
DOMAIN REQUIREMENTS FOR CONSTRUCTIVE WARGAMES FOR
COMMAND AND STAFF TRAINING AND C4I STIMULATION

Randy Brasch, Lisa Callahan, and Eytan Pollak
Lockheed Martin Information Systems

Orlando, FL

ABSTRACT

A small team of engineers and subject matter experts at Lockheed Martin Information Systems has recently
completed a Domain Analysis focused on constructive simulations used in both command and staff training (CAST)
systems and command, control, communication, computer, and intelligence (C4I) stimulation systems. The intent of
the domain analysis was to collect typical requirements for such systems and identify a common set of requirements
that could be used to drive the development of a framework and toolset to facilitate future development of systems
in the domain. This paper describes the results of that domain analysis. Specifically, it highlights the effort to
sufficiently abstract and level the requirements to define the constructive simulation framework and toolset and it
identifies the areas in which the currently recognized requirements are weak or missing.

ABOUT THE AUTHORS

Randy Brasch is a software engineer at Lockheed Martin Information Systems in Orlando, Florida. For the past four
years he has focused on the analysis and design of constructive simulation systems to support commander and staff
training. A significant part of that effort has been devoted to investigating and prototyping various techniques for
communicating between simulation systems and C4I systems.

Lisa Callahan is currently a program manager at Lockheed Martin Information Systems in Orlando, Florida. She has
worked as an engineer in the simulation business for over six years and specifically in the constructive simulation
area for the past four years, including three years as the chief engineer for the WARSIM 2000 program.

Dr. Eytan Pollak is currently the IR&D Technical Director at the Lockheed Martin Information Systems Company
in Orlando, FL. His responsibilities include the Reconfigurable Simulator, Embedded Training Systems, War
Gaming, Simulation Architecture, Synthetic Environment, and other DIS/HLA research programs. He serves as an
adjunct professor of Electrical and Computer Engineering at the University of Central Florida. He received his Ph.D.
from Purdue University, West Lafayette, IN

DOMAIN REQUIREMENTS FOR CONSTRUCTIVE WARGAMES FOR
COMMAND AND STAFF TRAINING AND C4I STIMULATION

Randy Brasch, Lisa Callahan, and Eytan Pollak
Lockheed Martin Information Systems

Orlando, FL

INTRODUCTION

The United States military is in the process of
upgrading the simulation systems used for training
commanders and staffs in Command Post and
Operations Center environments. Systems such as the
Joint Simulation System (JSIMS), Warfighters
Simulation 2000 (WARSIM 2000), and the National
Air and Space Model (NASM) are currently being
developed to provide training capabilities well into the
21st Century. The development and deployment of
these systems will take several years, and these systems
will require a large number of resources to execute.
Meanwhile, there is a need for smaller, less resource
intensive systems to provide a subset of the training
capability of these large systems at much lower cost.
For example, the US military units need smaller scale
systems such as the Low Overhead Driver (LOD) and
Digital Battle Staff Trainer (DBST) to provide local
training capabilities. Smaller systems such as these are
useful because they require very little support. That is,
the soldiers can set it up, operate it, and there is little
requirement for role players to support an exercise.
Another example of why smaller systems are needed is
because they provide the capability for small countries
with limited budgets to advance their training
capabilities and be able to train with the US military in
the future.

Although the development of a small scale training
system is less resource intensive than that of a larger
system, the specification, design, and development of
even a small scale training system is still an ambitious
project. Typically, it is more expensive than any single
using organization can afford given today’s limited
military budgets. For that reason, as an alternative to
developing a complete, unique system for each using
organization, this research explores the idea of
developing a production system for generating smaller
scale, less expensive training simulations that could be
tailored to meet the unique needs of each potential
using organization.

The long-term vision of this project is to design and
develop the capability to rapidly and inexpensively
generate training simulation systems tailored to end

users specific needs. This vision requires the
development of a set of tools to build simulations as
well as the development of a set of simulation
components that can be easily adapted for specific
applications and used within a general wargaming
architectural framework. This led to the definition of a
wargame system factory concept that combines the use
of tools to support development efforts with a
repository of reusable components to enable a
streamlined production capability.

From past experience, it was apparent that this
application seemed to have many of the characteristics
of a classic domain engineering problem. It
encompassed a line of specialized products that share
many commonalities and offered the potential for
gaining production efficiencies through planned reuse.
Since domain engineering efforts for both JSIMS and
WARSIM 2000 programs had recently been completed,
the expertise and lessons learned from those efforts
were used to establish this project’s baseline.

DOMAIN ENGINEERING

Domain Engineering is an extension of Systems
Engineering and is intended to provide a discipline for
efficient design and development of related products
and systems. It is related to engineering for reuse in that
it focuses on identifying commonalities among products
and systems and leveraging those commonalities to
provide reusable elements for those products and
systems. The Domain Engineering process (Figure 1)
can be defined as:

“… a systematic approach which involves
defining high-leverage domains or product-
lines, establishing architectures that address
the needs of each product within those product
lines, and development and management of
reusable assets that populate those
architectures.” (“Domain Engineering”, 1995)

Implement
Domain

Scope

Domain
Analyze
Domain

Design
Domain

Identify

Domain

Figure 1: The Domain Engineering Process

This paper presents the first three steps of this process:
identification of domain, scope of domain, and analysis
of the domain, with the emphasis being placed on the
domain analysis phase. That phase is used to collect,
organize, analyze and present information in order to
identify common requirements within a domain
(“Domain Engineering”, 1995). These initial phases lay
the groundwork for identifying the product line to be
developed and provide the basis for the later phases of
designing and implementing products. They establish
the basis for commonality and reuse and, as such, are
the determining factors of the efficiency of the ensuing
production efforts. Successfully completing these
phases results in the identification of all of the areas
that are potentials for planned reuse. Later steps in the
process determine which of those areas will actually be
developed. Those decisions are typically formulated
based on potential return on investment.

Identify and Scope Domain

As indicated earlier, the domain of interest
encompassed constructive simulations used for CAST
and C4I stimulation systems. This is a subset of the
Training, Exercises, and Military Operations (TEMO)
domain. One of the three domains for Army M&S
applications, TEMO includes most forms of training at
echelons from individual simulation trainers through
collective, combined arms, joint, and/or combined
exercises. TEMO includes mission rehearsals and
evaluations of all phases of war plans. (“TRADOC Reg
5-11”, 1998)

The focus of this investigation is on collective training
at command post and operations center levels, not on
crew and team training at the platform level or on
individual training. Additionally, the stimulation of C4I
systems was included, since interoperability with real
world C4I systems has become an essential requirement
for commander and staff training systems. Finally, to
further scope the domain, focus was placed on the
Brigade and Battalion level echelons of commander and
staff training systems.

As part of the identification effort, characteristics that
might distinguish each of the subdomains were
identified (Figure 2). This provided the initial
assessment about the feasibility of including each of

these in the domain and also served to identify areas in
which reuse might not be effective.

Collective
Training

C4I Stimulator Brigade /
Battalion

Low cost.
Ease of use.
Adaptable for
language and
culture.
Supports joint /
coalition.
Aggregate
resolution.

Repeatable.
Predictable.
C4I native
interface.
Autonomous
simulated units.
Visibility of C4I
interaction.
Control of C4I
interactions.
Ability to
introduce errors.
Control load on
C4I systems.
Unattended,
long duration
runs.

Platoon / squad /
platform
resolution.

Figure 2: Distinguishing characteristics of
subdomains within the domain of interest.

While analyzing the subdomains, it was apparent that
there were some seemingly conflicting characteristics
between collective trainers and Brigade / Battalion level
systems. These differences centered on the level of
resolution. Collective trainers typically represent
aggregate units such as companies and above, while
Brigade / Battalion level trainers typically require
visibility to the platoon or even platform level.
However, it was decided to keep both elements in our
initial effort because advances in technology are
making lower level units visible at higher levels of
command. For example, the availability of battlefield
video in command posts from remote sensors provides
this type of visibility. Thus, it was reasoned that even
higher level commander and staff trainers would
eventually require platform level resolution for some
areas of the virtual battlespace.

Analyze Domain

The next step in the process was to collect and analyze
the requirements (Figure 3). In this phase of the project,
the requirements are collected (INPUTS), the analysis
is performed (METHODOLOGY) and the result is a set
of leveled and categorized requirements (PRODUCTS).
The following sub-sections address these functions
individually.

Figure 3: Domain Analysis Task Process Flow

Collect Requirements. The first activity was to identify
possible sources of requirements that would be
applicable to the domain. Fortunately, a large base of
available requirements was available from two major
US systems' domain engineering efforts. Additionally,
the researchers had worked closely with actual and
potential international customers to define requirements
for systems of a smaller scale than the US systems.
Thus, the requirements base used in this project was a
"requirements rich" base.

Eventually, it was decided to work with a set of
requirements that covered a broad spectrum of users
ranging from large, upper echelon training systems to
smaller, lower echelon training systems. These seemed
to represent a fairly complete sample of the
requirements for the types of systems within the target
domain. However, it was apparent that none of the
requirements in the base set seemed to address the issue
of stimulating C4I systems to provide stand-alone
training. Since this seemed to be a natural extension of
small scale constructive training systems, the
researchers wanted to include those types of
requirements in the initial requirements base. This was
achieved by using a Capstone Requirements Document
written at NSC that provided an initial attempt to
“…define high level common requirements for all
simulations (tactical, training, analytical, and test) that
must link to C4I systems of the future.” The
requirements in that document were used to provide the
inputs for the C4I stand-alone training capabilities in
the requirements base.

Tools and Methodology. The Dynamic Object Oriented
Requirements System (DOORS) requirements analysis
tool was selected as the primary Computer Aided
Software Engineering (CASE) tool for recording and
allocating requirements. DOORS was already in use on
the our WARSIM 2000 program, so using it provided a
base of knowledgeable users as well as an extensive
database of domain specific requirements. Also, since
several of the requirement documents were in Microsoft
formats, Microsoft Word and Excel were used.
Microsoft Word, in particular, provided a mechanism

for preparing requirements for importing into DOORS
and for handling DOORS outputs. Lastly, it was
discovered that organizing and combining requirements
in the Word environment was more efficient than in the
DOORS environment.

The basic requirements analysis process incorporated
features from the Software Productivity Consortium
(SPC) Reuse Driven Software Process Guidebook
(“Reuse Driven Software”, 1993) and the Defense
Information Systems Agency (DISA) Domain
Engineering Process (“Domain Engineering”, 1995) as
well as lessons learned from our previous domain
engineering experience. Introducing a spiral
development process then enhanced this process. The
intent of this enhancement was to maintain focus and
incentive by providing a concrete goal at the end of
each spiral. This was accomplished by means of
defining a scenario to be executed at the end of each
spiral and. adding a phase to define demonstration
scenarios using the highest priority requirements. In
practice, it was necessary to balance both high priority
requirements and resource limitations to reach a
definition of reasonable scenarios for the spirals.

Analyze Requirements. Once the requirements were
identified and collected, the requirements analysis
phase began. The goal of this phase was to synthesize a
complete set of requirements for systems that would be
needed in the domain for the next 5 years or so. Thus,
both the combined requirements from existing systems
as well as anticipated requirements for systems in the
development pipeline were included. Initially, the goal
was to combine the requirements, eliminate
redundancies, and produce a set of unique, leveled
requirements that presented a complete picture of the
needs within the target domain. However, this turned
out to be far too ambitious for this project. As a result,
the effort and expectations were scaled to something
that could be accomplished within the resources
allocated to the project.

Since a good cross section of the systems in the domain
had been captured in the existing requirements base, its
use was continued as the project proceeded through the
phases of the system engineering process. However, not
all of the requirements in that base were used during
this initial effort. Instead, focus was placed on those
requirements that dealt directly with Brigade / Battalion
level training systems. It was believed that the greatest
potential return could be achieved by focusing on those
requirements since they seemed to generally to apply to
all segments of the domain (Figure 4).

INPUTS

METHODOLOGY PRODUCTS

Leveled
DomainRqmts

Common
Requirements

Sub Domain
uniquerqmts

Yr End Demo
Pri & ScenarioCollect

Requirements
Analyze

requirements

Identify
common

requirements

Identify the
subdomain

specificrqmts

Develop
demonstration

scenario

Use Demo
Scenario to

prioritize 1999 Effort

SPC Reuse Driven Software Process Guidebook
DISA Domain Engineering Process - guidance

Requirements

Upper
Echelon
Training

International
Training

C4I
Sim/Stim

Mid-
echelon
Training

Figure 4: Requirements distribution across
subdomains.

One of the biggest challenges and an initial goal of the
requirements analysis effort was to abstract the input
requirements to a common level that would be
applicable for system level design and reuse analysis.
Using the wide variety of inputs available resulted in a
large base of requirements that included broad
generalizations as well as detailed implementations.

For example, the following requirement essentially
provides a high level definition of a complete training
system:

The system shall provide an interactive, multi-
sided, force-on-force, real-time modelling and
simulation for Joint Service tactical
operations.

In contrast, the following requirement provides a
specific list of class attributes for a model:

The system shall model the cargo capacities
with the following characteristics: weight,
volume, length, width and height.

It quickly became obvious that abstracting the
requirements to a consistent level would be a

prodigious task and probably would not support the
project's goals. It was necessary to insure that the
common requirements were consistent and that those
requirements that applied at the system and software
architecture levels were clearly identified. However,
eliminating the details that perhaps were more
applicable to the design level was not essential. Instead,
the researchers focused efforts on identifying those
requirements that would influence the common product
architecture and on partitioning the requirements based
on the architectural components.

Based on previous experiences in domain and systems
engineering, it was apparent that a target system
architecture would be needed to effectively partition the
requirements. There has been a lot of work done over
the past few years in exploring architectures for
constructive simulation systems used in collective
training. Consequently, it was decided to use that base
of knowledge and not “invent” a new architecture.
Also, a commercial simulation infrastructure and
framework to use in the initial implementations had
already been selected. The combined effect of these
decisions led to a structure that resembles the JSIMS
architecture and fits into the framework provided by a
commercial product. Since, at this point efforts are
primarily targeted at the software aspects of training
systems, a model to provide the "bins" for partitioning
the requirements was created (Figure 5). The software
categories that map to the elements of the software
model are:
• General Software

Requirements
• Developer Support

Toolset
• User Support Toolset • Interface Handlers
• User Interfaces • Process Models
• Message Models • Equipment Models
• Environment Models

Bu
ild

s

Trains

Builds

Populates
Populates
Uses

U
se

s

U
se

s

U
se

s

Uses

Uses

Uses U
se

s

Uses
Wargame

Infrastructure

Developer
Support
Toolset

User
Support
Toolset

Wargame
Database

Triggers
Triggers

TriggersTriggers

Presents
User

Interface
Interface
Handler

Operates
O

pe
ra

te
s

Environment
Model

Equipment
Model

Employs

Influences

In
flu

en
ce

s

Controls

Process
Model

Message
Model
Exchanges

Figure 5: Software model for the wargame system factory.

General Software Requirements: This category
captures those requirements that applied to the
overall software capabilities, but did not fit into one
of the other categories. These include requirements
that deal with general system concepts (e.g., open,
scalable, etc) and that deal with overall system
performance (e.g., run faster than real time, provide
spare memory, etc).

Developer Support Toolset: This category
represents capabilities that would be used by system
developers according to this project's concept of how
the systems would be produced. This category
includes some specific tools unique to the software
technologies that are intended to be incorporated in
the products. For example, this category includes a
tool to support generation of rules for cognitive
models. Also included in this category are tools that
might be delivered with the system, but primarily be
used by the developers of the system, as opposed to
its end users in the target markets. For example, it
includes tools for populating the detailed parameter
databases used by the simulation.

User Support Toolset: This category probably
represents a more common view of the applications
that would be used to support a developed simulation
system over its life cycle. It includes the tools that the
end users will need to use their system in their

environment. These include such tools as a scenario
generator and network monitor.

Interface Handlers: This category was used to
capture requirements that define the capabilities that
the simulation has to provide to the user. The system
architecture for external interfaces is based on the
Model-View-Controller (MVC) design pattern
(Gamma, Helm, Johnson & Vlissides, 1994). This
provides a separation of the user interface from the
application and allows either to be changed
independently of the other. The interface handlers
provide the mechanism for mapping interfaces to
applications.

User Interface: This category is used to capture the
requirements that define the user’s view of the
system. This includes the view of the simulation as
well as that of the system tools.

Process Models: This category is intended to capture
the requirements dealing with the behaviors of the
entities that are modeled in the simulation, and on the
cognitive capabilities included in the system to
provide automation of those behaviors. The separate
identification of the “thinking” part of the simulation
is typical of current simulation architectures.

Message Models: This category is a result of the
architecture adopted based on the structure of the

commercial framework being used. It also fits with a
basic concept in modeling real world entities –
“model the way it works in the real world.” As a
requirements category, it was used to catalog the
requirements that define the information that is
transferred among entities in the simulated
battlespace.

Equipment Models: This category is used to capture
the requirements that cover the physical
characteristics of the entities that are to be simulated.

Environment Models: This category is used to
capture the requirements that describe which aspects
of the physical environment being simulated must be
modeled.

Assess Requirements. It was evident that most of the
requirement sets that had been reviewed included at
least three types of requirements:
• Conceptual requirements that apply to the system

as a whole and that attempt to define overall
characteristics. These included concepts such as
open, scalable, usable, and composable.

• Performance requirements that define metrics
such as how many, how fast, and how much.
Typical requirements in this category included
such things as numbers of entities simulated,
relationship of processing time to real time, and
percentage of spare memory and storage.

• Functional requirements that define what the
system is supposed to do. These tended to range
from very broad (e.g., provide a realistic
environment) to very specific (e.g., the
maximum ground speed of an M1 tank shall be
100 kph).

As mentioned above, the conceptual and performance
requirements generally apply to the system or the
software in a broad sense and could not be allocated
to any specific system component at this time. They
provide a set of guidelines for designing and
developing systems and may even require that the
developers design systems in such a way as to foster
reuse principles.

The functional requirements provide a rich
environment for discovering reuse potential. Many of
the functional requirements were either identical or
very similar across the systems. This was as
expected, since the perceived commonalities among
the systems stimulated the initial interest in
performing this effort.

During this phase, it became apparent that the
Internet has somewhat changed the technical side of
the procurement process and, perhaps, led to more

commonality than might be expected from a diverse
set of requirements writers. Many of the international
customers have picked up information from US
documents available on the Internet and incorporated
it into their requests for proposals. Many
requirements were either exactly the same or very
similar to the WARSIM and JSIMS requirements that
have been published on the Internet. However, this
has led to international customers requesting a set of
capabilities that would be “challenging” to provide
within their budgetary constraints. It also possibly
sets a level of expectation that may be difficult for
low cost systems to meet.

As a result of this analysis, it was discovered that
specifications typically went into great detail about
the equipment to be simulated, provided reasonable
information about the interactions between units, and
defined the environmental effects that were to be
simulated. They also did a fairly complete job of
defining the interfaces to external systems.

Identify Key Requirements. With respect to the
domain of constructive simulations, the key
requirements were deemed to be those that would
influence the basic architecture and that would
remain part of any product that was produced as a
domain application. Those requirements tended to be
the more general requirements that really provided
guidelines for a flexible system design. They
included requirements that would be applicable to
any product as well as those that were more
specifically oriented to products in the target domain.

Extensible Design. Because there are many potential
customers with several different needs, an underlying
requirement is an architecture that is extensible both
in content and scope. The flexibility to tailor the war
game simulation to the customer’s requirements
without major architectural changes is one of the
design goals.

Machine Independence. Until the specific customer
requirements are identified, this must be a generic
solution to constructive simulation requirements.

Low Cost. One of the underlying benefits of a
simulation is that it costs less than a real war.
Because potential customers are seeking a less
expensive and faster alternative for conducting war
games, the solution must require minimal support for
setting up and running an exercise as well as provide
a low maintenance environment. There is a real
concern that development, maintenance, and
operational costs be as low as possible.

Turnkey solution. For these smaller scale systems,
end users really want to get a product that they can
set up and operate on their own. They do not want

systems that require contractor support for day to day
use.

Comprehensive. The simulation must be capable of
providing a training environment that encompasses
all of the activities that modern military forces are
being asked to perform and that incorporates the
effects of all of the resources that affect the
outcomes.

WARGAME SYSTEM FACTORY

The ultimate vision for this project is a production
system that is capable of generating the applications
that meet the needs of specific customers. As such,
the basic architecture has evolved into a production
line concept that provides capabilities to efficiently
extend a common simulation framework and
customize off the shelf components to meet the
requirements of any domain specific application. This
results in a “factory” which has a composable
simulation system at its core, an inventory of reusable
simulation components, and a customization facility
consisting of several tools to address specific product
needs (Figure 6).

Wargame Production Line
New

Wargame
Software

Wargame Software Framework

Wargame Database

Software DevelopmentSoftware Development Model RepositoryModel Repository
Process Model Rule

Generator and Trainer
Process Model Rule

Generator and Trainer

Unit GeneratorUnit Generator

Database Generation
System (DBGS)

Database Generation
System (DBGS)

Database PopulatorDatabase Populator Message Translation
Generator

Message Translation
Generator

User Interface BuilderUser Interface Builder

Wargame Interface Clients

Figure 6: Starter Set production line architecture.

The factory concept and its associated architecture as
depicted here represents the initial work in the next
phase of the domain engineering process, viz.,
Design Domain. In the model, there are three major
system components that move along the production
line: the software framework, the database, and the
interface clients. A common software framework is
extended for a specific product at the software
development, process model rule generator and
trainer, and model repository stations. The database
for the product is generated at the database
generation, database populator, and unit generation
stations. Interface clients are constructed at the user
interface builder and message translation generator

stations. Finally the three system components are
brought together at the end of the line to form the
customized product for a specific user.

LESSONS LEARNED

In doing the domain analysis we learned several
things and confirmed several of concerns that had
been expressed going into the task. Probably the key
lesson learned was that more advanced tools are
really needed to efficiently do the domain
requirements analysis on a large scale, e.g., identify
common or related requirements, identify redundant
requirements, sort requirements by category. DOORS
promises to be able to perform some of these tasks to
some level, but those advanced capabilities were not
tried in this effort. DOORS was used to record and
categorize requirements on a large scale and that
proved to be very tedious. DOORS over a busy
network with lots of requirements and links can be
painfully slow.

Collecting the requirements and setting up the
requirements database surfaced some problems with
the magnitude of the effort that had been undertaken.
Gathering requirements from many different sources
introduced many redundancies in the database. An
initial goal was to eliminate those redundancies to
come up with a database of unique requirements. In
practice this proved to be more of an effort than
anticipated. A lexical analysis tool to automatically at
least suggest requirements that appeared to be
duplicative was sorely needed. Even after sorting the
requirements by system component, the resulting
datasets were still too large to evaluate manually in
the time available.

No procedural mechanism was used for identifying
common requirements across systems. Essentially the
analyst had to either remember that a system had a
similar requirement or do a manual search for similar
requirements across systems. Some automated tool to
identify requirements that were similar to reduce the
scope of some of the searches would have been a
great benefit. Another handy tool would have been
something that could be used to record a common
version of a requirement and link the common
version to all of the originals that went into it. Again,
this could be done using DOORS, but was not
pursued in this effort.

Floating licenses: We were using a pool of licenses
for the DOORS tool and, although we were not
directly involved with other programs sharing the
same licenses, we were impacted by their use.
Whenever one of the programs would go into a
requirements analysis phase, the licenses would
inevitably be used up. Because we were not a

contract program, we did not use the tool when it
became evident that programs were running out of
licenses. Fortunately, we were never at a loss for
other things to do, but this did occasionally interrupt
our workflow. I can only imagine the impact of the
shortages on the programs.

SUMMARY

We have embarked on a Domain Engineering effort
initially targeted at battle staff training at the Brigade
and Battalion level. During the course of this study,
the domain definition was extended to include the
stimulation of real world digital command and
control devices. The domain engineering effort
performed to date has identified the broad domain of
interest, reduced its scope to a target subset that
appeared to provide a high potential for return on
investment, and completed a domain analysis which
focused on the collection and assessment of
requirements from existing and potential future
systems within the domain. The requirements set was
extended to fill in missing and weak areas and to
incorporate ideas pertaining to a factory concept. The
resulting requirements were categorized based on
their applicability across the domain and partitioned
based on a general component architecture for a
commander and staff training system production
factory.

CONCLUSION

The work we have done so far is a start towards
implementing our vision of a commander and staff
training system factory. We will continue to refine
our requirement base as we proceed through the rest
of the phases of the Domain Engineering process. At
this point we have a good start, a fairly complete
requirements set, a solid simulation infrastructure and
framework, and an initial set of support tools.

REFERENCES

Domain Engineering Process, Version 2 (1995).
Defense Information Systems Agency.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J.,
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley.
Reuse-Driven Software Processes Guidebook (1993).
Software Productivity Consortium Services
Corporation.
TRADOC Reg 5-11 (1998). US Army Training and
Doctrine Command (TRADOC) Models and
Simulations (M&S) and Data Management.

