGF’'s overlaid and registered with
representations of the live forces so that a
seamless presentation is made to the
crewmembers of the entire set of forces involved
in the scenario. This training can be very flexible
and can be based on either fully mobile forces
within an actual training area (most similar to the
live simulation), stationary forces using CGF's
(most similar to a virtual simulation with manned
simulators), or a combination of the two. Likewise,
the number of participants can vary from the single
soldier practicing individual tasks using
simulations of the other crew members/other
crews to large-scale exercises with numerous live
individuals/crews mixed in with manned
simulators/CGF’s. Again, the realism is restricted
by the time lags and the bandwidth of the
communications network available for each
participant. As the number of participants

increases, the available bandwidth can become so
limited that updates to the representations of the
forces are delayed, resulting in a decrease in the
realism of the simulation.

In addition to being able to have a set of canned
training scenarios with specific training objectives
for the crews, embedded training is also
operationally useful for mission rehearsal training.
Forward-deployed crews can practice an
operational scenario before actual execution to
familiarize themselves with the mission before
trying it the first time while under the strain of
combat. As an additional benefit, previously
undetected flaws in a plan can be found before
they become too costly.

In the past, this use of embedded simulation for
training has not been pursued because it was
viewed as too difficult and expensive to
implement. [Bahr, 1997] Currently, models of
vehicles transmitted to other simulations do not
address behavior, even in a generic way, beyond
using a dead-reckoning model that assumes that
the current actions taking place will continue
without change until updated by a Protocol Data
Unit (PDU) set of communication packets. There
is thus no means for vehicle changes in reaction to
the simulation environment to be reflected in the
distributed model except by PDU’'s using the
scarce bandwidth. Therefore, for embedded
simulation to be used in large exercises, reactive
models must be developed for each vehicle to
cover numerous situations, a significant
undertaking to develop manually. Furthermore,
each deployed model on other vehicles must be
continuously correlated with the actual behavior of
its vehicle throughout the entire training period.
Since the manually developed models, for cost
reasons, must be generic, they cannot reflect the
subtle differences between individuals and crews
of different skill levels and operational styles using
the equipment being modeled. As a result, these
differences must be accounted for by frequent
updates to correlate the model with the vehicle’s
actions, a further drain on the available bandwidth.

BEHAVIORAL VEHICLE MODEL

At the U.S. Army’s STRICOM, the INVEST STO
program was initiated in 1997 to address these
issues of embedded simulation. [Bahr, 1997]
Included in the INVEST STO program is the
Vehicle Model Generation and Optimization for
Embedded Simulation (VMGOES) research.

It is investigating the use of techniques to reduce the
effort required for developing the models and to
cut down on the bandwidth required for supporting
the virtual/live vehicle representations in the
embedded simulation. [Gonzalez, DeMara, and
Georgiopoulos, March 1998; Gonzalez, DeMara.
and Georgiopoulos, May 1998; Henninger,
Gerber, DeMara, Georgiopoulos and Gonzalez,
1998]

Architecture

The VMGOES concept uses a Vehicle Model (VM)
and a Difference Analysis Engine (DAE) (see
Figure 1). Both are linked to each other using
context-based reasoning and are located on each
host vehicle. [Gonzalez and Ahlers, 1995] The
VM portion includes the VM control, a neural
network engine and neural network libraries while
the DAE portion includes the DAE control, a
template engine, and template libraries. Both
portions can observe the simulation environment,
the state data store for the host vehicle model, and
state data stores for vehicle models of other
vehicles of interest to the host. (The data stores
for the other vehicles are also referred to as Clone
data stores, where Clone X VM Data Store would
be the data store for Vehicle X that is of interest to
the host) The DAE can also observe the true
state of its host vehicle and send corrections for
the state data store of its host vehicle model via a
PDU, when needed. The PDU is sent through its
host vehicle to the VM on the host vehicle and to
the VM on any of the other vehicles observing its
host vehicle. The PDU is used by the VM, at each
location where a model of that vehicle is being
maintained, to update the appropriate vehicle state
data store.

The VM portion will address the massive manual
development effort by allowing automation of the
process. The VM will be trained by observation of
the host vehicle’s surroundings in the virtual
environment to determine its local behavioral
context and, consequently, which actions to take
while in that context. (Actions are also considered
sub-contexts.) The VM will also be trained by
observation of the specific actions within each
context to model those actions. This training will
be stored in the neural network libraries, which are
called by the neural network engine to produce the
predictions needed, such as for context or for
speed and heading. The VM control uses the
predictions to update the vehicle state at each
time step. When properly trained to reliably
predict the actions that the vehicle will take, the

VM should substantially reduce the number of
PDU updates required and thus the bandwidth
needed for those updates.

The DAE portion also addresses the bandwidth
reduction for PDU’s needed to keep the VM
synchronized with the actual vehicle by real-time
observation and evaluation of the actual vehicle’s
context and actions as well as the VM’s predicted
context and actions. The DAE, like the VM, will be
trained by observation, but by observation of the
host vehicle as well as its surroundings in the
virtual environment. It will be trained to recognize
the actual vehicle context and sub-contexts, which
will be constrained to match the ones that the VM
has been trained to recognize and utilize. The
training for the DAE will be stored in template
libraries. The template engine sorts through the
templates to find the one that most closely
matches the observations, i. e., achieves the
highest score for similarity of conditions, and
selects that one to predict the host vehicle’s actual
context. The DAE control considers the
magnitude of observed positional errors, a history
of those errors, and the actual vehicle context in
determining whether or not to send out a PDU
and, if so, what kind. Thus, the DAE will
determine not only positional mismatches, as is
done in current dead-reckoning, but also context
mismatches when they occur and model error
biases between the VM and the real vehicle. It will
then provide appropriate positional, context or bias
corrections to the VM in real time to both
synchronize it with the real vehicle state and to
modify the vehicle model actions to improve its
performance.

Operation

In operation in an embedded simulation, the
dynamic data for the host vehicle’s VM state would
exist in its modeled host vehicle’'s data store and
would be replicated identically in the data store for
other vehicles whenever they receive a PDU. The
trained neural network data for contexts and
actions for each modeled vehicle in the exercise is
pre-stored identically in each vehicle and, since
every environment presumably is the same for
what each VM would observe, each VM would
react identically. Thus, the data store for the host
vehicle, located on the host vehicle itself, is a good
reference for the DAE of what the VM data stores
on other vehicles are using to represent its host
vehicle. The additional processing required for the
VM and DAE computations onboard the
operational vehicles configured for embedded
training is considered a tradeoff for reducing the

bandwidth requirements and the associated react to the environment as the vehicle on which it

infrastructure. Since the VM would be able to

VM portion for updatlng all Vehicle Models being tracked by Host Vehicle

[m == == == = === ==

True State

|
| Neural Network Engine |
I 1 A |
~|vmGoES | . s .
1] E=B| PDU Receivel----pf Vehicle Model P NN I
| T e I (VM) 3 Libraries
O| R
E N \S/MGOES : ' CIoneXVehche Model Data Sto e Simulation
equence 5 -
> € c au Host Vehicle Model Data Storg.- | Environment
— ontrol
0 L_____ [¥-—-====---F ===
O| mm—————— | Difference Analysis Template ||| 1
L .| vmGOES | Engine (DAE) Libraries [H |
PDU Send 1 1 : |
I Y 2 I
| Host Vehicle —, Template Engine I
|
1

DAE portion for synchronizing the Vehicle Model of Host Vehicle

Figure 1. VMGOES Architecture with the interactions for the Vehicle Model and Difference Analysis

Engine portions of the Host Vehicle shown.

was trained would react, it should be able to
operate for a longer time before needing updates
than the current dead-reckoning method would
allow.

Of course, the VM is still only a model. Therefore,
differences over time between the VM predicted
actions and the actual modeled vehicle’s actions
will be inevitable. Since each Clone VM data store
for its current state will be maintained in a vehicle
other than the vehicle it is a model for, it will not
have visibility to the modeled vehicle’s actual
actions. Thus it cannot predict actions based on
what the actual vehicle is currently doing. For
example, a real crew may miss the fact that an
enemy is present or, conversely, may misidentify a
friendly force as an enemy. That crew’s unforseen
actions would then diverge from what the VM
would logically predict. The DAE will observe
those differences, whether from minor errors in
predicted actions over time, errors in the model
context for the observed host vehicle, or the

vehicle taking unusual actions. It will then take the

necessary corrective actions to correlate the VM

with the actual vehicle and, if appropriate, modify

the VM either in context or in the actions it takes.
RESEARCH

Research on the vehicle model portion of the
VMGOES is ongoing, as is that on the difference
analysis engine portion. However, this paper is
addressing only the research into the
synchronization and modification of the behavioral
vehicle model. Thus, it assumes that the vehicle
model research will be successful and describes
only what will be done for research for the DAE
portion.

Overview

The purpose of this research is to find a means of
determining, in real-time, the high-level behavioral
intentions of an individual or crew controlled
vehicle through learning by observation the

actions taken by the vehicle over a recent time
period as well as observing the environment in
which the vehicle is operating. Additionally, the
learning by observation must be automated to
make it feasible. Further, the use of adaptive,
dynamic learning of the differences between the
model’'s prediction of low-level actions and the
actual entity’s actions will aid the synchronization
between the model and the entity by modifying the
model in real-time. This research has application
over a wide range of distributed simulations and
intelligent tutoring systems. For distributed
simulations, it will allow for more efficient vehicle
models that will result in an increase in simulation
realism and an increase in the number of
participants able to train in the same simulation
exercise. [Bahr, 1997] For intelligent tutoring
systems, the intentions of a student can be
captured in real-time for immediate training
feedback on mistakes, as well as for use in an
after-action review. [Drewes and Gonzalez, 1995]
Additionally, the capability to observe the vehicle's
actions, compare them with the model and then,
when necessary, resynchronize the model
provides a possible validation tool for behavioral
vehicle models. By keeping the model
synchronized with the actual vehicle throughout
the validation test, the actions of the vehicle model
can be compared with the actions of the human-
controlled vehicle in a meaningful way even if the
model makes different, though possibly correct,
decisions during the test. [Gonzalez and Murillo,
1999]

Approach

The specific research being addressed here,
however, is the real-time synchronization of an
embedded simulation behavioral model of a
human-controlled vehicle operating in a simulation
environment. To accomplish this research, the
following four questions must be answered. First,
to keep the vehicle model efficiently correlated
with the actual vehicle, how can one modify the
embedded simulation model to correct observed
model positional errors, model speed and heading
prediction errors and model context errors?
Second, to make the correct modifications, how
can one determine the reason for discrepancies
between the embedded simulation model and the
actual vehicle? Third, to support the discrepancy
reasoning, how can one determine the vehicle’s
actual context by observing its actions and the
simulation environment? And fourth, how can one
implement the solution into an actual embedded
simulation environment architecture?

Template-Based Reasoning At the center of the
model synchronization research is the challenge of
determining the actual entity’s intentions/context. It
is planned that temporal template-based
reasoning will be used, where each defined
intention/context that the vehicle can assume is
associated with a template. [Drewes, 1997] Each
template will have selected attributes that
represent portions of the vehicle's state and
simulation environment (see Figure 2). The set of
attributes selected will include only those that are
germane to the determination of that particular
template's validity. At each update cycle, each
template's attributes will be evaluated and
multiplied by a weighting value to determine an
overall score for the template. If a minimum
threshold value is not reached, the template is not
considered further as a candidate for the vehicle's
intention/context. The template chosen as the one
representing the actual vehicle's intention/context
will be the one with the highest score.

Automating Template Training by Observation
Closely associated with the use of the templates is
the challenge of how to automate the setting of the
attribute weights. In earlier research with temporal
templates, the values for the weights were
manually determined by the researcher adjusting
the values until the results were satisfactory.
[Drewes, 1997] That was possible for the limited
domain that was involved. However, for a much
larger domain, such as for the ground vehicle in a
battlespace with many possible courses of action,
a practical method of automating the setting of the
weights by observation is essential. This not only
will allow the determination of the weights, but will
also allow the templates to be readily created to
match various vehicle entities whose actions may
differ in the same circumstances. For example,
generalized templates could be tailored for
individuals/crews whose training levels are expert,
average or novice and specialized templates could
be created to represent a specific individual/crew
for most efficient representation. It is anticipated
that neural networks or genetic algorithms could
be used for determining these weights.

Behavioral Vehicle Model Corrections On the
list of model synchronization challenges is the
process of determining what corrections to make
to the vehicle model and how to make those
corrections. The corrections can be categorized
into one of the following four types, where the
correction to apply is shown in parentheses:

(1) State Realignment Update, where the position
and orientation state differences between the
vehicle model and the actual vehicle exceed an

allowable threshold while the vehicle model is
operating in the same context as the actual
vehicle. (The vehicle model's state is updated.)

Simulation N Templates Template
Environment Selector
Template N
Attribute 1 V\'A,l
Input .)
Variables Ty = Tx
: Template 2 X
(Including) . —>
Entity State) Atribute 1 W Pl MAX(T }
Template 1
p| Attribute 1 W1 —P

— | Attribute k Wi

Figure 2. Temporal Template Components. The score for each template is the sum of the weighted
values for the attributes or zero, if not above a critical value. The selected template has the largest score.

(2) Model Bias Correction, where the state
differences between the vehicle model and the
actual vehicle exceed an allowable threshold and
a significant pattern of error in the output of the
vehicle model is observed. (The vehicle model is
modified to remove the observed bias and the
vehicle model's state is updated.)

(3) Context Shift, where the state differences
between the vehicle model and the actual vehicle
exceed an allowable threshold and the context of
the vehicle model is different than the observed
context of the actual vehicle. (The context of the
vehicle model is modified and the vehicle model's
state is updated.)

(4) Model Suspension, where the state differences
between the vehicle model and the actual vehicle
exceed an allowable threshold but the context of
the vehicle model cannot be determined. (The
vehicle model's behavior is suspended and simple
dead-reckoning is used.)

The type of correction to make is determined by
comparison of the state differences and context
differences between the vehicle model and the
actual vehicle. This can be viewed as a Finite
State Machine (FSM) implementation with the four

types of corrections along with the case of no
update required as the fifth state.

System Architecture Finally, the entire system
has to be integrated into a workable architecture. It
is anticipated that the DAE evaluation will occur
immediately following each completed VM
controlled update cycle of the vehicle model state
data stores. The vehicle model will update the
present state of each represented vehicle based
on extrapolation using its last vehicle model state
(position, velocity, orientation), predicted actions to
take (based on the determination of its context at
the last update), and elapsed time between the
previous and current update cycle. For each PDU
received since the previous update cycle, the VM
would modify its vehicle’s state information to
reflect the PDU update.

After the vehicle model cycle is completed and the
VM has updated its host vehicle model’'s current
state and context, the difference analysis engine
will compare the actual host vehicle's state and its
determination of the host vehicle context against
the vehicle model's currently determined state and
context. If updates are required, the DAE will
send out an update PDU to the vehicle model on
the same host vehicle as the DAE and to the

identical vehicle models for the actual entity
located on the other vehicles.

Temporal Template Selection and Training

This section discusses the temporal templates, the
basis for their development, and how they will be
trained using learning by observation.

Temporal Templates The use of temporal
templates for template-based reasoning is similar
to case-based reasoning except that the
comparison of attributes will be time-dependent as
well as potentially sequenced. That is, it can allow
for the requirement that an event or sequence of
events must precede another event, or have
occurred within a certain time period before it, to
increase the template weighting in support of the
template.

Context/Sub-context Selection This VMGOES
research is being conducted using a two tracked
approach with both a ModSAF tank entity and a
Manned Module of the M1A2 serving as the host
vehicle being modeled. The purpose of this
approach is to first develop the system and
computer code with the ModSAF simulator system
before involving the more expensive to operate
Manned Module simulator with trained, human
crewmembers. However, for the contexts and
sub-contexts identification, a critical link between
the VM and DAE since they form the basis for the
actions that the VM is attempting to model, the
result is two different sets of templates. This
occurs because the ModSAF operator has to
choose from a preset selection of contexts for the
actions and they do not necessarily match the
doctrinal contexts that would be used internally by
an M1A2 tank crew. Additionally, the VMGOES
research is restricted in scope to a Road March
with the only transitions allowed being those due
to the presence of obstacles or opposing forces.

Matching Templates with VM Contexts/Sub-

contexts In the initial assessments of contexts for
ModSAF, 29 were identified as applicable for a
complete system with only four required for the
VMGOES scenarios. These were for Road March,
Contact Drill, Assault, and Withdraw. For use with
the M1A2 Manned Simulator, the doctrinally based
Combat Instruction Sets (CIS’s) developed for the
U. S. Army’s Close Combat Tactical Trainer
simulator system were evaluated to determine an
initial set of contexts. Of the 47 that were
identified as being needed for a complete system,

eight were found to be required. They were for
Conduct Tactical Road March, Execute Contact
Drill, Execute Action Drill (Front/Right/Left/Rear),
Take Actions at an Obstacle, and Perform
Assembly Area Activities.

Each of these major contexts have a set of
attributes that distinguish between them and a set
of associated sub-contexts that determine what
actions within the major context are being
performed. The number of attributes were four or
five for the VMGOES ModSAF major context
templates and ranged from three to seven for the
VMGOES CIS-based major context templates.
For example, the CIS-based Conduct Tactical
Road March template had only four attributes (see
Table 1). Except for possibly the first attribute, an
evaluation would have to be performed to
determine a value for the attribute. Other
templates, called Supporting Templates, which will
be discussed later, would perform these
evaluations.

Table 1. Template Attributes for Conduct Tactical
Road March Template (CIS-based)

(1) Moving

(2) Meeting fixed times for waypoints
(3) Road nets available nearby

(4) Enemy contact unlikely

The number of sub-context templates for the
VMGOES major context templates ranged from
two to seven for ModSAF templates and from
three to 12 for the CIS-based templates. To use
again the same CIS-based Conduct Tactical Road
March template as an example, 11 sub-context
templates were identified (see Table 2). Note that
the action associated with the eleventh sub-
context template would control the turret. That
action would occur simultaneously with the action
associated with one of the other 10 sub-context
templates, each of which would affect the action of
the tank hull.

Table 2. Sub-Context Templates for Conduct
Tactical Road March (CIS-based)

(1) Movement to start point

(2) Follow road segment-starting

(3) Follow road segment at 75% of march speed

(4) Follow road segment-increase to march
speed

(5) Follow road segment at march speed

(6) Follow road segment-increase to catch up

speed

(7) Follow road segment at catch up speed

(8) Follow road segment-decrease to march
speed

(9) Follow road segment-decrease to 75%
march speed

(10) Follow road segment-halting

(11) Turret scan relative to platoon position

Each sub-context template also has a set of
attributes to distinguish between them. For
example, the fourth sub-context from Table 2,
“Follow road segment-increase to march speed”,
has three attributes identified (see Table 3).
Others may be added later, if needed.

Table 3. Template Attributes for Follow Road
Segment-Increase To March Speed Sub-Context
Template (CIS-based)

(1) After start point time

(2) After critical point time and past critical point

(3) Accelerating between 75% and 100%
march speed

Supporting Templates Various supporting
templates will be defined to abstract the
environment into useable attributes for other
temporal templates. They provide an evaluation,
using their own attributes, to determine a value for
the attribute of interest. Note that supporting
templates may also use other supporting
templates for more than one layer of abstraction
and to reduce the redundant computation of
attribute values when the same attribute is used
by more than one template. For example, the
fourth attribute from Table 1, “Enemy contact
unlikely”, would be used by more than one
template. As a supporting template, it would have
to be determined only once in a vehicle model's
computation cycle, regardless of how many
templates used it as an attribute.

Automated Learning by Observation Once the
contexts and sub-contexts have been established,
the task become one of determining how to
capture the knowledge about recognizing the
various contexts and sub-contexts and
discriminating between them. The inputs that are
of significance to the crew in making their
decisions about which “action” to take would
logically be the inputs to consider. A Subject
Matter Expert (SME) can be consulted to provide
an initial cut of which factors are important.
Additional research can also be conducted to

determine if other attributes may be of use. The
ultimate limit on what can be used is the physical
constraint on what variables are, in fact, available
within the simulation to be observed.

However, although a large number of observations
can be made and collected, the question still
remains about how to reduce that data into a form
that can be used. One can make the analogy that
each template is similar to a single layer neural
network, i. e., the set of inputs (attributes) are
each individually multiplied by their own weights
and the result is summed to produce an output
(see Figure 3). That being so, a neural network
training procedure, such as back-propagation,
could be used to set the value of the weights. In
this case, the template score, the sum of each
input attribute multiplied by its associated weight,
corresponds to the output of the neural network
with a linear activation function.

-1 h I I3 I
(Bias) (Attributes 1 thru k values)

Figure 3. Attribute Learning by Observation Using
Neural Network Framework

As an alternative training method, genetic
algorithms may also be considered since the
information to use for training them would be very
similar. The same set of training examples and
outputs could be used for either training method.
One could have values for genes that would be
used to make up the template weights. They
could be recombined or allowed to mutate in the
training process and only the best weights would
be kept for each succeeding generation. Yet
another approach to training could use a
combination of methods, such as initial training
with genetic algorithms and refinement with neural
network training.

To address the template cut-off score, an arbitrary
value can be set, such as 0.5, below which each
template representing a doctrinal context will not
be considered. This has utility in that the uses of

some contexts are anticipated which will be simple
actions not representing doctrinal decisions. For
example, the DAE might be able to recognize that
the actual vehicle is heading in a particular general
direction but that the action doesn't have
relationship to any known context. Passing that
behavior which is not matched with any doctrinal
context to the VM may still allow the VM to
adequately model the action. Thus, some lower
level behaviors may be added as contexts that
would have a cut-off of, perhaps 0.25, but a
maximum value for the template restricted to less
than 0.5. This would allow the lower level
behaviors to be considered only when no doctrinal
context can be found.

Development of Training Examples To train
using back-propagation, each example set of
inputs will have to have an output for each
template to train against, since the relative values
of the templates must be considered as well as the
minimum cut-off value. Also, since each of the
templates will be using their own, probably
different, sets of inputs, all the possible inputs may
have to be collected for each example.

Next, the development of training examples is
complicated by the fact that a vehicle in one
context with an observable set of inputs might
have the same or very similar action in response
to those inputs were it to be in a different context
or contexts. Thus, the training examples could
give conflicting information to other templates if
the only output considered as valid is the context
that the vehicle was actually in that generated that
particular example. Therefore, either every
example may have to be evaluated as to how well
it would match with other template actions to
produce an output for training the other templates,
or else it might have to be used for training only
the template that generated it. One could argue
that if the outputs were so similar, it would make
no difference if the wrong context were selected
since the context changes are only sent out when
a PDU is required. The research will investigate
that possibility, since it could result in a much
simpler generation of training examples where
each example is used only for a positive output for
the context that generated it.

This leads to the question of what schema to use
for the output value for each training example. Not
considering the arguments given in the preceding
paragraph, several possibilities exist and the
following three will be investigated.

First, a simple binary value could be used, where
the template that generated the example is given a
value of one and all other templates are assigned
a value of zero. This could be readily used with
the ModSAF templates, since the context is
definitely known and could be recorded along with
the inputs at the time that the example was
generated. For the Manned Module, either the
crew and/or a trained observer will have to
determine and record the actual context being
used.

For a second schema, continuous values could be
chosen between zero and one where values of 0.5
to one are used for correct templates and zero to
0.5 are used for incorrect templates. A value of
one represents complete certainty that the match
is correct, zero represents complete certainty that
the match is incorrect, and values in between
those represent a gradation of certainty. The
values would have to be determined by a SME or
trained observer. In this schema, the same
examples do not need to be used with every
template and the templates are not given values
based on the values given to other templates.
However, for proper training, examples that do not
represent the context would have to be used to
ensure that the templates would score below the
cutoff value for inputs that do not represent the
context of the template. This schema would allow
expansion of the system with additional templates
being added without having to necessarily retrain
the existing templates.

For the third schema, consideration of other
templates is introduced into the output values, but
evaluation by a SME or trained observer is still
required. The following numerical values with
verbal descriptions could be used as guidelines in
determining what value to assign to a template for
a given training example:

(1) 1.0, if absolutely confident of correct match
and no other contender exists,

(2) 0.8, if strong confidence of correct match and
no other contender is more likely,

(3) 0.6, if possible match, but other contenders
are more likely,

(4) 0.4, if unlikely match, but cannot be ruled out
entirely, or

(5) 0.0, if absolutely confident of no match.

This schema would be used with the output for all
the possible contexts considered for each training
example. It would be the most comprehensive set
of training examples and would address the
problem of a set of inputs being valid for multiple
contexts. Unfortunately, it would also be the most
labor intensive for development of the training
examples and would require an almost complete
retraining of the templates whenever a new
context/template were added.

SUMMARY

While an embedded behavioral vehicle model
within a distributed simulation may be able to
reduce the communication needs below what
would be required using current dead-reckoning
procedures, it still must be synchronized with the
actual vehicle and its actions to be effective. This
research is exploring the methods that can be
used to synchronize the behavioral vehicle model
with both the position and orientation of the actual
vehicle as well as the actions that it is performing.
The action synchronization includes modifications
of both the context of the vehicle model and the
predictions that it makes, where the context of the
actual vehicle is determined using temporal
template matching and the prediction modification
needed is determined by observing biases in the
errors.

ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army
Simulation, Training, and Instrumentation
Command as part of the Inter-Vehicle Embedded
Simulation and Technology (INVEST) Science and
Technology Objective (STO), contract N61339-98-
K-0001. That support is gratefully acknowledged.

CITED REFERENCES
Bahr, H., (1997). Embedded simulation for ground

vehicles. Proceedings of the Spring 1998
Simulation Interoperability Workshop. Orlando, FL.

Bahr, H. and DeMara, R. F., (1996). A concurrent
model approach to scaleable distributed
interactive simulation. Proceedings of the 15"
Annual Workshop on DIS, Institute for Simulation
and Training. Orlando, FL.

Automated student
in_training _simulation.

Drewes, P. J. (1997).
performance monitoring

Unpublished doctoral dissertation, University of
Central Florida, Orlando.

Drewes, P. and Gonzalez, A., (1995). Instructor
assistance using template based reasoning.
Proceedings of the IEEE International Conference
on_Systems, Man and Cybernetics, Volume 2,
1918-1923. Piscataway, NJ.

Gonzalez, A. J. and Ahlers, R. H., (May 1995).
Context-based representation of intelligent
behavior in simulated opponents. Proceedings of
the 5" Computer Generated Forces and
Behavioral Representation Conference. Orlando,
FL.

Gonzalez, A. J.,, DeMara, R. F. and
Georgiopoulos, M., (March 1998). Vehicle model
generation and optimization for embedded
simulation. Proceedings of the Spring 1998
Simulation Interoperability Workshop. Orlando, FL.

Gonzalez, A. J.,, DeMara, R. F. and
Georgiopoulos, M., (May 1998). Automating the
CGF model development and refinement process
by observing expert behavior in a simulation.
Proceedings of the 7" Computer Generated
Forces and Behavioral Representation
Conference. Orlando, FL.

Gonzalez, A. J. and Murillo, M., (1998). Validation
of human behavioral models. Proceedings of the
Spring 1999 Simulation Interoperability Workshop.
Orlando, FL.

Henninger, A., Gerber, W., DeMara, R,
Georgiopoulos, M., and Gonzalez, A., (1998).
Behavior modeling framework for embedded
simulation. Proceedings of the 20"
Interservice/lndustry Training, Simulation and
Education Conference. Orlando, FL.

