
INITIALIZATION OF UNIX BASED SIMULATION EXERCISES FROM
THE PERSONAL COMPUTER

Jeffrey B. Abbott
AcuSoft Inc.

12249 Science Drive Suite 160
Orlando, FL 32826

407-658-9888

Mr. Jeff Abbott is a project manager for AcuSoft Inc. He holds a Masters Degree from the University of Central Florida
in Electrical Engineering and Communications Systems. He has 14 years experience in the development and
management of software systems for government contracts. He is currently working on the CCTT Exercise
Initialization Tool and performing interoperability research for simulation in the areas of interoperability
test/compliance, and composable/standardized simulation architectures.

Dr. Mona Crissey
ARL-HRED-STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

407-384-3639

Dr. Mona J. Crissey, ARL-HRED-STRICOM, is Project Director, Training Exercise Development System (TREDS) for
Program Manager Combined Arms Tactical Trainer (PM CATT) at STRICOM. She holds degrees in Education from
University of Alabama (Ed.D), University of Kentucky (MA), and SUNY Cortland (BS). She has 16 years of program
management and database development experience with government and industry. She is currently the government lead
for development of the training environment for the Aviation Combined Tactical Trainer-Aviation Reconfigurable
Manned Simulator (AVCATT-A) to include After Action Review (AAR) and Mission Control.

ABSTRACT: To effectively train in simulation environments, all aspects of mission planning must be considered. This
planning can occur in locations far from the simulation site, and can involve any of the following: development of the
scenarios expected to be executed, preparation and generation of support products such as the operations orders, maps
with overlays, execution matrices, and administrative orders, and initialization data parameters for both the equipment
to be used and the simulated battlefield. Today’s military planners are becoming increasingly computer literate,
however, many trainers do not use simulations often enough to become familiar with the specific exercise planning
interfaces used in their simulation environments. Although, simulation has moved much closer to the desktop, seamless
initialization will require easier migration of common desktop tool produced products into the simulation. Familiarity
of user interfaces for simulation planning and initialization tools can be achieved through the integration of desktop
commercial off the shelf (COTS) products already in common use. Most exercise plans originate in COTS products
such as Microsoft Office. These plans are then prepared for application to specific simulation environments. The
process of exercise preparation is primarily a task of transposing the mission, overlays, and execution matrices from
desktop formats into formats compatible with specific simulation environments and can become a time consuming
process. Desktop software is now sophisticated and powerful enough to automate this translation of exercise plan
information (documents) into simulation formats for exercise initialization. This process involves the transfer and
integration of a simulation environment’s object model into common desktop tools. The object model must be
integrated with the planning tools so that through the course of exercise development, the plan may be captured in a
format consistent with scenario generation. Initialization of Close Combat Tactical Trainer (CCTT) exercise units,
obstacles, and control measures from PowerPoint will be used as a practical example of this functionality. In
particular, the paper will show how COTS products meet user requirements for an automated initialization tool and
provide a uniform view of the training and simulation domains for both users and developers.

INITIALIZATION OF UNIX BASED SIMULATION EXERCISES FROM
THE PERSONAL COMPUTER

Jeffrey B. Abbott
AcuSoft Inc.

12249 Science Drive Suite 160
Orlando, FL 32826

407-658-9888

Dr. Mona Crissey
ARL-HRED-STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

407-384-3639

BACKGROUND

The following paragraphs present past development
efforts that provide the keys to integrating familiar
Windows desktop applications running on personal
computers with simulation applications running on
RISC based processors under UNIX or UNIX like
(AIX) operating systems for the purpose of exercise
initialization.

Early in the development of the CCTT system, a need
was identified for a comprehensive training program
that would provide the lesson plan level information
required for units to successfully conduct training, take
advantage of CCTT features and capabilities, and avoid
the problems of negative training. As part of that
effort, an automated planning tool that would enable
commanders and training developers at home station to
generate training exercise materials as well as manage
exercise data at the collective task level was developed.
The Training Exercise Development System (TREDS)
provided a library of Mission Training Plans (MTPs), a
map library, a scenario library of CCTT scenarios, and
a variety of modules designed to help automate
common processes such as generation of After Action
Review slides and Training and Evaluation Outline
(T&EO) task lists. Recently, another tool, the
Commanders Integrated Training Tool (CITT) has been
developed for CCTT that will extend these capabilities
further.

Another tool developed for use by commanders was the
Unit Off Site Planner (UOSP). The purpose of this tool
was to enable scenario developers to completely plan
the simulation initialization details on home station
PCs, transfer that data to diskette, and then provide the
CCTT site manager with a completed scenario. He, in
turn, would input the details concerning the planned
exercise into the CCTT Master Control Console (MCC)

and automatically initialize the simulation battlefield
according to the unit's plan.

During a BAA based study on CCTT Interoperability
with an Aviation manned module simulation, the need
arose to enable the definition of CCTT exercises in a
reusable ASCII format. In the course of the BAA, a
PowerPoint tool for laying out battlefield graphics was
extended to support the UOSP format in CCTT. This
extension enabled PowerPoint to export CCTT exercise
data from any Windows based PC running Microsoft
Office 97.

With development of the Synthetic Environment Data
Representation Interface Specification (SEDRIS), an
architecture was created to allow visual system terrain
and feature data to be shared across hardware and
software platforms. The key to such standardization of
data reuse was the development of a SEDRIS API that
is cross platform and cross operating system capable.
As a result, any application that supports the API can
reuse SEDRIS data in a loss-less fashion. The single
API approach provides a common interpretation of
SEDRIS data enabling interoperability across visual
system platforms.

All of the above tools and research have provided parts
of the initialization package. There are still some
problems to be found, the main one being that of
translating data produced on the PC into usable data for
the simulation which, in the case of CCTT, is hosted on
UNIX. This directly usable data will provide another
major benefit as well, that of saving considerable time
now required to be spent by CLS staff in development
of exercise files.

UNIFORMITY

The first step in interoperability between the exercise
planning process and simulation is to provide a uniform

view of the simulation domain to both the simulation
developer and user (training developer). Much of the
information contained in training materials must be
used to initialize simulation-based exercises. The
problem is that little or no data from training materials
can be transitioned directly to an exercise’s
initialization. To provide a uniform view of the
simulation domain, information requirements of the
training domain must be mapped to the data
requirements of the simulation domain.

If a uniform view of the training and simulation
domains is to be obtained, certain assumptions must be
made and tested. The most important assumption is
“The basic training process does not vary by training
environment.” This statement would suggest that
whether in the live, virtual, or constructive
environment, these modes of simulation based training
are equivalent. If we accept this hypothesis, then the
simulation domain falls within the training domain and
we can conclude that the simulation process does not
require the user to perform any tasks beyond those
required for live training. However, since simulation
involves automation, some of the difficult tasks in the
training process ought to be simplified, and some of the
tedious tasks ought to be automated. Statements as
bold as these are not likely to be accepted at face value.
Let us examine the basic steps in the training process to
see how well simulation maps to them.

Simulation and Training Exercise Steps

Four phases are common to any training exercise. They
are Plan, Prepare, Execute, and Assess. We will restrict
the scope of this paper to the steps of Plan, Prepare and
Execute. The Evaluation or Assessment step that
comprises the After Action Review process will not be
discussed, although it is clearly linked to the other
three.

Planning is the first step in the training process. It
involves the development of exercise objectives and the
conditions under which the exercise is to be performed.
Conditions may be defined as the Mission, Enemy,
Terrain, Troops, and Time (METT-T) constraints for
the exercise. Each mission impacts on the behaviors
and tasks to be simulated and/or performed in an
exercise. Enemy and Troops identify the units to be
trained as well as simulated. Terrain identifies the
terrain database (battlefield play box) and impacts on
the locations of units and control measures. Time
available identifies constraints on schedule, duration,
and exercise synchronization.

Preparation for an exercise generally involves
scheduling for, and acquiring exercise assets. This step

maps well to simulation. It is the preparation step in
live training that can be the most difficult. Here,
simulation greatly simplifies the difficult tasks of
obtaining exercise assets such as equipment, fuel,
ammunition, etc. Generally, all that needs to be done is
to schedule the exercise with the simulation site,
prepare for food, lodging, and travel, and given an
exercise initialization file, the simulation will generate
(automate) the rest.

Execution of a simulation-based exercise involves more
than just performance of the tasks to be trained.
Execution involves appropriate stimulation of the
training environment in circumstances designed to train
soldiers to perform appropriate tasks to standard and to
stress the training audience’s abilities to fulfill the
exercise mission. In simulation, the task of stimulating
the training environment primarily falls to computer-
generated forces (CGF), semi-automated forces (SAF)
operators, unit commanders, and other role players and
training participants.

Evaluation and assessment are completed during the
After Action Review for an exercise. This step
involves the collection, review, summary, and analysis
of exercise data that was created or collected from the
other steps.

Of these four steps in the training process, the planning
step benefits the least from simulation. However the
information and data derived from this phase must be
used to execute a simulation exercise. If the exercise
plan captured in training materials is to map into the
simulation domain, the plan must not only present
information, but it must also capture and deliver the
data required by a simulation environment to
implement the exercise.

Data are used cognitively by the trainer to develop
information used in the definition of a training exercise.
If these data are not captured during the development of
training materials, they are lost. Remember our
assumption: “The basic training process does not vary
by training environment.” If training developers are to
use the same process to implement a plan for
simulation as they would use for live training, then the
tools they use in real exercise planning should be
extended to capture that data required to initialize
simulation. It is important to note that if we replace the
trainer’s tools with those developed for a specific
simulation environment, then we have violated our
assumption. This makes sense from a human factors
perspective as well. People generally use those tools
they are familiar with, even if it means more work.
Thus, because it is unlikely that a simulation user will
train in a particular simulation environment often

enough to become familiar with its planning tools, it is
most likely those tools will not be used. This is not a
question of human-machine interface. No matter how
well an interface is defined and implemented,
familiarity ultimately comes from experience. The
challenge, then, is to capture simulation relevant data in
the user’s everyday tools.

APPROACH AND IMPLEMENTATION

To enable the capture of simulation data during the
planning process, three tasks must be accomplished:

• Port the simulation environment data requirements
to the user’s desktop.

• Link the ported data to the trainer’s planning tools
and environment.

• Motivate the user to capture the data required by
simulation.

As a practical example of this approach, CCTT will be
used for the simulation environment, and PowerPoint
will be extended to perform the planning that is
currently done on the CCTT Plan View Display (PVD).
To achieve integration of CCTT with PowerPoint,
heterogeneous software and hardware issues need to be
resolved. A porting strategy that allows CCTT to share
data with PowerPoint across operating systems (AIX
and Windows) and hardware platforms (Motorola
PowerPC and Intel Pentium platforms) will have to be
developed.

Porting Simulation Environment Data

Let us return to the earlier examination of an exercise’s
METT-T conditions as they relate to simulation. The
Mission, Enemy, and Troops identified for exercises
are constrained by the types of units supported in the
target simulation environment. The terrain is
constrained by the terrain databases available in a
simulation environment. Unit type data alone are not
sufficient to support initialization of units in simulation.
Other data, to include unit designations, formations,
behaviors, and specific manned module definitions, are
needed. Likewise, identification of the terrain database
to be used is not sufficient. In order to place units,
control measures, and entities in their proper positions
for the exercise, correlated digital maps are required.
Digital maps, whether rendered from terrain databases
or scanned, must be incorporated into the graphics
package(s) used by the training developer to enable the
capture of unit, entity, and control measure positions
and orientations. In an ideal situation, all data required
to plan exercises for a simulation would be ported to
the PC desktop in the simulation environment’s native

format. When the data do not exist, are incomplete, or
incompatible, formats will have to be developed to
complete this task. In the case of CCTT, PVD
databases exist that may be read on the PC to render
correlated digital maps. ASCII reader files and tables
also exist which document the supported units, unit
placement parameters, unit behavior parameters,
supported entities, and entity configurations. These
files may be easily read (parsed) on any hardware
platform.

Terrain support is provided by the virtual terrain
databases (VTDB). These databases are used by SAF
for terrain awareness, and map rendering on the PVD.
In CCTT the VTDB PVD database is used to render
terrain features (roads, fields, trees, etc), contour lines,
and fixed selectable features (towers, bridges, etc). The
VTDB MrTDB represents the terrain skin and terrain
features. The VTDB MrsTDB represents the routing
database used to generate routes for SAF entities to
travel along. The CCTT PVD databases were ported to
the personal computer in their original format to enable
rendering of PVD maps under Windows. Units in
CCTT (enemy, and friendly troops) are defined in
reader files and tables (Table 1).

Table 1. CCTT Reader Files and Tables

blufor_pure_units.rdr
Identifies the BLUFOR units in terms of their type,
aggregate type, echelon, organization, equipment
and life form makeup.

opfor_pure_units.rdr
Identifies the OPFOR units in terms of their type,
aggregate type, echelon, organization, equipment
and life form makeup

task_organization_values
Valid unit designations (example: 1-7CAV)

mcc_formations.rdr
Identifies formation and spacing by unit echelon

unit_placement_data.rdr
Identifies formation order of subordinate units by
aggregate unit type

vehicle_class_data.rdr
Groups entities by vehicle class.

cgu_resource_data_file.rdr
Identifies fuel and munition loads, cargo, and repair
capabilities for supported entities.

aircraft_hardpoint_data_file.rdr
Identifies weapon system and ammunition loads for
aircraft.

uosp_soldiers_platforms.rdr
Identifies weapon systems by type of dismounted
infantry.

cis_data-[agg_unit_kind].rdr
Identifies the behaviors and associated formations

for each kind of aggregate unit supported in CCTT.

Initialization of unit behaviors requires each behavior
be linked to specific units and appropriate control
measures (routes, checkpoints etc.). Since the
relationships of behaviors and control measures are not
documented outside of CCTT source code, formats that
capture those relationships were created and populated
in reader files.

Linking Ported Data to Desktop Planning Tools

Linking the ported data to the exercise planning tools
on the PC desktop involves four primary steps. First,
object classes need to be developed to support loading
of the ported data. These object classes must describe
the properties, makeup, and behaviors of all simulation
objects that may be initialized in an exercise. A general
list of such objects includes, but is not necessarily
limited to, units, vehicles, control measures, and
environmental features such as obstacles and
minefields. The following table depicts counts of these
classes

Table 2. CCTT Object Counts

CCTT Object Classes Counts
Unit Classes 41
Entity Types 96
Control Measures/Obstacles/Minefields 64

The second step is to instantiate a simulation
environment’s objects into the desktop exercise
planning applications, making them available to the
application itself. The third step involves developing
software to enable the trainer’s desktop applications to
create and manipulate simulation objects as required in
support of specific exercises. This software can be
written in an application’s native macro language,
and/or linked into the macro language through dynamic
link libraries (DLL), dynamic data exchange (DDE), or
other methods. Applications that use Visual Basic, such
as those found in Microsoft Office, are ideally suited
for this task. The fourth step in the linking process is to
provide a facility for saving the exercise plan in a
format consistent with the targeted simulation
environment.

Definition of Object Classes
In our example, Visual Basic for Applications (VBA)
was used to define the object classes contained in the
reader files. The reader files define CCTT classes to
include supported units, entities, vehicles, munitions,
control measures, weapons, orders (combat instruction
sets), and others. The VBA classes were designed to

mirror the relationships, structure, and format of the
reader files.

Instantiation of Objects in PowerPoint
A C++ dynamic link library (DLL) was used to
instantiate the Visual Basic object classes. The DLL
provides support for reading, writing, querying,
relating, and manipulating reader files. This DLL
represents a critical piece of the overall application.
The specific details of which will become clear in the
following sections.

Integration with PowerPoint
CCTT objects as defined in Visual Basic were
integrated with PowerPoint’s own application interface
through the development of Visual Basic code and
reader files (Table 2). Digitized (PVD) maps were
integrated through the use of a second C++ DLL in
combination with a Visual Basic wizard-like interface.

Visual Basic code was written to render unit, and
overlay symbol shapes from custom toolbars. Each
PowerPoint shape is tagged with specific names as
defined in the reader files. These reader files document
the relationships between the PowerPoint shapes and
CCTT Objects for Units and Control Measures.
Following sections present additional detail on this
subject.

Table 3. PowerPoint Integration Reader Files

ceit_unit_data.rdr
Identifies the relationships between the unit types
from blufor_pure_units.rdr/opfor_pure_units.rdr
and unit shapes in PowerPoint. This file integrates
CCTT unit definitions with PowerPoint unit shapes.

ceit_overlay_types.rdr
Identifies the relationships between the overlay
symbol types supported in CCTT and the overlay
symbol shapes in PowerPoint. This file integrates
CCTT overlay symbols with PowerPoint overlay
symbol shapes.

cis_detail-[agg_unit_type].rdr
Identifies the relationships between unit behaviors
and the control measures needed to execute the
behaviors in CCTT. This file integrates the order-
specific parameters from CCTT with PowerPoint,
enabling PowerPoint to deal with each behavior’s
unique parameters (routes, checkpoints, phase lines,
etc.).

PVD map support was integrated into PowerPoint using
a C++ DLL to render the user specified “play box” as a
bitmap from the VTDB PVD databases. A wizard in
Visual Basic leads the user through the process of
identifying this “play box”. The DLL is then used to

render the specified area as a sixteen-color bitmap. The
bitmap is inserted into a PowerPoint presentation as
part of the slide master (background). The PowerPoint
presentation coordinates are correlated to 10 digit grid
locations. The parameters defining the correlation from
PowerPoint coordinates to MGRS coordinates are
embedded within the presentation as properties. Next,
the presentation is saved as a template under the
“Template” directory of Microsoft Office. In this
fashion, each time a user selects the “New” option
under the “File” menu the template is made available
for selection in the standard “New Presentation” dialog
(Figure 1).

Figure 1. PowerPoint New Presentation Dialog

Once a template has been selected, the map may be
cropped internal to PowerPoint to fit the requirements
of the user. The map may be cropped prior to, during,
and after specifying units and control measures. Once
cropped, PowerPoint will display only those exercise
objects that fall within the displayed area. Those
objects that do not fall entirely within the displayed
area become read only until the map is restored to full
size.

Save in CCTT Format
Now that objects from CCTT, and the terrain have been
integrated into the PowerPoint interface, the exercise
defined by these objects must be exported in a format
compliant with CCTT. Because both CCTT and
PowerPoint need to be able to read and write the
exercise file, it is very important to guarantee each
interprets the content of the file in the same fashion.
This requires both systems use the same API to perform
the read and write tasks. The reader file DLL provides
the solution. Reader file template definitions were
included in the DLL to force compliance of the exercise
file to a specific structure. The template supports
validation of each field’s values against the contents of
the ported CCTT reader files. Because only one API
exists, code maintenance is greatly simplified while

guaranteeing a common interpretation of the exercise
file.

Let us review the overall flow of data for the CCTT
exercise initialization tool (CEIT) (Figure 2). The
CCTT objects are defined internal to PowerPoint as
Visual Basic classes. The classes were instantiated as
objects using the Reader File DLL to load, query, and
manipulate the ported CCTT reader files. Custom
reader files were developed to integrate the objects
under PowerPoint’s own user interface using Visual
Basic. A PVD DLL was developed to render correlated
terrain maps for display in PowerPoint. The reader file
DLL was again used to generate a CCTT compatible
exercise file in reader file format under Windows. The
same reader file DLL is then used by CCTT’s MCC to
import the exercise file under AIX.

CEIT
(PowerPoint)

API
(NT)

API
(AIX)

MCC
(CCTT)

CCTT
RDR
Files

PVD
DLL

PVD
TDB

Figure 2 CEIT Data Flow

The common API approach taken for the API
development is not new. SEDRIS used the same
approach for development of the SEDRIS master
database.

Motivating the User to Capture Simulation Exercise
Data

Porting the data from a simulation into a desktop
application and enabling the application to act upon
those data to initialize a simulation exercise is a good
start. However, if training developers are not
sufficiently motivated to use the tools that have been
integrated into their desktop, or if by accessing the new
capabilities the task of training development becomes
more difficult or tedious, the developers are likely to
return to techniques that are more familiar to them. In
order to motivate the training developer to use the
simulation planning tools, those tools need to simplify
difficult tasks, automate tedious tasks, save
development time and be convenient to use. In our

example, the macro procedures automate the tedious
tasks of delineating overlay symbology by converting
simple shapes such as lines, rectangles, and ovals into
units, minefields, bridges, axis of advance, front lines,
fortifications, etc. The correlated digital maps that are
stored within PowerPoint templates simplify the
difficult task of determining the grid positions of units,
entities and control measures. By integrating a
simulation’s planning functionality into the desktop, we
have already made simulation planning more
convenient. However, this may not be sufficient. In
our example, seven toolbars were created to provide
access to CCTT simulation planning functionality.
Seven toolbars would certainly become cumbersome
and clutter the screen. Each time one is to be accessed,
the user must click on the “View” menu, select the
“Toolbars” option and finally click on the toolbar of
choice. To make this more convenient, an eighth
toolbar was created. This toolbar consolidates the
PowerPoint drawing tools needed to produce the simple
shapes used by the macro procedures. This toolbar also
makes access to the planning toolbars more convenient
by incorporating shortcuts to them.

WALK-THROUGH EXAMPLE

A walk-through example of creating an overlay in
PowerPoint for a CCTT exercise will reinforce the
effectiveness of integrating simulation into the training
environment. Each step will be discussed in terms of
the impact that integration of CCTT data and
functionality has had on the planning process. First, a
new presentation must be created. Selecting the
“New…” option under the “File” menu will allow a
user to select terrain, based on the digitized maps
available. In this step, the terrain is automatically
identified and displayed in PowerPoint (Figure 3).

Figure 3. PVD Map – Primary 2

Units may be placed by simply drawing a rectangle,
clicking on the appropriate echelon, and unit role
buttons, and specifying the unit designation (Figure 4).

1 A/1-7CAV
MECHPLT

Figure 4. Unit Placement

Rather than placing additional data requirements on the
user, the toolbars actually simplify the process by
providing short cuts for drawing and designating units.
Next the control measures, obstacles, and minefields
need to be placed. As with units, a simple shape such
as a line or rectangle is drawn first, the appropriate
control measure button is clicked, the echelon (if any)
is selected, and appropriate text is entered to designate
the control measure (Figure 5).

Figure 5. Tactical Boundary

As with unit placement, the toolbars actually simplify
the process by providing shortcuts for drawing and
designating the control measures.

Continuing the steps for placing control measures and
units, a complete overlay may be developed in a very
short period of time (Figure 6).

1/A/1-7CAV 1/A/1-7CAV

PL Soda

PL Soda

PL Barstow

PL Debnam

PL Debnam

PL Granite

PL Granite

PL Tiefort

PL Tiefort

RT Red Two

RT Red TwoRT Red One

A/1-7CAV

A/1-7CAV
1/A/1-7CAV

1/A/1-7CAV

1-7CAV

1-7CAV

SP1

03

RP1
SP2

A 2/A/OAR1
RECONPLT

1 A/OIN1
MRPLT

1 B/2/A/OAR1
MRPLT

2 B/1/A/OAR1
MRPLT

B 1-34AR

M109A5BAT

1 A/1-34AR

ARTCMDPST

B 1-7CAV

AIRCAVT RP

1 A/1-7CAV
ARMCAVPLT

RT Blue One

2S
6C OAR1

AD2S6BTRY

01

OPFOR
Avenue of Approach

Tactical Road March

Zone Reconnaissance

Figure 6. Example PowerPoint Overlay

Once the overlay is complete, the exercise data can be
exported to a file in an ASCII format supported by
CCTT and placed on a diskette. After the data have
been saved to diskette, the exercise may be imported at
the CCTT Master Control Console (MCC), and saved
in CCTT’s native exercise file format. This is the only
simulation-specific step that must be taken by the
training developer to transfer the exercise plan into the
CCTT simulation environment. This example
demonstrates a simple approach, using familiar
applications that enhance and shortcut the time
normally taken during the planning process to achieve
the same end.

CONCLUSION

In review of the information presented, we can see that
the development cycle for an integrated PC planning
tool varies little from the development cycle of a
specific simulation environment’s native planning tool.
A primary difference is the transition from the
simulation environment’s own programing language to
the language of the user’s desktop planning
environment. This is a painful transition at best.
Simulation developers have a preferred programming
language. Software engineers learn to think in terms of
their primary programming language. It is difficult to
transition from one language and development
environment to another. Educating an engineer, who is
experienced in desktop development on a simulation
development environment, is difficult as well.
However, when new simulation environments depend
on the development of planning applications, the
desktop development environment already exists.
Microsoft Office is an example of a desktop
development environment, and these applications have
been written. They have a broad user base and they
work. Simulation developers can seize the opportunity
to extend simulation into the familiar tools associated
with the PC desktop with this user base. Recall the

assumption “The basic training process does not vary
by training environment.” By integrating initialization
data into the simulation domain from existing tools of
the training domain, the views of both the training
developer and simulation developer move that much
closer to a uniform view of simulation and of training,
meeting the needs of both.

REFERENCES

REFLECTONE Inc., AcuSoft Inc., (February 1999)
Final Report – CCTT Interoperability Program –
Initialization Enhancement.

Jeff Abbott, Dr. Mona Crissey, Mr. Gene Haga, (March
1999) Functionality of Exercise Initialization from the
PC (Windows) Desktop, Simulation Interoperability
Standards Organization, 99S-SIW-119.

Loral/Army Integrated Development Team, (January
1996) Software Design Document and Interface Design
Document for the CCTT Unit Off-Site Planner.

